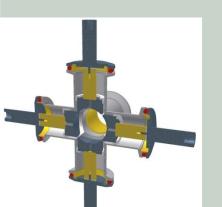


Science & Technology Facilities Council



FETS Meeting @ RHUL

BPM Design

By Juergen Pozimski & Peter Savage

14th November 2012

Diameter 24mm button BPM

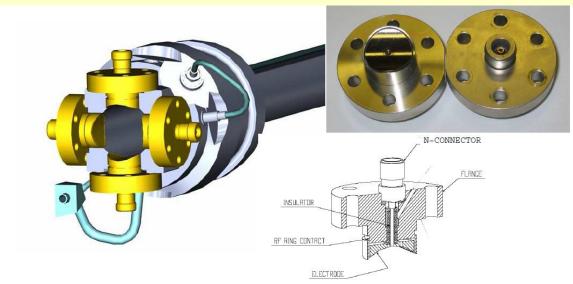
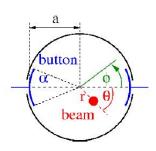



Fig. 18: Left: The installation of the curved Ø 24 mm button BPMs at the LHC beam pipe of Ø 50 mm, from [18]. Right: Photo of a BPM used at LHC, the air side is equipped with a N-connector as well as a technical drawing for this type.

Peter **Forck**

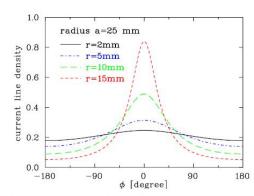


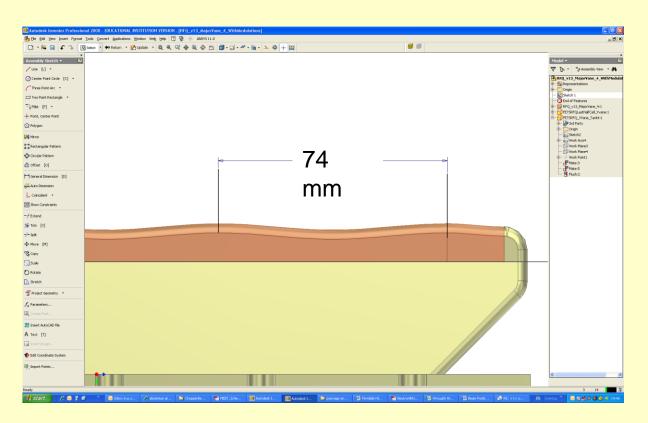
Fig. 19: Schematics for a button BPM and the image current density generated by a 'pencil' beam at different displacements r for an azimuth $\theta = 0$.

Simplified comparison

Table 1: Simplified comparison between linear-cut and button BPM

	Linear-cut BPM Button BPM		
Precaution	bunches longer than BPM	bunches comparable to BPM	
BPM length (typical)	10 to 20 cm per plane	Ø 0.5 to 5 cm	
Shape	rectangular or cutted cylinder	orthogonal or planar orientation	
Mechanical realization	complex	simple	
Coupling	1 MΩ	50 Ω	
	or \sim 1 k Ω via transformer		
Capacitance (typical)	30 - 100 pF	3 - 10 pF	
Cut-off frequency (typical)	1 kHz for $R = 1M\Omega$	$0.3 \text{ to } 3 \text{ GHz for } R = 50\Omega$	
	or 1 MHz for $R = 1$ k Ω		
Usable bandwidth (typical)	0.1 to 100 MHz	0.1 to 5 GHz	
Linearity	very linear, no x-y coupling	non-linear, x-y coupling	
Position sensitivity	good	good	
	required: min. plate cross talk	required: 50 Ω signal matching	
Usage	at proton synchrotron,	proton Linac, all electron acc.	
	$f_{acc} < 10 \mathrm{\ MHz}$	$f_{acc} > 100 \mathrm{MHz}$	

Peter Forck, Piotr Kowina, Dmitry Liakin Gesellschaft für Schwerionenforschung GSI, Darmstadt, Germany

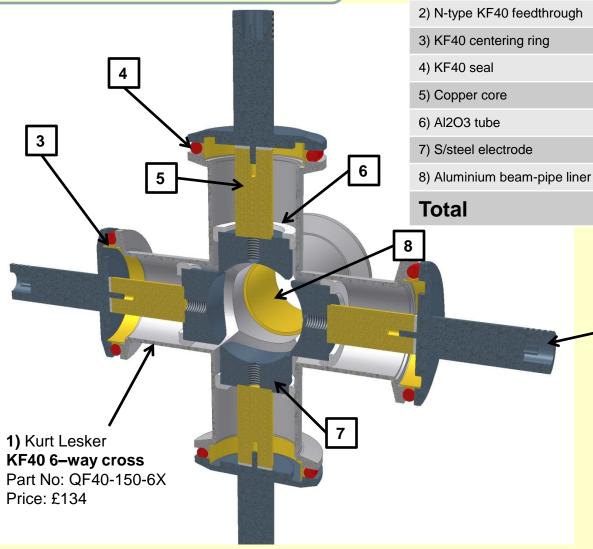


BPM Diameter

The BPM diameter can be estimated from the bunch length:

Distance between last 2 peaks in RFQ / 4 = 74 /4 = 18.5mm (length<90 degree of RF)

Therefore, DN25CF should be sufficient.



Imperial College could produce a prototype for ~£1000

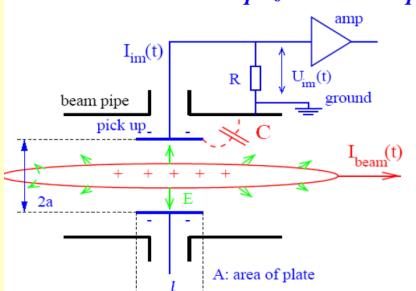
Item	Quantity	Unit Cost (£)	Total Cost (£)
1) KF40 6-way cross	1	134	134
2) N-type KF40 feedthrough	4	127	508
3) KF40 centering ring	4	2	8
4) KF40 seal	4	3	12
5) Copper core	4	10	40
6) Al2O3 tube	4	15	60
7) S/steel electrode	4	10	40
8) Aluminium beam-pipe liner	4	5	20
Total	29		822

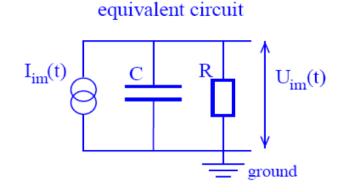
2) Kurt Lesker

N-type KF40 feedthrough

Part No: IFTNG011038B

Price: £127




Sensitivity

Vorlesung Beschleunigerphysik I WS 2011/2012

T. Weis

Kapazitiver Strahlpositionsmonitor

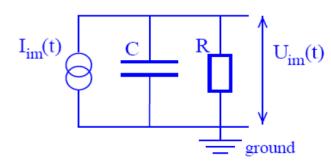
$$\frac{1}{Z} = \frac{1}{R} + i\omega C \to Z = \frac{R}{1 + i\omega RC}$$

Flächenverhältnis

$$Q_{beam}(t) = I_{beam}(t) \cdot \frac{l}{\beta c}$$

$$I_{im}(t) = \frac{dQ_{im}(t)}{dt} = \frac{A}{2\pi al} \cdot \frac{dQ_{beam}(t)}{dt} = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{dI_{beam}(t)}{dt}$$

496



Frequency Response 1

Vorlesung Beschleunigerphysik I WS 2011/2012

T. Weis

equivalent circuit

In Frequenzdarstellung:

$$U_{im}(\omega) = Z(\omega) \cdot I_{im}(\omega)$$

komplexes Übertragungsverhalten des BPM.

Wir setzen ein und erhalten

Hochpass

$$\begin{split} U_{im}\left(\omega\right) &= \frac{R}{1 + i\omega RC} I_{im}\left(\omega\right) \\ &= \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{R}{1 + i\omega RC} \frac{dI_{beam}\left(\omega\right)}{dt} \\ &= \frac{A}{2\pi aC} \cdot \frac{1}{\beta c} \cdot \frac{i\omega RC}{1 + i\omega RC} \cdot I_{beam}\left(\omega\right) \\ &= Z_{t}(\omega, \beta) \cdot I_{beam}\left(\omega\right) \end{split}$$

also

$$Z_{t}(\omega, \beta) = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{i\omega RC}{1 + i\omega RC}$$

/ Transferimpedanz des BPM mit/

$$|Z_{t}(\omega, \beta)| = \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{1}{C} \cdot \frac{\omega/\omega_{c}}{\sqrt{1 + \omega^{2}/\omega_{c}^{2}}}$$
$$\varphi(\omega) = \arctan\left(\frac{1}{\omega RC}\right) = \arctan\left(\frac{\omega_{c}}{\omega}\right)$$

 $\omega_c = \frac{1}{RC}$

497

Frequency Response 2

Vorlesung Beschleunigerphysik I WS 2011/2012

T. Weis

Auswirkungen auf Signalstärke und -form

Hoch frequente Signale:
$$\omega \gg \omega_C$$
 $Z_t(\omega, \beta) \propto \frac{i\omega/\omega_C}{1+i\omega/\omega_C} \to 1$

$$U_{im}(\omega) = \frac{A}{2\pi a C} \cdot \frac{1}{\beta c} \cdot I_{beam}(\omega) \qquad \rightarrow \qquad 1 + i\omega/\omega_{C}$$

$$U_{im}(t) \propto I_{beam}(t)$$

Signalform = Bunchform

$$Z_t(\omega,\beta) \propto \frac{A}{C}$$
 \Longrightarrow (fast) unabhängig von Länge der Pickups

Niederfrequente Signale:
$$\omega \ll \omega_C$$
 $Z_t(\omega, \beta) \propto \frac{i\omega/\omega_C}{1 + i\omega/\omega_C} \rightarrow i\omega/\omega_C$

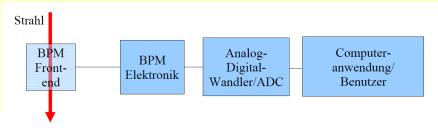
$$U_{im}(\omega) = R \cdot \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot i\omega I_{beam}(\omega) = R \cdot \frac{A}{2\pi a} \cdot \frac{1}{\beta c} \cdot \frac{d}{dt} I_{beam}(\omega)$$

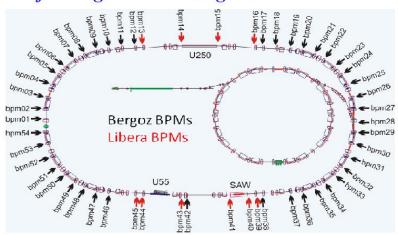
$$\rightarrow \qquad U_{im}(t) \propto \frac{d}{dt} I_{beam}(t)$$

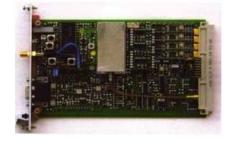
Signalform = Ableitung der Bunchform.

 $Z_{t}(\omega,\beta) \propto A \implies (fast) \text{ unabhängig von Kapazität der Pickups}$

498



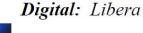

Electronics



Vorlesung Beschleunigerphysik I WS 2011/2012

T. Weis

Erfassung der Strahllagedaten / DELTA



ältere Elektroniken analog:

Fa. Bergoz $f \le 10 \text{ Hz}$ üblicherweise für langsame Orbitkorrektur

Datenrate bis 10 kHz nutzbar.

Fa. Intrumentation Technologies f < 3 MHzsehr große Verbreitung an Lichtquellen

Next steps...

- 1. The mechanical design seems no major problem, the relevant physical behaviour is know analytically or can swiftly be simulated. Available designs might be used if suitable.
- 2. This is also true for the manufacturing of the BPM and no major cost driver is expected there as well.
- 3. A development of the electronics seems too much effort in the light of available electronics on the market. What is CERN/Linac4 using?
- 4. Are we able to define what we need and purchase the required electronics now?

