

Delivering Beam to ISIS TS1

Bryan Jones
ISIS Synchrotron Group

Background

- New better-optimised TS1 design
 - Can we shrink/move the beam?

 Does design allow for sufficient operational flexibility?

Content

- Definitions
- Design Beam
- Diagnostic systems
- Beam Trips/Warnings
- Scope for Error
- Operational Experience

Definitions

- 95% beam widths
 - Calculated from EPB Profile Monitor data
- '100%' beam widths
 - Confirmed by deliberately mis-steering into beam pipe

Design Beam Optic

Design Beam Clearance

Design goal is 20mm clearance everywhere

Diagnostics

- 5 Profile Monitors (Harp type)
- 1 Beam Loss Monitor
- 1 Intensity Monitor

Diagnostics

- Halo monitor
 - Eight thermocouples
 - Relative measurement
 - Does calibration hold?

Setup Procedure

- EPMs used to check beam alignment and widths ± 5mm is acceptable
- Minor adjustments to optimise
 - EBLM9,10 loss levels
 - Halo monitor temperatures

Beam Protection System

- Beam Loss
 - >6 V on EBLM10, normal operation = 3.0±0.5 V
- Beam Intensity
 - >1.5x10¹² particles lost between start/end EPB
- Halo Monitor

Any one >140°C **or** left-right/top-bottom difference >14°C

1 event = beam inhibited for 2 seconds2 events in 10s = beam off and first beam stop inserted

Scope for Error

Under Focussed Beam

Scope for Error

Over Focussed Beam

Scope for Error

Mis-steered Beam

Operational Experience

- Summary
 - Estimate setup with beam at target face
 - ± 5 mm error on 95% width
 - ± 5 mm error on centroid position
 - Possibility of greater error withinBPS limits (15 42 mm radius)

Stable to ± 2mm during operation

Conclusion

- Beam is not perfect...
- Finite number and accuracy of diagnostics
- Finite stability of components
 - Must allow margin of error for continuous operation

