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The HORACE suite of programs has been developed to work with large multiple-measurement data sets
collected from time-of-flight neutron spectrometers equipped with arrays of position-sensitive detectors.
The software allows exploratory studies of the four dimensions of reciprocal space and excitation energy
to be undertaken, enabling multi-dimensional subsets to be visualized, algebraically manipulated, and
models for the scattering to simulated or fitted to the data. The software is designed to be an extensible
framework, thus allowing user-customized operations to be performed on the data. Examples of the use
of its features are given for measurements exploring the spin waves of the simple antiferromagnet
RbMnF3 and ferromagnetic iron, and the phonons in URu2Si2.
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1. Introduction

Neutron spectrometers at central facilities around the world
are routinely used to measure the wave-vector, Q , and energy, ω,
dependency of the spectrum of lattice dynamics and magnetic
excitations, ω( )S Q, . These data can provide detailed information
about the strength, range and symmetry of the interatomic and
magnetic interactions, and consequently are highly sensitive tests
of theoretical models. The triple-axis spectrometer (TAS) at re-
search reactors has traditionally been the instrument of choice
because of its controllability and flexibility [1], whereby the

ω( )S Q, -dependency is explored point-by-point. Over the past 15–
20 years time-of-flight spectrometers with position-sensitive de-
tectors (PSDs) have established themselves as extraordinarily ef-
fective instruments for measuring excitations in single crystals
where the interactions are strong in one or two dimensions, for
example in the cuprate and iron-based superconductors, and in
quasi one- and two-dimensional model magnetic systems. [2–21].
However, until recently there have been relatively fewer mea-
surements in systems where there are significant interactions in
all three spatial dimensions. By combining many separate runs,
each with a different crystal orientation, into a single data set,
complete measurements of the four-dimensional scattering
r B.V. All rights reserved.

erford Appleton Laboratory,

ng).
function ω( )S Q, can be made. This has become possible through
the combination of the latest instruments with large solid angle
position sensitive detector arrays [22–27] and, crucially, optimized
software to visualize and manipulate the massive data sets that are
created.

Here the software application HORACE is described, which is in
routine use, at several neutron facilities, by their users for the vi-
sualization and analysis of such data sets. This paper describes the
background to the experimental method, and the principles of
HORACE are outlined. The features of the software are described in
detail, together with a summary of how it is practically used, with
examples that illustrate its operation and features. Details of
computer hardware requirements, and software download and
installation are also summarized.
2. Theory

Fig. 1 shows a schematic diagram of the MERLIN spectrometer
[23] at the ISIS spallation neutron source at the STFC Rutherford
Appleton laboratory in the UK, an example of the latest generation
of direct geometry spectrometers. In this example, a pulse of
protons hits the spallation target every 20 ms to produce a pulse of
neutrons. These are rapidly slowed down in a moderator to pro-
duce a pulse of neutrons with characteristic width measured in
microseconds, but with a spread of useable energies in the in-
strument of ∼ ∼10 meV to 3 eV. A monochromatic pulse of neu-
trons with the desired energy Ei is selected by correctly choosing
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Fig. 1. Schematic of the MERLIN chopper spectrometer, at the ISIS spallation neutron source. A white beam of neutrons from the source moderator is incident from the bottom
left in this schematic. The principles of operation are described in the text. Such instruments are ideally suited for the technique of combining multiple datasets, with their
high flux and large solid angle detector coverage enabling rapid surveys of the 4D scattering function ω( )S Q, to be undertaken.
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the phase of a rotating collimator (Fermi chopper), or system of
disk choppers, just before the sample. The sample scatters neu-
trons, and on MERLIN these are collected by a three steradian po-
sition sensitive detector array. The time of arrival with respect to
the proton pulse of each scattered neutron is recorded together
with its location on the detector array. Because the moderator-to-
sample distance x1 is known, as is the sample-to-detector distance
x2 for each detector element, the magnitude of the scattered wave
vector for each recorded neutron is determined by the time-of-
arrival at the detector, tdet:
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momentum and energy transferred to the sample are then com-
puted [28] as
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For a chosen ki and sample orientation, there are three in-
dependent degrees of freedom, corresponding to the spherical
polar angles θ and ϕ that define the direction of kf , and the time-
of-arrival tdet which in turn has a one-to-one correspondence with
energy transfer, ω, or equivalently with ≡ | |k kf f . In consequence,
the momentum and frequency dependent scattering function

ω( )S Q, is measured on a 3D manifold in the four dimensions of Q
andω, with the volume defined by the ranges of θ and ϕ set by the
size of the detector array, and ω−∞ ≤ ≤ Ei. Equivalently, in any
particular choice of coordinate frame for Q , then of the four co-
ordinates ω{ } ≡ ( )αQ Q, with θ ϕ= ( )α αQ Q t, , det , α = −1 4, only
three components are independent, with the fourth an implicit
function of the other three. We note that a similar line of reasoning
can be used for indirect geometry spectrometers, for which
the final energy Ef is fixed and the time-of-flight is used to de-
termine ki.
The physically relevant coordinate frames in which to express
the components of Q are ones that are fixed with respect to the
crystal lattice. For example, one may choose the components along
the reciprocal lattice vectors a*, b* and c*. A good choice of co-
ordinate frame and of which component of { }αQ is the implicit
coordinate will depend on the material being studied. For ex-
ample, in some magnetic materials such as the parent high tem-
perature superconductor compound La2CuO4 [29], the magnetic
ions are arranged in layers, with the magnetic exchange para-
meters between the layers orders of magnitude weaker than those
within the layers. In this case, the best choice of coordinate frame
is one with components Q1 and Q2 within the layers and Q3 per-
pendicular to the layers. Because the interactions between the
layers are negligible, ω( )S Q, has a simple dependence on Q3,
mainly due to the form factor. In this instance, Q3 is taken to be the
implicit variable, and the intensity as a function of ω( )Q Q, ,1 2 gives
the relevant information of ω( )S Q, . Typical plots of ω( )S Q, at a
constant energy are thus projected along the physically unin-
teresting Q3-axis. In quasi-1D magnets, where the interactions are
strong only along one direction – label it Q1 for definiteness – then
Q3 can be ignored as the implicit variable and the intensity in-
tegrated along Q2 to improve the statistical quality of the data, and
intensity as a function of ω{ }Q ,1 gives the full information of

ω( )S Q, . These techniques have been used to study spin dynamics
in single crystals since the early 1990s [30–33], and full mapping of
excitations in quasi-2D materials became possible with the advent
of the large position sensitive detector array of the MAPS spec-
trometer [34,35]. They are now routine on time-of-flight spectro-
meters around the world to study excitations in quasi-1D [11–16]
and quasi-2D magnets [17–21] as well as copper based [2–5] and
iron based [6–10] superconductors and their parents. Well-estab-
lished software applications, such as DAVE [36], MSlice [37], and
Utsusemi [38] exist to visualize and to perform some analysis of
the data. Though it is possible to use the same techniques and
software tools to analyze data from 3D materials [39,40], such
analysis is far from routine.

In the case of MERLIN the number of detector elements is
≈70, 000, which is typical of the number for similar instruments at
other sources, and the energy transfer axis is typically divided into



1 In this context, symmetrization refers to folding the data about a plane in Q
so that symmetrically equivalent points in the reciprocal space covered by the
detectors can be combined to give improved statistics on the signal in a single

ω( )Q, bin.
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≈200 energy bins, so that the 3D manifold is divided into ( )O 107

voxels. Typically there will be six 8-byte numbers associated with
each voxel – { }αQ , α = −1 4, intensity and error on the intensity –

which accounts for the bulk of any representation of the data set,
which in the case of MERLIN amounts to ≈0.5 GB. This is sufficiently
small to fit easily into the memory of a commodity PC.

To map ω( )S Q, fully in materials with interactions in all three
spatial directions requires an extra degree of freedom. To achieve
this, a sequence of data sets is collected, in which an additional
parameter is successively incremented between each data collec-
tion, or ‘run’, and the entire collection of data sets is treated as one.
Using time-of-flight spectroscopy to map ω( )S Q, in single crystals
with interactions in all three dimensions using a multi-orientation
approach is not in and of itself new. The approach was used along
high symmetry directions on instruments with a limited number
of detectors in the 1950s and 1960s [41–43]. More recently the
approach has been used with ( )O 103 non-position sensitive de-
tectors to map excitations in the three dimensions of energy and a
high symmetry plane in reciprocal space [44,45]. The use of po-
sition sensitive detectors to map ω( )S Q, in all four dimensions
using ( )O 105 detector elements was pioneered on the MAPS
spectrometer at ISIS [22] in the mid-2000s [23], and HORACE was
written to enable these correspondingly factor- ( )O 102 larger data
sets to be analyzed effectively. The approach is now an established
procedure at several neutron facilities world-wide [46–62]. In
addition to HORACE, the applications mentioned above, DAVE [36]
and Utsusemi [38], can be used to analyze such data sets.

Two approaches are possible for use with HORACE:

1. Rotate the sample about an axis (usually vertical) by some an-
gle, Ψ, typically ° − °0.5 2 between each run, while keeping the
incident neutron energy Ei fixed (in the case of an indirect
geometry spectrometer the final neutron energy Ef is fixed). The
range of the angular scan is usually determined by the re-
ciprocal space coverage of the instrument's detectors and the
symmetry of the crystal lattice. This method of operation is the
one most frequently used.

2. Keep the sample orientation fixed, but increment the incident
energy Ei by a small amount between runs. This mode is very
rarely used, since the scan range in Ei must be kept small in
order to avoid too much variation in the instrumental resolution
between runs. Furthermore, this method gives a much more
limited reciprocal space coverage compared to the rotation
method. For the following we shall ignore this option in our
description of the method, and focus on sample rotation.

With these choices θ ϕ Ψ= ( )α αQ Q t, , ,det or θ ϕ( )αQ t E, , , idet ,
α = −1 4, the scattering function ω( )S Q, is measured in a 4D
manifold. The choice of increment in the additional parameter is
based on consideration of the resolution of the instrument. The
angular divergence of both the incident and scattered neutron
beams is ° − °0.5 1 for current chopper spectrometers, and the
energy resolution is typically Δ ω = −E/ 1 6%i . With continuous
streaming of data to disk as a function of absolute time rather than
time relative to the most recent proton pulse (that is, event mode
collection [63–66]), then Ψ can in principle be varied continuously,
avoiding discretization of data along the corresponding coordinate
axis [38,67]. This means that continuous rotation allows one to
choose the angle step during the reduction process rather than
before acquisition, leading to increased flexibility. Furthermore, if
all experimental data, including motor encoders, are recorded
with time-stamping then cases when equipment failure occurs
part-way through a set of measurements can be dealt with sui-
tably. In practice, runs at different Ψ usually are discretized (i.e.
binned) so that software such as HORACE may be used to analyze the
data.
3. Program description

3.1. Main purpose

The main purpose of HORACE is to allow easy visualization, ma-
nipulation and analysis of inelastic neutron scattering data, gathered
from multiple crystal orientations or incident energies as described
above, in the four dimensions of vector momentum and energy.
HORACE provides a comprehensive set of elemental functions as an
extensible framework for analyzing the data, in which more complex
scripts or functions can be rapidly written by users. A guiding
principle in the design of HORACE was that it should be possible to run
on a high specification laptop or commodity desktop computer, and
would pre-process the data to minimize the time to create and vi-
sualize subsets cut from the data, despite that hardware constraint.

3.2. Architecture and key features

HORACE has been written with an object oriented architecture in
the commercial high-level technical programming language Ma-
tlab [68]. The primary object is the sqw object: this contains the
signal and variance for each individual detector-energy voxel,
meta information describing the detector locations, crystal lattice
and crystal orientation for each contributing measurement, and
the mapping of the voxels into a Cartesian grid that defines the
current plot axes and bin sizes in one, two, three or four dimen-
sions. In addition there is the dnd object: an abbreviated version of
the sqw object that does not retain the information of the in-
dividual voxels or the detector locations. Generally a dnd object
will occupy several orders of magnitude less computer memory
than the equivalent sqw object.

The operations that are supported on sqw and dnd objects
include:

� Construction of 4D sqw data from multiple measurements of
inelastic neutron scattering data.

� Creating new sqw objects by taking 1D, 2D, 3D and 4D sub-
manifolds from the original sqw object, or any other sqw object
created by cutting from a previously created sqw object. We
define these as cuts; the axes of the cuts can be chosen to be in
arbitrary directions in momentum space, or energy.

� Saving objects to files, and reading appropriate data from files
into objects.

� Plotting 1D, 2D and 3D objects.
� Unary operations e.g. correction for the detailed balance factor

[28], as well as the standard operations such as sign inversion
and trigonometrical functions.

� Binary operations þ , -,*, /, ∧.
� Replication of a lower dimensional cut along the additional axes

of a higher dimensional cut . This is useful e.g. for creating
background estimates to be subtracted from the higher di-
mensional cut.

� Symmetrization1 of sqw objects.
� Simulation and fitting of models of the scattering function

ω( )S Q, .

In addition, there is a tool for planning the range of crystal
orientations at which to make measurements in order to map a
desired volume of momentum and energy, and utilities for plot-
ting data or models of dispersion relations and the scattering
function as a function of energy and momentum along a sequence
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of high-symmetry directions in reciprocal space. Examples of the
use of these operations on illustrative data sets will be given in
Section 5.

In order to satisfy the requirement that HORACE can operate on a
commodity personal computer and to minimize the time to make
Fig. 2. (a) Screen shot of the Matlab command window, showing a series of commands t
result. The outputs from the various operations are also shown in the command window,
the HORACE GUI, with fields filled in to make the same cut as shown in panel (a).
a cut, the data are coarse-grain sorted on to a regular 4D grid in
the ω( )Q, -space (by default fifty steps along each dimension), and
then saved into a single (generally large) file with the extension .
sqw. The advantage of this sorting when the data are saved to file
is that to access a particular volume of reciprocal space and energy
o extract a 2D cut from a file, plot it, symmetrize in two planes, and finally plot the
as are the two plots of the unsymmetrized and symmetrized data. (b) Screen shot of
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window, which is typically the case when visualizing and ana-
lyzing a 1D or 2D cut, the entire large sqw file (a full description of
which is provided in Appendix B) need not be read from disk to
search for contributing detector voxels. Instead, just the data in
those bins in the grid which intersect the reciprocal space volume
and energy window of the cut need to be read. This provides a
significant saving of time when extracting such subsets, and is one
of the key features of HORACE compared to its predecessors. It
should be noted that algorithms to process data that are too large
to fit into memory are widely used [69], for example in medical
imaging [70], geographic information systems [71], and generally
in multi-dimensional graphics processing [72]. The algorithm de-
veloped here was optimized to minimize disk access for the spe-
cific nature of the neutron data and the primary operation of
taking cuts that contain a small fraction of the total data.

3.3. Interface

Every operation that HORACE can perform has been written as a
Matlab function. There are two possible ways of interacting with
the program. The first, and most common, is through the Matlab
command line, or for more complex sequences of commands
through the user's own Matlab scripts or functions. An example of
HORACE in use with the Matlab command line is shown in Fig. 2(a),
together with two plots generated during the series of commands
shown. In this particular case a cut is taken from a file and plotted.
The cut is then symmetrized in two planes, and the result of this
operation is also plotted. The second method for interacting with
HORACE is through a graphical user interface (GUI), shown in Fig. 2
(b), which allows access to a subset of the functionality of the main
program chosen to allow execution of the most common and/or
simplest tasks. Note that use of the GUI still requires Matlab to be
installed on one's computer.

3.4. Operation

Practical operation of HORACE is a two-stage procedure. The first,
pre-processing, stage is the creation of the sqw files, which is done
for on-the-fly analysis during experiments as data accumulate, and
then usually once at the end of an experiment to create reference
sqw files for later analysis. These are created from multiple in-
dividual run files, which contain the measured scattering intensity

ω( )S Q, for each detector as a function of energy transfer. Such files
are created from the raw time-of-flight data, with correction for
detector efficiency, absorption by the sample, etc. using, for ex-
ample, the Mantid software [73]. Alternatively, if the user can read
their scattering data and detector parameters into Matlab arrays,
utility functions provided as part of HORACE can be used to write the
data into one of the recognized input file formats. Details about
input file formats are given in Appendix A. Each individual run file
is sorted on to a common 4D grid, and then the sorted files are
combined a piece at a time into the final sqw file. This file-backed
combination limits the memory that is required, which is crucial
when one considers the size of the final sqw file, which can ty-
pically range in size from 10 to 500 GB. The sqw file is a binary file
that allows direct read access to its contents so only those voxels
in those bins required for a particular operation need to be read.
Given the size of a typical sqw file, it is not generally re-
commended, nor in fact necessary, to access the data in individual
voxels. HORACE provides utility functions to access header in-
formation and the intensity and estimated variance in the bins in
an sqw file. Further details of the sqw object and file format are
given in Appendix B.

Once the sqw file has been created, cuts of any dimensionality
can be taken and any of the manipulations detailed in Section 3.2
applied to them. We include in this the ability to plot 1D, 2D, and
3D cuts, since this is the way in which the user typically interacts
with the data. A typical workflow might be to take a series of cuts
and plot them to investigate some region of interest, apply some
corrections (e.g. magnetic form factor, background subtraction, or
Bose–Einstein population factor), then simulate and fit a model to
these data in order to extract some physically meaningful
parameters.
4. Illustrative examples – RbMnF3, Fe and URu2Si2

We will give a basic illustration of some of the functionality of
HORACE with reference to data taken on the following three ex-
amples, RbMnF3, iron and URu2Si2. RbMnF3 has a cubic crystal
structure and is very close to being an ideal 3D Heisenberg anti-
ferromagnet. It has a large spin ( = )S 5/2 on its Mn2þ sites, making
it a strong magnetic scatterer of neutrons. It has a nearest-neigh-
bor isotropic exchange constant of J¼0.29 meV, and a next-near-
est-neighbor exchange constant that is an order of magnitude
smaller [74]. Iron is the canonical example of an itinerant-electron
metallic magnet. Below about 100 meV sharp spin waves have
been shown to exist [75], but time-of-flight inelastic neutron
scattering experiments have also shown that spin fluctuations
persist up to much higher energies of at least 550 meV [76]. The
data shown here will be the subject of future scientific reports, and
are used here for illustrative purposes only. URu2Si2 has been ac-
tively studied for many years due to the mysterious ‘hidden order’
that it exhibits [77], which is responsible for a large change in
entropy but cannot be explained by a conventional order para-
meter such as dipolar magnetic order. Recent interest has focused
on whether the lattice is coupled to the hidden order parameter,
and several studies of the phonons have been published [78,79].
The data we show here are in agreement with the already-pub-
lished work, but cover a much larger volume of reciprocal space by
virtue of the fact that we used the method of data collection
outlined in this paper.
5. Use of the program

We now provide a more comprehensive discussion of how the
program is typically used.

5.1. Planning an experiment

The first step when performing an experiment is often to de-
termine an appropriate choice of instrument parameters, such as
incident neutron energy and range of sample orientations to be
scanned. Different combinations give access to different regions of
reciprocal space, and with the limited time available to run an
experiment it is crucial to decide quickly the right instrumental
configuration. To help with this a standalone GUI is provided with
HORACE, the scan_planner. Given a set of basic inputs concerning
the lattice parameters and angles, sample orientation, instrument
detector positions and incident neutron energy, the program plots
the volume of Q -space covered by those detectors for a given
energy transfer. To aid the planning process the volume is semi-
opaque and colored according to the sample orientation angle, and
the positions of integer ( )H K L, , are plotted as black spheres. An
example screenshot is shown in Fig. 3.

5.2. Combining multiple data files

The selection of individual run files to combine into an sqw file
may be performed either in a Matlab script or through the GUI.
Metadata about the experimental setup for each run must be



Fig. 3. Screen shot of the HORACE scan planner, illustrating how the reciprocal space coverage for a given instrument, incident energy and scan range combination may be
calculated in advance of performing the measurements.
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manually provided by the user, specifically the incident energy,
sample orientation, lattice parameters and lattice angles. For the
RbMnF3 data set we combined 85 individual measurements at
different sample orientations, each of which was 122 MB, taken on
the MAPS time-of-flight neutron spectrometer at ISIS [22]. The
scattering plane was ( ) ( )1, 1, 0 / 0, 0, 1 and Ψ was scanned from °6
to °90 in °1 steps. The resultant sqw file was 15 GB, and additional
working space of about the same size on disk as the sqw file was
required during its creation. For the iron data set, also obtained on
the MAPS spectrometer, 186 runs were combined to make an sqw
file of 36 GB. The scan was performed with the ( ) ( )1, 0, 0 / 0, 1, 0
scattering plane, andΨ scanned from − °92.5 to °0 in °0.5 steps. The
URu2Si2 dataset was obtained on MERLIN, and comprised 276 runs
which combined gave an sqw file of size 136 GB. Generally
speaking a larger number of runs and / or instruments with a
larger number of detector elements give rise to larger sqw files,
which take commensurately longer to generate.

Speed-up of the creation of the sqw file, and other computa-
tionally intensive operations such as taking cuts (see below), is
achieved by using Cþþ routines in place of Matlab ones. These
are invoked using Matlab's in-built mex file system [68], whereby
Matlab routines may call subroutines written in another language.
The Cþþ routines utilize both multi-threaded processing as well
as the intrinsic speed gains that are typically obtained when
comparing an interpreted language (Matlab) with a compiled
language (Cþþ).

The time taken to perform the combination of files is highly
dependent on the computer on which it is performed. For
benchmarking we used an sqw file of size 142 GB, which
comprised data from 231 runs. On a Windows 7 workstation with
available disk space of several TB (i.e. much more than the sqw file
size), with 48 GB RAM and running 12-core Intel Xeon X5650
processors (2.67 GHz), the total time to generate the sqw file was
150 min when using Matlab 2015b (later versions of Matlab in-
clude internal multi-threading procedures, which offer similar
speed to Mex acceleration in this case). On a machine running
CentOS7 with the same hardware, and with Mex file acceleration
enabled and running on 8 threads, the total optimized time was
52 min. However, recent versions of Horace contain extensions to
the code that allow better utilization of high performance com-
puting capabilities that are increasingly available. By way of ex-
ample, the ISIScompute service available to ISIS facility users,
which comprises a machine running RHEL 7 with 96 Intel Xeon
E5-4657L processors (2.5 GHz), 512 GB of RAM and a 100 TB CEPH
parallel file system [80], is able to produce the same 142 GB file in
around 8 min.

We have noted already that HORACE has been designed to be
operable on a typical commodity PC, which may well have a lower
specification than that described above for our benchmarks. Pro-
vided sufficient disk space is available to store the sqw file and the
temporary working space needed during its creation, lack of RAM
and CPU speed need not prevent the operation of HORACE. Options
are provided whereby the size of chunks read from disk to
memory for processing can be changed, so for a PC with less RAM
these numbers can be reduced appropriately. The time taken to
generate files and take cuts from them will increase, and the
number of sqw objects that can be held in memory is smaller, but
otherwise the full functionality of HORACE is available.
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During a typical experiment the user will often wish to ex-
amine data from a partially complete scan of sample orientations,
in order to make decisions about what future measurements to
make. Rather than regenerating the entire sqw file when more
runs have been completed, it is possible to provide a list of planned
runs and sample orientations, so that future data may be binned
on to the same coarse-grained grid and inserted into the existing
sqw file, thus saving time, especially with larger files.
Fig. 4. Plots of data from the experiment on RbMnF3. Panel (a) shows a screen-shot
of the sliceomatic feature of HORACE, which allows visualization of 3D cuts. Panel
(b) shows a 2D slice in the ( )L0.5, 0.5, – Energy plane. The white lines show regions
where 1D cuts were taken. Panel (c) shows three 1D cuts for L¼0 (red circles),
L¼0.15 (blue triangles), and L¼0.3 (black squares). (For interpretation of the re-
ferences to color in this figure caption, the reader is referred to the web version of
this paper.)
5.3. Extracting and visualizing data

Once the sqw file has been created, HORACE is also used to vi-
sualize and analyze the data. Typically users wish to sample 3D
volumes, 2D slices and 1D cuts along specified trajectories in

ω( )Q, -space. As mentioned in Section 3.2, we refer to such subsets
in general terms as ‘cuts’. HORACE provides complete flexibility to
cut along any Q -direction, or along the energy direction, irre-
spective of the orientation of the sample with respect to the in-
strument. When making a cut the user specifies a grid onto which
data are binned, with the bin sizes chosen typically to contain data
from many detector voxels. It is at this stage that the coarse grain
sorting of the data during the generation of the sqw file, described
earlier, provides a significant speed advantage since only a small
fraction of the total (very large) file needs to be read to obtain all
the information required for any given cut. Once these cuts from
the data are read from disk they are stored in memory and are
accessible as objects in the Matlab workspace, so that provided
sufficient computer memory is available multiple cuts may be
retained for future visualization and/or analysis. Every cut has the
same structure as the data in the sqw file, so further cuts may be
taken from objects in memory without loss of information.

HORACE provides tools to visualize 1D, 2D and 3D cuts as, re-
spectively, marker plots with errorbars, colormaps, and multiple
colormaps plotted on a 3D set of axes, examples of which are
shown in Fig. 4. These plots are highly customizable, and because
the plots are ultimately generated using Matlab's native graphics
they can also be modified using the in-built routines. It is thus
fairly common that HORACE is used directly to produce figures that
are used in publications, in addition to being used for the analysis
[46–53,81–83].

In order to survey a large section of reciprocal space (i.e. a 3D
cut) the sliceomatic tool [84] is used. A screen-shot of sliceomatic
in use is shown in Fig. 4(a), with the intensity of the scattering
given by a color map. Dispersive excitations with the same peri-
odicity as the Brillouin zone are clearly visible. The user may move
the visible slice planes on this interface, in order to explore a large
section of the data very quickly. Fig. 4(b) shows a 2D slice, centered
on the ( )1/2, 1/2, 1/2 position, with axes of ( )L1/2, 1/2, and neu-
tron energy transfer. The slice clearly shows scattering from a band
of dispersive magnetic excitations in the range ≤ ≤E0 9meV. The
white lines at L¼0, L¼0.15, and L¼0.3 show where 1D cuts were
made – these cuts are shown in Fig. 4(c). The cuts were taken by
averaging the signal along L, ±0.05 r.l.u. either side of the stated
value.

It can often be useful to view the dispersion along several high
symmetry directions on a single plot, for example when in-
vestigating phonons and comparing to DFT calculations. The HOR-

ACE tool spaghetti_plot can be used for this purpose. An ex-
ample of its use is shown in Fig. 5 in which we show the phonon
dispersion around = ( − )Q 2, 2, 0 in URu2Si2. One can see, for ex-
ample, the splitting of two different acoustic modes along the Γ –

Σ trajectory as well as multifarious modes at higher energies
which disperse differently along different symmetry directions.
5.4. Manipulating data

There are several different ways one can manipulate sqw and
dnd objects. Unary operations that apply to the intensity, e.g.
Bose–Einstein population factor or magnetic form factor correction
of the intensity, and binary operations, e.g. subtraction of the in-
tensity of one object from another (such as required for back-
ground subtraction), may be performed.

Data of dnd form may be smoothed by convolution with an
appropriate dimensional Gaussian or hat function of a specified



Fig. 5. ‘Spaghetti plot’ of the phonon dispersion in URu2Si2 around = ( − )Q 2, 2, 0 .
The high symmetry points are indexed with respect to the body-centered tetra-
gonal Brillouin zone, which in the simple tetragonal notation usually used for this
material are Γ = ( )0, 0, 0 , Σ = ( )0.6, 0, 0 , = ( )Z 0, 0, 1 , = ( )X 1, 1, 0 .
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width. Such smoothed objects allow a simple way to visualize data
part-way through an experiment, before sufficient statistical
quality has been obtained through longer measurement times. By
definition sqw data may not be smoothed, since the relationship
between the intensity that is plotted and the underlying detector
voxel information must be maintained for such objects.
Fig. 6. (a) Representative ( )EQ, -slice showing dispersive magnetic excitations in iron, to
an area expected to have negligible magnetic scattering and hence is representative of th
rectangle. (c) Result of replicating the 1D background cut and then subtracting this from
It is possible to repeatedly tile a lower dimensional dnd data set
into a higher dimensional one, e.g. replicate a 1D cut along the
energy axis along some Q -axis to create a 2D cut with axes of Q
and energy. This is useful when performing background subtrac-
tions, since in some cases the intrinsic background may depend on
energy but weakly or not at all on Q . Thus a 1D cut along energy
may be taken in some region where there is only background, and
then this can be subtracted from another region of the data to
leave just the contribution to the signal from the intrinsic ω( )S Q, .
An example of such a procedure is shown in Fig. 6 for the iron
dataset. Here, a region (highlighted by the dashed rectangle) is
selected that is representative of the non-magnetic background
and a 1D cut is performed (panel b). This cut is then replicated
over the full Q-range of the original 2D slice (panel a) and then
subtracted (panel c).
5.5. Simulating and fitting

HORACE provides the ability to fit and simulate (which is simply a
single evaluation of a fit function) the data for precisely the same
values of ω( )Q, that were measured. Models for fitting can take
two forms, either generic functions of the plot coordinates (e.g.
Gaussian peaks and the like) or more physically meaningful
models that calculate ω( )S Q, directly. The former is useful for
fitting, for example, peak functions on 1D cuts to give a quick
parameterization of a dispersion relation. The latter are much
more powerful, and can be used to determine physical parameters
directly from the data.
gether with incoherent elastic and phonon scattering. The dashed rectangle shows
e non-magnetic background. (b) Cut through the non-magnetic region in the dashed

the original data.
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It is particularly for the fitting of ω( )S Q, models that the full
detector voxel information retained in sqw objects is most useful.
The model function is evaluated for all of the voxels, and then
combined to give the intensity in a particular ω( )Q, -space bin,
rather than just at the bin center as would be the case for a dnd
object. For models where ω( )S Q, varies appreciably across the
width of one bin, this can result in systematic problems if evalu-
ating only using dnd objects, whereas sqw objects generally pro-
vide a more accurate fit. On the other hand, because there are
usually many detector voxels contributing to the signal in a given
bin, evaluation of a model using an sqw object can take much
longer due to the greater amount of computer processing required.

The fitting routines provided with HORACE are designed to work
to a high level of abstraction. A key feature of the fitting capability
of HORACE is that fits can be performed on an arbitrary number of
cuts of any dimensionality, using a global model with global
parameters. The fit routines allow a distinction between ‘fore-
ground’ (often global) and ‘background’ (usually local to each cut),
with the former typically being a model of ω( )S Q, and the latter
being generic function(s) such as a linear sloping background. This
distinction is especially powerful when fitting multiple cuts, since
a larger part of the overall dataset can be used to constrain a
model, achieving higher accuracy, while allowing for the fact that
the instrumental background often varies in unusual ways from
cut to cut. Such a philosophy for the fitting was developed in re-
cognition of the form that real data take. As is the case for most
fitting procedures, one can specify which fit parameters can vary
or remain fixed, and can also bind parameters together in a fixed
ratio. Fit functions can take as inputs information of any form (e.g.
lookup tables, as well as numeric parameters). Instrumental re-
solution broadening can at present be included in a crude way as
part of the fit function, such a applying a Gaussian broadening in
energy, but a specific model for instrumental resolution is not
included in HORACE at the moment.

It should be noted that the ability to perform such flexible
fitting operations also allows straightforward direct comparisons
of known samples to be performed, which is useful both for
checking reproducibility of results and also doing instrumental
calibrations and checks. For example, a system such as RbMnF3,
with a well known analytical model for ω( )S Q, and well char-
acterized exchange parameters can be measured and the results
fitted. The exchange parameters extracted from the fit can then be
compared to those obtained on other instruments and detailed in
the literature [74]. Following this procedure on the dataset used to
generate Fig. 4 we obtained = ( )J 0.293 8 meV, which compares
favorably with the reported value of = ( )J 0.29 3 meV .
6. Summary

We have written a suite of programs, HORACE, to take multiple
runs from time-of-flight neutron inelastic scattering experiments,
and combine them in one single large data set that can be hun-
dreds of GB in size. The program is designed to be an extensible
framework that allows a range of sophisticated manipulations to
be performed on the data. The program is also used to visualize
subsections of the large data set, with a coarse grained sorting of
detector voxels' ω( )Q, coordinate ensuring fast access to the re-
levant subsection of the large data file. The program may also be
used for simulations and fits to the data with ( )ωS Q, models. This
includes the ability to fit multiple datasets with a global fore-
ground model and set of parameters, but independent background
models and parameters. This is a method geared towards the
physical origin of the measured signal, and provides a convenient
framework for performing the kind of analysis which is often done
in an ad hoc fashion otherwise.
7. Distribution and documentation

Other than sufficient disk space to store the spe and sqw files,
whose sizes are rather dependent on the instrument used for the
measurements, the main hardware requirement is to have at least
8 GB of RAM. It has been found that less than this severely ham-
pers the user's ability to exploit HORACE fully with their data. HORACE

has been tested on the following operating systems: 32-bit and
64-bit Microsoft Windows, 64-bit RHEL 6 and 7, and Ubuntu Linux
10.04 and later, and on Mac OS X 10.5.6 and later. HORACE is written
using Matlab, and has been tested on Matlab versions 2009a on-
wards. HORACE will continue to be supported in the future for at
least the most recent five years' worth of Matlab versions. HORACE is
actively maintained for the above operating systems, but in prin-
ciple, provided one is able to run a sufficiently recent version of
Matlab, it should be possible to run HORACE no matter what the
operating system (e.g. other Linux distributions) without Mex files.
The Cþþ code is also available for the user to perform their own
compilation of Mex files if desired.

Zip files containing the compiled HORACE Matlab code can be
downloaded from http://www.horace.isis.rl.ac.uk. The full source
code is available on request. Users are requested to register an
email address when they download the code from the website, so
that they can be informed from time to time of new releases and
bug-fixes. Installation involves simply unzipping the download
into a suitable directory, adding this directory to the Matlab path,
and running a short Matlab routine called horace_on to initialize
a more complete and self-consistent set of search paths for Matlab.
A full manual giving complete instructions on installation and use,
together with details of how to contact the developers, is also
available at this website.
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Appendix A. Input data files

To generate the sqw file from which HORACE reads ω( )S Q, ,
neutron scattering data for each individual run and needs to be
provided in one of two formats: the legacy ASCII spe file, or its
replacement the HDF5 (Hierarchical Data Format) nxspe file. Two
functions are available as part of HORACE to create sqw files from
these input files, namely gen_sqw (which creates a new sqw file)
and accumulate_sqw (accumulates data to an existing sqw file).

A.1. spe file

The ASCII spe file stores ω( )S and associated error bars as a
function of energy transfer, ω, for each detector in turn. In ad-
dition to the set of spe files, HORACE requires an accompanying
ASCII file which contains information about the location of the
detectors in the spectrometer's reference frame, the par file. Al-
though these ASCII format files have largely been superseded in
favor of the nxspe format described below, such files are ubiqui-
tous as the format in which historic data is saved, and are

http://www.horace.isis.rl.ac.uk
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recognized by several other neutron visualization and analysis
programs. Some programs can also write their own output as spe
files, and consequently the spe file is sometimes used as a trans-
portable format data file for time-of-flight neutron spectrometers.
Full details of the two ASCII file formats are given in the input file
formats page of the HORACE web site [85]. However, it is not re-
commended to create new spe files as this is now an essentially
obsolete file format.

A.2. nxspe file

The recommended input data file is the nxspe file, which holds
both the ω( )S data and errors for each detector and detector po-
sition and size information, together with crystal orientation angle
Ψ and the incident neutron energy Ei. The nxspe file stores the
information in a NeXus format file [86,87], which is a common
data exchange format for neutron, X-ray and muon data that is
built on top of the HDF5 (Hierarchical Data Format) scientific data
format [88].

Data files in the nxspe format are produced by Mantid [73,89],
an open source data manipulation and analysis framework for
neutron and muon data analysis. They are directly produced by the
data reduction algorithms within Mantid for the direct and in-
direct geometry spectrometers at both the ISIS spallation neutron
source at the Rutherford Appleton Laboratory in the UK and the
SNS spallation neutron source at Oak Ridge National Laboratory in
the USA. If Mantid is used to perform the data corrections for a
neutron spectrometer, then the algorithm SaveNXSPE in Mantid
can be used to output nxspe files. Full details of how to use Mantid
and the input/output for each algorithm are available at the
Mantid web site [89].

Alternatively, if the user can read corrected scattering data,
associated estimated errors, and detector parameters into Matlab
arrays, nxspe files can be written to file using the HORACE utility
function gen_nxspe. Full details of the input argument definitions
and array formats for this function are available on the HORACE web
site [85].
Appendix B. sqw files and objects

sqw files and sqw objects contain the same information. They
consist of two parts. The first consists of a number of header
sections which contain meta information about the experiment:
the detector information for the spectrometer, incident energy Ei
(or final energy Ef if the spectrometer has indirect geometry), and
crystal lattice parameters and orientation for each contributing
run. The header sections also contain the bin boundaries and in-
tensities (with the square of the estimated errors) in the bins of
the Cartesian grid defined by the orientation of the plotting axes,
along with the number of contributing detector-energy voxels in
each bin. The second part contains Q , ω, the run index, the de-
tector index, intensity, and estimated error-squared for every de-
tector-energy voxel from each of the contributing runs. This sec-
tion generally accounts for virtually all the disk space or memory
occupied by the file or object. The voxel information is coarse-
grain sorted on the Cartesian grid defined in the header sections so
that all voxels in one bin in that grid occupy a contiguous block on
disk or in memory. Note that the coordinate frame in which
components of Q are stored is not in general the same as the plot
axes, and the matrix transformation that links the two is stored in
the header sections.

Generally it is not recommended to directly manipulate the
contents of an sqw object because of the strong interdependence
of the contents. Instead various functions are available to extract
the header sections [head(objectName) and head_horace
(filename)], evaluate functions of the plot axes or models for
ω( )S Q, on sqw or dnd objects held in memory (func_eval,

sqw_eval), extract the bin centers and data for bespoke manip-
ulation within Matlab but outside HORACE (xye), and read and save
sqw or dnd objects to disk (read_horace, save). Lastly, the plot
data can be saved to disk as an ASCII file (save_xye). Full de-
scriptions of all of these functions are on the HORACE web site [85].

The developers welcome suggestions for additional function-
ality. Contact details are given on the HORACE web page.
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