Development of BPMs for the Linac4

J. TAN, M. SORDET, L. SØBY, F. GUILLOT-VIGNOT, D. GERARD, M. LUDWIG, D. STEYAERT
BE/BI

Linac4 Instrumentation Review 18th October 2011

Outline

- ▶ BPM
 - Layout
 - Functional specs
 - The monitor and low beta beams
- STATUS
 - Drawings and prototyping
 - BPM test bench and Acquisition chain
 - First BPM characteristics
 - Todo list
- Spare policy
- Planning
- Summary

BPMs layout and specs

Observable 1: Beam position

Observable 2: Relative beam intensity between two BPMs

Observable 3: Beam phase wrt RF reference

Observable 4: Energy via TOF between two BPMs

							~
	Beam position		Dal Daam	Doom			
Line	# of Monitors	Resolution	Accuracy	Rel. Beam Int.	Beam phase	TOF	Comments
L4D	2		0.3mm	1% wrt to peak current		1 per mille	
L4C	7	0.1 mm			0.5°		
L4P	6	0.1111111			0.5	i periilile	
L4T to PSB	27						

4

Linac4 BPM (1)

- Shorted Stripline
- Linear
- Fair sensitivity
- Compact
- Reasonable price
- Resonating
- ▶ β-dependent

Dealing with low-\beta beams

Movable test bench BPM

Transfer impedance changes with β and bunch length

PU sensitivity changes with β

These simulations confirm Shafer's theorem (1994)

The values obtained from the simulations will be implemented in the software

Outline

- ▶ BPM
 - Layout
 - Functional specs
 - The monitor and low beta beams
- STATUS
 - Drawings and prototyping
 - BPM test bench and acquisition chain
 - First BPM characteristics
 - Todo list
- Spare policy
- Planning
- Summary

Multiple BPM designs

Movable Test Bench BPMs

Modular commissioning of RFQ, MEBT and DTL tank1

•Transverse: profiles, emittances, halo, position

Prototype of a DTL BPM (1)

Mounted unit with oughs

Prototype of a DTL BPM (2)

Issues

During e- bombardment welding

•Three feedthroughs affected by:

Manufacturer's procedure:

- ⇒glass-ceramic seal
- ⇒No sand blasting
- ⇒Ultrasonic cleaning +acetone rinsing before

Scanning electron microscopy

- •Standard 304 grade stainless steel
- •Surface not inlayed with dust particles
- •Traces of Si, Na, Mg, Ca

BPM test bench

4

- Wire technique w/ standing waves
- Optical sensor for mechanical centering : ±0.01mm
- 352MHz sine wave with a N.A.
- Data acq by steps of 0.1mm

Commissioning issues

- Black anodized coating =poor grounding.
- Solution: Improve grounding. Done
- Wire not terminated = Antenna
- Solution: terminate the wire by a short circuit. Done
- Optical rail: C-shape & 25mm cross section yield a lack of stiffness and 1mm electrical offset
- Solution: Swap to a full frame of 34mm cross section. Pending action.

Analog Front End Board

FEATURES

- •Input Low pass filtering @1GHz
- Down-mixing with LO
- Variable gain with switchable attenuators
- •Band-pass filtering @22MHz
- •BPM Calibration

Signal Processing

$$\Delta x = \frac{M_R - M_L}{M_R + M_L + M_U + M_D}$$

$$\phi = \phi_{beam} - \phi_{LO}$$

$$I = M_R + M_L + M_U + M_D$$

$$TOF = \phi_{PU2} - \phi_{PU1}$$

Stripline Characteristics

- Beam aperture 67mm
- Electrode length = 60mm

	THEORY	H plane	V plane
Slope [mm]	40.32	41.79 σ=0.42	41.02 σ=0.56
Elec. Offset [mm]	_	-0.77 $\sigma = 0.18$	-0.19 $\sigma = 0.13$
Coupling w/ adjacent electrodes	7.3%	6.56	6.6

352MHz signal injected via the wire Measured voltages amplitudes from electrodes: ~65mV

From the simulations, this is equivalent to a signal induced by a nominal beam of 1.14x10⁹ H⁻ 98° longitudinal phase (nearly debunched beam)

Position (averaged over pulse length $740\mu s \Leftrightarrow \sim 32k$ positions) Precision= 0.1mm Resolution = 0.1mm Resolution with few samples : to be done

RF phase wrt LO Precision = $\pm 1^{\circ}$ (room for improvement)

Todo List

- Understand welding issues
- Improve stiffness of lab test bench
- Transfer impedance and characteristic impedance
- Resolution with short pulses
- ▶ Improve ADC clock jitter : the goal is ~200fs
- Commissioning of BPM calibration procedure
- ▶ Software : algorithm for I, Q, -I-Q determination
- Measurement with a pair of BPMs
 - TOF
 - Relative beam intensity
- Signal processing : Choose between
 - □ SIS3302 (16bits 13.4ENOB) : 6400CHF per board x25
 - ☐ FMC (14bits 11.7ENOB) : Status ? 25 boards. Unknown final price

Outline

- ▶ BPM
 - Layout
 - Functional specs
 - The monitor and low beta beams
- STATUS
 - Drawings and prototyping
 - BPM test bench and Acquisition chain
 - First BPM characteristics
 - Todo list
- Spare policy
- Planning
- Summary

Monitors

 Movable Test Bench: 3 +2 spares for lab commissioning

• Linac : 15 + 11 spares (one per version)

Transfer line : 27 + 2 spares

TOTAL: 55 BPMs

Acquisition chain

Front end board : 45 + 15 spares

• ADC or FMC : 23 + 4 spares

Planning

Project Leader: M. Vretenar															F	ri 18/03/11
LINAC4 MASTER PLAN																
Task Name	7		2008		2009		2010		201	1		2012		2013		2014
Lines and and	Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q	3 Q4	Q1 Q2	Q3 Q4	Q1 (Q2 Q3	Q4 (Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3
Linac systems			<u></u>												ļ	
Source and LEBT construction, test							ļ	<u> </u>								
RFQ construction, commissioning							ii	<u> </u>								
Accelerating structures construction							ļ									
Klystrons delivery and installation							l								2	
Transfer line construction, installation	Star	t of T	L cons	structi	on & Iı	nstal	llatio	n 📗								
Magnets construction, installation																
Power converters construction, install.																
Building and infrastructure		,														
Building design and construction									<u>l</u>							
Infrastructure installation																
Installation and commissioning											$\overline{}$					
Test stand operation at 3 MeV																
Cavities testing, conditioning																
Cabling, waveguides installation																
Accelerator installation	Start	of Ma	chine	Instal	lation											
Hardware tests	1															
Front-end commissioning						1	l								1	
Linac accelerator commissioning	Start	of Ma	achine	Comi	missio	ning										
Linac4 BPMs		İ									$\overline{}$					
Design office : L4T BPMs & integration						***************************************	İ		1							
BPM production												<u>-</u>	7			
Installation in Linac4 tunnel														7		
Installation in Transfer Lines									*********							
Cabling in LT, LTB and BI lines																
BPM commissioning with beam									†		ļ					
														\$	·	
				: 1		:		: .	<u>: :</u>						:	<u> </u>

Summary

- Very encouraging results yet still a lot of work ahead of us.
- Ready for the Movable Test Bench commissioning
- Planning in phase with Linac4 installation and LS1
- Budget sligthly underestimated : overrun by ~200kCHF

Thank you for your attention

...Questions ?

Linac 4 - Basic architecture

352.2 MHz

	Movable test bench	DTL	CCDTL	PIMS	New TL -> LT.BHZ20	OldTL -> PSB
	3-12MeV	50MeV	102MeV	160MeV	160MeV	160MeV
Number of BPMs	3	2	7	6	10	17
Beam Ap. [mm]	67	34 / 39	39	39	100	100
Long. Phase [° rms]	6.4 /98	3	3	2.5	25	55
RMS length [ps]	50 / 777	24	24	20	200	433

Bunch spacing: 2.84 ns

Simulation of non-relativistic beams

Nominal beam phase width evolution (1RMS)

	MEBT	Linac4	PSB strip. foil
Sigma [ps]	200	20	433
Rel. beta	0.0798	0.52	0.52

- Simulations with CST Particle Studio
 - Multi-bunch
 - Space charge effect
 - Low β

High Frequency Losses

Power flow module

Electric field module

External diameter of the RF feedthrough is important

Capacitive effect: 9pF