BPM Processing Meeting 29-01-2013 - Agenda

Objective

To obtain relative costs/timescales for various BPM signal processing options.

- 1) Establish bunch structure through BPM; bandwidth required; BPM type; expected BPM signal level; position resolution required
- 2) Discuss BPM signal processing options cost, resolution, complexity etc
 - a. Fast scope with onboard signal processing
 - b. PXI System and Digitizer card with signal processing
 - c. Homodyne mixing (baseband) with two filters
 - i. LP above 324MHz for output to fast scope to view signals (pulse to pulse)
 - ii. LP at few MHz then digitized to get averaged bunch position
 - d. Heterodyne mixing to few MHz then scope/PXI acquisition
 - i. Can be COTS or self-made using connectorized elements
 - ii. Scope data to PC for signal processing
 - iii. PXI does signal processing
 - e. Sample and Hold and digitize the held value (PXI DAQ)
 - f. Diode rectification (envelope detection) then digitized at few MHz
 - g. Mixing to tens MHz, FPGA processing on FlexRIO with 100MSa/s/chan FE
- 3) Obtain preferred option before 13th Feb 2013

Notes

Button vs Stripline – Button unipolar signal, Stripline Bipolar signal.

Ideally keep each BPM processing the same, rather than a mix of scope, PXI, HW etc

Processing is mainly FFT, filtering and arithmetic. FFT requires processing power – min number of multiplications = (34/9) N log_2N .

Fast scopes (> few GSa/s) often run Win/Linux and can do some processing onboard. Slow scopes generally have to ship data across network to PC for processing.

PXI system consists of various DAQ, Digitizing, Timing cards with a processing card (CPU, HDD, connectivity etc) running WinXP/Win7. Very effective trigger distribution & delays available.

Mixing systems require a LO, calibration signal and various RF elements (amplifiers, attenuators, mixers, filters) to work. The LO cost is a function of frequency of phase noise (jitter), but will provide a signal for any number of BPMs. Heterodyning has homodyne mixing as its final stage.

A FPGA with high-speed DAQ front-end could provide few μ s bunch processing time (NI 5751 16ch 50MSa/s 16ch FE; NI PXI-7954R Virtex-5 LX110 128MByte FPGA). Solution in excess of £10k for acquisition and FPGA but can provide fast feedback if required.

Use EPICS IOC to serve position data from PXI/scope/PC. EPICS Clients can log data, display data online via local console, display data on remote console.

Typical RF suppliers: www.minicircuits.com