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Cavity modes

When we talk about the ‘frequency’ of a cavity we’re referring to the frequency at which it
resonates electromagnetically.

However cavities can resonate in many different modes just like a string or a flat plate
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Transverse Electric & Transverse Magnetic modes

Most accelerator cavities have some sort of cylindrical symmetry and two types of resonant
modes exist.

Transverse electric modes have the electric field transverse to the symmetry axis (which is usually

the beam direction) and are designated TE, ..

Transverse magnetic modes have the magnetic field transverse to the symmetry axis and are
designated TM_ ...

The subscripts mean:

m (=0, 1, 2, ...) —the number of full period variations of the field components in 6.
n(=1,2,3,..)—the number of zeroes in the axial field in the radial direction.
p(=0,1,2,..)—the number of half period variations of the field along the z axis.

For a simple cylindrical cavity analytical solutions exist for all the TE and TM modes.



The general solution for the field components of the TM,, ., mode in a cylindrical cavity is:
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The general solution for the field components of the TE,, mode in a cylindrical cavity is:

B_.=B,J (k, r)cosmécos pl_ﬂz e’
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Some useful cylindrical modes
Electric field
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Accelerating mode

Dipole mode

Quadrupole mode



Longitudinal modes

For every ‘transverse’ mode — TE/M_, — there are an infinite number of ‘longitudinal’ modes
where the electric field components have the form

P’ for TE modes
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RFQ modes

The mode of interest in an RFQ is the TE,;, quadrupole mode.

Note however that the boundary conditions of a simple cavity forbid the existence of a TE,,
mode, the lowest transverse electric mode being TE ;.

bl Electric field of the lowest
e quadrupole mode in a cylindrical
cavity — TE,,;.
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In order to achieve a TE,,,-like mode - a ‘flat’ field - the ends of the RFQ have to be modified.

With the modified end regions the longitudinal modes have a cospl—ﬂz variation more like a TM

mode. ‘

Modifying the ends allows all the TE, , modes to exists (in particular the TE,,, dipole mode(s)).
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So what does all this mean?

In an ideal cavity a ‘pure’ mode can be excited by tuning to exactly the resonant frequency of that
mode.

In a real cavity, which may contain imperfections, the field shape is a superposition of many (in
principle an infinite number of) different modes.

The amount of an unwanted mode that is present depends on the magnitude of local frequency
errors and the difference in frequency between the wanted and unwanted modes.

In an RFQ the wanted mode is TE,,,.

The unwanted modes are TE,,; , 3 ) which lead to a non-flat quadrupole field and TE;; 54,3 )
which introduce dipole components.



Fields in an RFQ

The fields in an RFQ can be expressed as

N
E(z)=), [A(p) *TE,,, + B(p)*TE,,, + C(p)*TEﬁp]
p=0

Where TE';;, and TE?,, are the two orientations of the dipole modes.

The purpose of the tuning and flattening exercise is to achieve

A(0) =1

A(p) |, =0
B(p)l,.n=0
C(P),n=0



Fields in each quadrant

More explicitly, numbering each quadrant gq=1, 2, 3 or 4:

E(z,9)= Z [A(P)O(P)-D"" £ (z. )£ B(DID(p)f (2. ) £C(PID(P) (2. p)] (D)

Q(p), D,(p) and D,(p) are normalisation factors to equalise the stored energy in each mode.
D,is+veifq=1,-veifq=3,0ifqg=2or4.
D,is+veifq=2,-veifq=4,0ifg=1or 3.

With w,, the angular frequency of the desired quadrupole mode and w
frequencies of the other modes
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The values of A(p), B(p) & C(p) can be determined by a bead-pull of each quadrant.




Fields due to frequency perturbations

A frequency perturbation w = w, at z = k introduces a component of mode p given by
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Generalising this to the quadrants of the RFQ leads to
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If the w, are frequency shifts at fixed tuner positions, equations (1), (2), (3) & (4) can be solved in
a least squares sense for w,. This along with the constraint of fixed w,, leads to new tuner
positions to give A(p),..,, B(p) & C(p) = 0.



