FETS BPMs – Calibration and FPGA Processing

Gary Boorman

Contents

- BPM Calibration
 - Parameters to be determined sensitivity, offset and linearity
 - Wire rig hardware
 - Results
- BPM Signal Processing
 - FPGA code outline
- Next Steps
 - Full signal chain test
 - Project student to calibrate all BPMs
 - Client viewer and logger
 - Infrastructure

Sensitivity and Offset

Prototype BPM

$$x = \frac{1}{S_x} \frac{\Delta V}{\sum V} + dx$$

x = position (mm)

 $S_x = sensitivity (mm/V)$

$$\Delta V = V_{right} - V_{left}$$

$$\Sigma V = V_{right} + V_{left}$$

$$dx = offset$$

Linearity

- Factors such as electronics dynamic range, saturation etc affect position resolution (not considered here)
- Need to understand linear region of the BPM
 - Intrinsic to beam pick-up

BPM Wire Rig

- Wire has CW RF at 324MHz
- Electrodes read out by 1GHz
 BW (4GS/s) 4-ch oscilloscope
- VI controls wire movement and scope readout
- Analysis in Python

Sensitivity Calibration

- Method to determine sensitivity
 - Position wire to move along one axis eg move along y-axis in 1mm steps (keep x = 0)
 - Record electrode signals at each point
 - Determine difference/sum of each point
 - Linear fit to Δ/Σ (range -4 mm to + 4mm each axis)
- Results (prototype BPM):

$$Sx = 10.686 \pm 0.180$$

$$Sy = 11.354 \pm 0.240$$

- PROBLEM: Difference between Sx and Sy of >6%
- If sensitivity measured along another axis (eg x = 2mm) then difference up to 10%

Sensitivity Axis Disagreement

- What causes the disagreement between the sensitivity coefficients for the x and y axes?
 - All cables swapped, scope inputs changed, BPM rotated 90°, electrodes re-seated, wire verticality rechecked...
 - Rotating the BPM by 45 degrees could make the difference decrease - difference now about 3%!
- Concluded that the aluminium frame holding the wire is causing a disturbance in the RF field seen by the BPM electrodes
- A new perspex frame to hold the wire is being fabricated and will be tested this week.

Linearity

 Linear region extends to almost 5 mm from the BPM centre, but more work required with new wire frame

Position Resolution

Signal Acquisition and Synchronisation

- Uses NI PXI-7954R and NI-5752
- 8 BPMs, 4 electrodes each -> 32 channels required

I/Q Sampling

- Each electrode sampled simultaneously after trigger
- The IF signal of 10.125 MHz is sampled at exactly four times this frequency – 40.500 MHz

$$A = \sqrt{I^2 + Q^2} \quad \Phi = \tan^{-1}\left(\frac{Q}{I}\right)$$

BPM Processing

- ALL code written in LabVIEW
- For each electrode the I, Q, -I, -Q are accumulated and then averaged
- Averages are FIFOed and MUXd to maths unit to get magnitude and phase
- Maths unit does delta/sum * sensitivity then DMAs result to RT host

FPGA Code Snippet

Processing Time

- Currently all processing uses the FPGA 40 MHz clock
- 128 accumulator channels averaged every 25.6 µs
- Uses four maths units to process pairs of BPMs in parallel
- Uses 32 DSP blocks in FPGA for square root, multiplication and division
- Magnitude (sqrt) and phase (tan⁻¹) takes 26 clock cycles
- Difference/sum (div) takes 20 clock cycles
- Processing eight BPMs takes about 10.4 µs

How can processing time be reduced....?

(Update – total processing time is now 1.3 µs)

Processing Optimisation

- Three optimisation approaches:
 - Increase clock speed (up to 200 MHz clock available)
 - Shorten representation of fixed-point numbers
 - Pipeline maths functions
- Increasing clock speed means more difficult to fit the logic!
- - Also allows shorter averaging lengths! *

Pipelining allows start of next calculation before previous one has finished

Distributing the BPM Position

- The BPM number and vertical/horizontal axis encoded into a 32 bit number that is DMA'd to RT host
- RT host has EPICS server to allow client access
 - EPICS client for data-logging
 - EPICS client for control room viewing
- EPICS allows platform/OS/language agnosticism
- Testing and verifying processing time was, and remains, a challenge.

Conclusion

- BPM Wire Rig works reasonably well, but a non-metallic frame will improve calibration
- FPGA code is working, and total processing time is 1.3µs
- Production BPMs delivered to RAL
 - Calibration of all BPMs will occur this autumn with project student
 - Full signal chain test happening as soon as filter components on mixer electronics changed
- BPM Client viewer requirements....

