Revisiting LEBT GPT Simulations John Back University of Warwick 15th Dec 2016 ## Introduction - Looking at GPT simulations of LEBT performance, comparing $\epsilon = 0.4\pi$ (IPAC'14) & 0.25 π mm mrad, 65keV beams - Owing to realisation that scanner data was too "coarse" - Use IPAC'14 paper scanner data to estimate initial beam - Re-do Alan's reverse simulations done June'14 - ⇒ Initial beam is almost parallel, slightly convergent - Look at focusing solutions where 2nd solenoid is off - Allows us to use its steerers to adjust horiz/vert beam offsets - Extension of Alan's simulation work done in June'14 - Optimise 1st and 3rd solenoid currents to give best RFQ acceptance IPAC'14: $I_1 = 130A$, $I_2 = 80A$, $I_3 = 220A$, $\varepsilon = 0.4\pi$ mm mrad emittance scanner profiles: data (top), GPT (bottom) IPAC'14: I_1 = 130A, I_2 = 100A, I_3 = 245A, ε = 0.4π mm mrad emittance scanner profiles: data (top), GPT (bottom) IPAC'14: $I_1 = 130A$, $I_2 = 80A$, $I_3 = 220A$, $\varepsilon = 0.4\pi$ mm mrad GPT beam profile, assuming space charge I = 12.5 mA IPAC'14: $I_1 = 130A$, $I_2 = 100A$, $I_3 = 245A$, $\varepsilon = 0.4\pi$ mm mrad GPT beam profile, assuming space charge I = 12.5 mA ### Initial beam based on reverse sim: $\varepsilon = 0.4\pi$ mm mrad #### Region = Start < x > = -0.03 mm, < x' > = 0.02 mrad <y> = -0.16 mm, <y'> = 0.03 mrad $\alpha_x = 0.45, \ \beta_x = 3.78, \ \gamma_x = 0.32; \ (1 + \alpha_x^2)/\beta_x = 0.32$ $\alpha_{\rm y}$ = 0.17, $\beta_{\rm v}$ = 3.12, $\gamma_{\rm v}$ = 0.33; (1 + $\alpha_{\rm y}^2)/\beta_{\rm v}$ = 0.33 \in_{x} = 203.70, Norm \in_{x} = 2.40, Norm rms \in_{x} = 0.40 ϵ_{y} = 202.77, Norm ϵ_{y} = 2.39, Norm rms ϵ_{y} = 0.40 ### Initial beam based on reverse sim: $\varepsilon = 0.25\pi$ mm mrad #### Region = Start $$<$$ x> = -0.02 mm, $<$ x'> = 0.02 mrad $$<$$ y $>$ = -0.13 mm, $<$ y' $>$ = 0.02 mrad $$\alpha_{\rm x}$$ = 0.45, $\beta_{\rm x}$ = 3.78, $\gamma_{\rm x}$ = 0.32; (1 + $\alpha_{\rm x}^2)/\beta_{\rm x}$ = 0.32 $$\alpha_{\rm y}$$ = 0.17, $\beta_{\rm v}$ = 3.12, $\gamma_{\rm v}$ = 0.33; (1 + $\alpha_{\rm y}^2)/\beta_{\rm v}$ = 0.33 $$\in_{x}$$ = 127.31, Norm \in_{x} = 1.50, Norm rms \in_{x} = 0.25 $$\in_{V}$$ = 126.73, Norm \in_{V} = 1.49, Norm rms \in_{V} = 0.25 # Optimisation - Start with previous initial beam distributions - Assume ε = 0.4π and 0.25π mm mrad; 12.5 mA space charge, 65 keV - Drifts: $d_1 = 21.6$ cm, $d_2 = 15$ cm, $d_3 = 35$ cm; d_4 varies - Solenoid lengths 31 cm, B_z (T) $\approx 1.3 \times 10^{-3}$ I, I = solenoid current (A) - Solenoid r-z field map from Comsol simulation (2014 studies) - Vary 1st and 3rd solenoid currents: I₁ and I₃ - I_2 fixed at 0 A \Rightarrow its dipole steerers "decoupled" from solenoid fields - Current range: 0 to 250 A; power supply limit is 245 A - For final drift, find z position that gives largest RFQ acceptance fraction - Need d_4 to be within the range 13.66 \pm 5.00 cm - Choose I₁ and I₃ that gives maximum acceptance - Next series of plots for $\varepsilon = 0.4\pi$ and 0.25π mm mrad options: - Given I₁ and I₃: max achievable RFQ acceptance, d₄ & beam size - Beam envelope and RFQ acceptance for best focusing solution x-z profile for I_1 = 70A, I_2 = 0A, I_3 = 245A, ε =0.40 π mm mrad y-z profile for I_1 = 70A, I_2 = 0A, I_3 = 245A, ε =0.40 π mm mrad x-z profile for I_1 = 95A, I_2 = 0A, I_3 = 245A, ε =0.25 π mm mrad y-z profile for I_1 = 95A, I_2 = 0A, I_3 = 245A, ε =0.25 π mm mrad ## Acceptance: $I_1 = 70$ A, $I_2 = 0$ A, $I_3 = 245$ A, ε=0.40π mm mrad Region = 110 mm from start of drift 4 <x> = -0.03 mm, <x'> = -0.27 mrad <y> = 0.01 mm, <y'> = -0.05 mrad α_x = 2.60, β_x = 0.12, γ_x = 66.77; $(1 + \alpha_x^2)/\beta_x$ = 66.77 α_y = 2.23, β_y = 0.09, γ_y = 64.57; $(1 + \alpha_y^2)/\beta_y$ = 64.57 \in_x = 243.47, Norm \in_x = 2.86, Norm rms \in_x = 0.48 \in_y = 241.41, Norm \in_y = 2.84, Norm rms \in_y = 0.47 Max RFQ fraction 77.94 % 11 cm final drift ### Acceptance: $I_1 = 95A$, $I_2 = 0A$, $I_3 = 245A$, $\varepsilon = 0.25\pi$ mm mrad Region = 130 mm from start of drift 4 <x> = -0.03 mm, <x'> = -0.09 mrad <y> = 0.00 mm, <y'> = -0.06 mrad α_x = 2.94, β_x = 0.13, γ_x = 73.80; $(1 + \alpha_x^2)/\beta_x$ = 73.80 α_y = 2.51, β_y = 0.10, γ_y = 69.80; $(1 + \alpha_y^2)/\beta_y$ = 69.80 \in_x = 150.79, Norm \in_x = 1.77, Norm rms \in_x = 0.30 \in_y = 149.97, Norm \in_y = 1.76, Norm rms \in_y = 0.29 Max RFQ fraction 92.22 % 13 cm final drift # Summary - LEBT focusing re-optimised for two scenarios: - $\varepsilon = 0.40\pi$ and 0.25π mm mrad - Better focusing possible with reduced emittance - Focusing solution(s) with 2^{nd} solenoid off are consistent with final drift engineering constraint $d_4 = 13.66 \pm 5.00$ cm - \Rightarrow We can use 2nd solenoid dipole steerers for beam offsets - Optimal solutions: - I₁ = 70 A, I₂ = 0 A, I₃ = 245 A, d₄ = 11 cm for ε = 0.40π mm mrad - I₁ = 95 A, I₂ = 0 A, I₃ = 245 A, d₄ = 13 cm for ε = 0.25π mm mrad - Recommended parameters when LEBT is recommissioned: - $-I_1 = 80 \pm 20 \text{ A}$, $I_2 = 0 \text{ A}$, $I_3 = 245 \text{ A}$ (consistent with Alan's findings) - Slight decrease in I₃ may be needed depending on power supply reliability - Keep final drift d₄ fixed at present value of 13.66 cm - Length between solenoid 3 exit face and entrance of RFQ radial matcher