FETS BPMs – Calibration and Signal Processing

Gary Boorman

Contents

- BPM Calibration a quick recap
- Issues with previous calibration methods
- Signal Processing
- Calibration Results
- Next steps

Linearity, Sensitivity & Offset

X

$$x = \frac{1}{S_x} \frac{\Delta V}{\sum V} + dx$$

x = position (mm)

 $S_x = sensitivity (mm/V)$

$$\Delta V = V_{right} - V_{left}$$

$$\Sigma V = V_{right} + V_{left}$$

$$dx = offset$$

BPM Wire Rig

- Wire has CW RF at 324 MHz 18 dBm
- Electrodes read out by 1 GHz BW (4 GS/s) 4-ch oscilloscope or mixer electronics/digitizer
- VI controls wire movement and scope readout

Previous Calibration Issues

- The wire-rig system was extremely sensitive to external parameters:
 - Position of cables from electrode to oscilloscope
 - Proximity of wire wrt frame (aluminium)
 - Day of the week....
- The signal level is few mV and scope is 8-bit at 4 GS/s
 - Quantisation noise on signal
 - Drift over ms due to 50 Hz mains
- Fitting code struggled with DC offset
 - Accurate amplitude measurement difficult
 - Position had large uncertainty

Electronics Test

- Signal from BPM electrode mixed to IF = 10.125 MHz
 - Input signal AC-coupled using transformer
 - Variable gain between transformer and mixer
 - 3 stages of gain after mixer
 - 10.125 MHz BP filter after gain
- Testing each mixer channel
 - Input signal -47 dBm (approx 1 mV_{rms})
 - Input LO = -7 dBm
 - Output = approx 0 dBm (gain of circuit between input and mixer is unknown)
 - Stable (<1% output variation) over 24 hours

FPGA Code Precision

- Evaluate contribution of Digitizer and FPGA code to the position uncertainty
 - Digitizer is 12-bit, with fixed input range -1 V to +1 V
 Ideally matched to output level of mixer channels
 - Calculated maximum uncertainty of 3% for the digitizer (using datasheet values)
 - Measured uncertainty for digitizer of 1% for typical input signal levels
 - Final FPGA position calculation uncertainty on a typical sample length (25.5 μ s) < 10 μ m (based on sensitivity S_{x,v} of 0.1)

Digitizer Calibration

Uncalibrated digitizer channels

Offset corrections, course gain correction

Typical Sensitivity Scan

Rotate 0 X-axis y=-5mm all data

Rotate 0 X-axis y=-5mm Fit

Wire Position using Mixer/Digitizer/FPGA

- Complete system tested March 2015
- New perspex frame to hold the wire
- Agreement between axes within 2% (self-consistent)
- BUT sensitivity from simulation ~ 0.1, wire-rig ~ 0.08
 - Error is down to the wire-rig and not the electronics/digitizer/FPGA
- Where is the issue?
 - The connection between the electrode and the SMA connector has caused problems
 - Squeezing the female part of the connection enables much better conduction at 324 MHz

Next Steps

- Re-measure sensitivities after checking the electrode connections
- Evaluate the manufacturing defect on the BPMs
- Measure strip-line sensitivity and compare with CERN results
- Perform 'grid-scans' on bore of BPM
- Evaluate electronics in more detail (temp stability, crosstalk, 1 dB compression etc)
- Investigate the latest version of the CERN mixer electronics and control code
- Complete measurements and submit abstract to IBIC 2015
- Await year 2 funding to build mixer electronics & cabling

