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Cavity modes 

When we talk about the ‘frequency’ of a cavity we’re referring to the frequency at which it 
resonates electromagnetically. 

 

However cavities can resonate in many different modes just like a string or a flat plate 

 



Transverse Electric & Transverse Magnetic modes 

Most accelerator cavities have some sort of cylindrical symmetry and two types of resonant 
modes exist. 

 

Transverse electric modes have the electric field transverse to the symmetry axis (which is usually 
the beam direction) and are designated TEmnp. 

Transverse magnetic modes have the magnetic field transverse to the symmetry axis and are 
designated TMmnp. 

 

The subscripts mean: 

m (= 0, 1, 2, …) – the number of full period variations of the field components in θ. 

n (= 1, 2, 3, …) – the number of zeroes in the axial field in the radial direction. 

p (= 0, 1, 2, …) – the number of half period variations of the field along the z axis. 

 

For a simple cylindrical cavity analytical solutions exist for all the TE and TM modes. 



The general solution for the field components of the TMmnp mode in a cylindrical cavity is: 

tj

c

mnm

mn

tj

c

mnm

mn

r

z

tj

c

mnm

mnc

tj

c

mnm

mnc

r

tj

c

mnmz

e
l

zp
mrkJE

cx

a
jB

e
l

zp
mrkJE

rcx

ma
jB

B

e
l

zp
mrkJE

rx

ma

l

p
E

e
l

zp
mrkJE

x

a

l

p
E

e
l

zp
mrkJEE
































coscos)(

cossin)(

0

sinsin)(

sincos)(

coscos)(

02

022

2

02

2

0

0















The general solution for the field components of the TEmnp mode in a cylindrical cavity is: 
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Some useful cylindrical modes 
            Electric field             Magnetic field 

 

TM010 

       Accelerating mode 

 

 

 

 

TE111 

       Dipole mode 

 

 

 

 

 

 

TE211 

       Quadrupole mode 



Longitudinal modes 

For every ‘transverse’ mode – TE/Mmn – there are an infinite number of ‘longitudinal’ modes 
where the electric field components have the form  

 

            for TE modes 

 

And 

 

            for TM modes 
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RFQ modes 

The mode of interest in an RFQ is the TE210 quadrupole mode. 

Note however that the boundary conditions of a simple cavity forbid the existence of a TEmn0 
mode, the lowest transverse electric mode being TEmn1. 

 

              

 

 

 

 

 

 

 

In order to achieve a TE210-like mode - a ‘flat’ field - the ends of the RFQ have to be modified. 

 

With the modified end regions the longitudinal modes have a              variation more like a TM 
mode. 

 

Modifying the ends allows all the TEmn0 modes to exists (in particular the TE110 dipole mode(s)). 

Electric field of the lowest 
quadrupole mode in a cylindrical 
cavity – TE211. 
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TEmn0-like modes 
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Longitudinal modes of TE fields in a simple cavity 

Longitudinal modes of TE fields in a modified cavity with a TEmn0-like mode 



So what does all this mean? 

In an ideal cavity a ‘pure’ mode can be excited by tuning to exactly the resonant frequency of that 
mode. 

 

In a real cavity, which may contain imperfections, the field shape is a superposition of many (in 
principle an infinite number of) different modes. 

 

The amount of an unwanted mode that is present depends on the magnitude of local frequency 
errors and the difference in frequency between the wanted and unwanted modes. 

 

In an RFQ the wanted mode is TE210. 

The unwanted modes are TE21(1,2,3,…) which lead to a non-flat quadrupole field and TE11(0,1,2,3,…) 
which introduce dipole components. 



Fields in an RFQ 

The fields in an RFQ can be expressed as 

 

 

Where TE1
11p and TE2

11p are the two orientations of the dipole modes. 

 

The purpose of the tuning and flattening exercise is to achieve 
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Fields in each quadrant 

More explicitly, numbering each quadrant q=1, 2, 3 or 4: 

 

 

Q(p), D1(p) and D2(p) are normalisation factors to equalise the stored energy in each mode. 

D1 is +ve if q = 1, -ve if q = 3, 0 if q = 2 or 4. 

D2 is +ve if q = 2, -ve if q = 4, 0 if q = 1 or 3. 

 

With ωq0 the angular frequency of the desired quadrupole mode and ωqp, ωd1p, ωd2p the 
frequencies of the other modes 

 

 

 

 

 

 

 

The values of A(p), B(p) & C(p) can be determined by a bead-pull of each quadrant. 
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Fields due to frequency perturbations 

A frequency perturbation ω = ωk at z = k introduces a component of mode p given by 

 

 

 

Generalising this to the quadrants of the RFQ leads to 

 

 

 

 

 

 

 

If the ωz are frequency shifts at fixed tuner positions, equations (1), (2), (3) & (4) can be solved in 
a least squares sense for ωz. This along with the constraint of fixed ωq0 leads to new tuner 
positions to give A(p)p>0, B(p) & C(p) = 0. 

kz
p

k pp



  mode* mode ofAmount 

2

0

2

2

0

2





(4)        .),(
1

)(

(3)        .),(
1

)(

(2)         .),(
1

)(

0

2

0

2

2

2

0

2

0

2

0

2

1

2

0

2

0

2

0

2

2

0

2

dzpzf
L

pC

dzpzf
L

pB

dzpzf
L

pA

L

pd

z

L

pd

z

L

qp

z













































































