MEBT Cavities

16 January 2013 RAL

MEBT Re-bunching cavity engineering design:

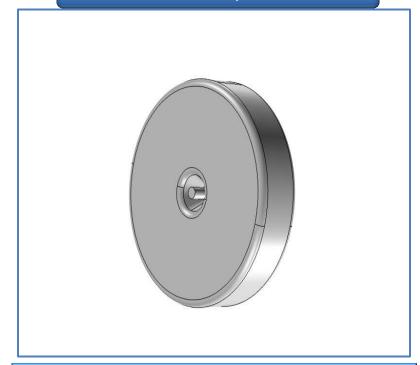
Different cavities for the MEBT have been considered The objective is to keep the target frequency 324 MHz and high efficiency value while allowing space for ports on the circumference of the cavities.

F=324 MHz

Q=28284

Model 51 **Baseline model with no ports**

f=315.68 MHz, Q=27963



Modle_71
ReBunchingCavity7_R=36mm_D=606mm
_InnerVolume
To investigate effect of 36mm
internal radius allowing for CF40
flange

Model_72
ReBunchingCavity7_R=36mm_D=591m
m_InnerVolume
Reduced diameter to bring
frequency up

f=321.85 MHz, Q=27496

f=324.17 MHz, Q=27861

Modle_74
ReBunchingCavity7_R=36mm_D=583
mm_InnerVolume
To bring the frequency to
324MHz

f=324.06 MHz , Q=27745

f=323.97 MHz, Q=27712

Model_75
ReBunchingCavity7_R=36mm_D=583mm
_Ports=45mm

Model 74 with 4 diameter 45mm
ports

No cavity shows drastic drop in Q value

Model	Inner radius	Frequency	Q	Q change %	Diameter	Max port size	Purpose
	(mm)	(MHz)		(w.r.t. Model 51)	(mm)	diam (mm)	
51	72	323.95	28284	0	606	0	Baseline model with no ports
71	36	315.68	27963	1.15	606	45	To investigate effect of 36mm internal radius
72	36	321.17	27900	1.38	591	45	Reduced diameter to bring frequency up
73	20	321.85	27496	2.87	584	77	To investigate effect of 20mm internal radius
74	36	324.17	27861	1.52	583	45	To bring the frequency to 324MHz
75	36	324.06	27745	1.94	583	45	Model 74 with 4 diameter 45mm ports
76	36	323.97	27712	2.06	583	3*45+1*77	Model 75 with 1 port enlarged to 77mm diameter

MEBT Cavities Power and Voltage (Normalization)

Parameter	SF	HSFF	MWS
Frequency (MHz)	324.0	323.961	324.103
Q	27815	27812	28150
Shunt Impedance(M Ohm)	6.0427	5.987	5.984
Power Dissipation (kW)	11.26	10.32	11.13
Stored Energy(J)	0.154	0.141	0.154
Axial Voltage (kV)	260.85	248.62	258.06
Effective Voltage (kV)	160.0	152.5	158.3

Note that R/Q=217.24

Ciprian- LINAC2012, Tsukuba, Japan MOP080

COMSOL Simulation and Normalization

F=3.2395e8+5729.59i (Hz)

Q=28284

V=18.19 (v)

 $W=7.4888 \times 10^{-10} (J)$

 $R/Q=V^2/\omega W=217.26$

 $R=6.144981 (M\Omega)$

It's obvious that if we consider W=0.154 (J) then through $V^2=(R/Q)\omega W$ we will have: V=260 (kV)

Which is consistent with the other software results.

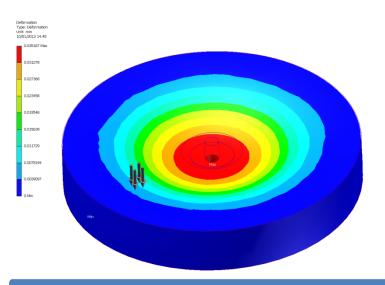
The results with COMSOL showed comparable values with the other software results. It remains how the value of 260 kV relates to the values used in GPT for particle tracking.

Estimate for our RF Amplifiers specifications from GPT

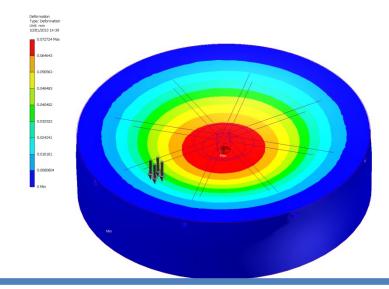
Frequency(MHz)	Old lattice (scheme A)	New lattice (scheme Z+1	
	324	324	
Number of Cavities	4	3	
Voltage(kV)	V ₁ =94.600	V ₁ =94.600	
	V ₂ =81.700	V ² =86.000	
	V ₃ =68.800	V ₃ =81.700	
	V ₄ =53.750		
Shunt			
impedance(MOhm)	R=6.04275 <i>(Ciprian-</i>	R=6.04275(I assumed	
, ,	Super-Fish)	Ciprian value)	
Power Dissipated(kW)	V ₁ ² /r=1.48	V ₁ ² /r=1.48	
	$V_2^2/r=1.1046$	$V_2^2/r=1.22$	
	V ₃ ² /r=0.7833	V ₃ ² /r=1.10	
	V ₄ ² /r=0.4781		

 E_z = $M \sin(\omega t + \varphi - k_z z) I_0(k_t r)$ $M = (3 \times 3^{0.5}/2\pi)E_{zef}$

 E_{zef} is used in GPT simulation Typical value for E_{zef} in our simulation is about 4.4×10^6 V/m. Which means $M=3.6 \times 10^6$ V/m and therefore $E_{z~axial}=M=3.6 \times 10^6$ V/m.


With a gap of g=21.5 mm, we will have $V_{axail}=Eg=77.400$ kV!

Is transit time factor missing?
Is the transit time factor about 160/260=0.61?


There is a factor of 2 roughly missing between the 160 kV from EM simulation and 77.4 kV from GPT. Has this anything to do with different definitions, for example linac definition for p: $p=V_1^2/2r$

Effect of vacuum loading on MEBT rebunching cavity

72mm inner rad
Cooling channels NOT present
Wall thickness = 25mm
Pressure = 100,000 Pa
Material: Copper
Max equivalent stress = 5.2MPa
Safety Factor = 15
Maximum deformation = 0.035mm

20mm inner rad
Cooling channels present
Wall thickness = 25mm
Pressure = 100,000 Pa
Material: Copper
Max equivalent stress = 7.7MPa
Safety Factor = 15
Maximum deformation = 0.07mm

Conclusion:

Nose to nose gap will reduce from 16mm by approx 0.14mm Inner volume will reduce by a small amount Should not reduce wall thickness below 25mm. The deformation is not very significant

Thank you