

TS2 Target Analysis

Peter Loveridge/Dan Wilcox

Contents

- Background
- TS2 Information
- Beam Stresses
- Manufacturing Stresses
- Conclusion
- Next Steps

Background

Aims:

- To better understand operating parameters of the ISIS TS2 target
 - Create thermal and structural models
 - Consistent approach for TS1 and TS2
- Estimate target lifetime
- Inform design of future ISIS targets

ISIS Layout

Image: http://www.isis.stfc.ac.uk/about-isis/annual-review/2007/accelerator-and-target-developments-7641.html

TS2 Target Geometry

TS2 Beam Structure

The beam consists of many pulses:

- 10 pulses per second
- 500ns pulse length
- Each pulse consists of two bunches:

Time structure of a single pulse

Overview of Beam-Induced Stresses

Steady State Analysis

- Time averaged beam heating
- Temperature varying material properties from ITER handbook
- Combined fluid/solid model

Velocity vectors at inner channel turnaround

Location of maximum heat flux

Steady State Results

- Fluid results (velocity, ΔP , ΔT , etc.) agree with data from ISIS
- Maximum stresses occur at target 'nose'
- Tantalum in tension, tungsten in compression

Temperature contour plot

Contour plot of Von Mises stress

- Maximum temperature = 248°C
- Maximum stresses = 154MPa (tungsten) 90MPa (tantalum)

Multi-Pulse Transient

- Pulsed beam heating
- Steady state heat transfer coefficient assumed (fluid flow not modelled)

Transient Temperature Result at Target Nose

Transient Stress Result at Target Nose

Stress-Wave Transient

- Dynamic stress response (includes inertia)
- Simplified 2D geometry many time steps required

Stress Results at the Target Nose

Time

HIP Process

- Good thermal contact between tungsten and tantalum is essential
- Hot Isostatic Press (HIP) used to create a diffusion bond
 - Tungsten core sealed inside tantalum 'can' by electron beam welding under vacuum
 - Assembly heated to ≈1500°C
 - Pressure of ≈200MPa applied to force parts together until they bond
 - Gradually returned to room temperature and pressure
 - Tantalum machined down to final size

Components of HIP assembly

HIP Effects

- Results in significant pre-stress
 - High pressure deforms tantalum can
 - However, this occurs above annealing temperature
 - Cooling causes shrink-fit residual stress (tantalum contracts more than tungsten)
 - Stresses thought to 'lock in' at around 500°C

- May also effect material properties
 - This is being investigated in detail by ISIS

Modelling HIP Pre-Stress

- Two load steps:
 - 1. Target is cooled from 500 to 20°C
 - 2. Steady-state beam-induced stress is applied

Stress in Tantalum Cladding at Target Nose

Tantalum yield stress:

160MPa (as received) 200MPa (after HIP)

- from experiments carried out by ISIS

Conclusion: Tantalum has yielded before the beam is applied

Yielding of Tantalum

- Bilinear model for stress/strain:
 - Define yield stress and tangent modulus
 - Data input at various temperatures
 - Total Strain = Elastic Strain + Plastic Strain

Elastic-Plastic Analysis

- Periodic loading applied to yielded material
- 'Kinematic Hardening' model selected in ANSYS
 - an increase in yield stress in one direction is compensated for by a decrease in yield strength in the opposite sense (Bauschinger effect)
 - the total linear stress range is equal to twice the yield stress

Conclusion

- All beam-induced stress components have been modelled
- Effects of HIP process are partly understood
 - Need to determine 'lock in' temperature
 - How are material properties affected?
- Stress levels in tungsten are acceptable
 - Safety factor of at least 2 even in worst case
- Significant yielding in tantalum cladding
 - How does this affect fatigue life?

Next Steps

- Experiments to understand HIP pre-stress
 - Bimetallic strip
 - ISIS Engin-X* (strain measurement by neutron scattering)
- Experiments to understand material properties
 - Tensile testing HIPed tantalum
 - Fatigue testing tantalum samples
- Fatigue life calculations
- Compare TS1 and TS2
- Explore alternative methods of coating tungsten
- Inform design of future ISIS targets