

TS1 Target Upgrade

Dan Wilcox

High Power Targets Group

PASI Targets Meeting

05/12/2013

Overview

- Background / Aims
- Target Design
 - Target Concepts: optimising for neutronics
 - Design 1: Parallel Flow
 - Design 2: Series Flow
 - Initial FEA Modelling
 - Extra neutronic gains
- Increasing Beam Power
 - Engineering
 - Neutronics
- Conclusions

Aims

Increase the useful neutronic output of TS1

- Use knowledge, experience and modern computational tools to optimise output from existing beam
- Upgrade accelerator to deliver higher beam powers

PASI WP2:

- Detailed design for up to 0.5MW (625µA at 800MeV)
- Conceptual target design for 1MW and 5MW

TS1 Upgrade Project:

 Increase useful neutronic output as much as possible, with low operational risk, on a limited budget, for implementation by ≈2020

Target Concepts

- For 180 625μA we need a plate target
 - Thermal stress limits solid rod targets to <60μA
 - Cannelloni targets are not neutronically worthwhile until ≈1MW (too much water)

- Minimise volume of water and non-target material
 - Water anywhere is bad for pulse width
- Circular cross section is best for neutronics
- Leave space for a water pre-moderator
- Avoid stainless steel it generates a high neutron background
- Neutronic design order is; reflectors, then moderators, then pre-mod, then target

Plate Thickness Optimisation

- Regardless of target shape, it is important to minimise the number of plates used
 - More plate gaps = more water and tantalum
- Current TS1 has high stress in plates 1 and 2, but not in 3-12
 - Use FEA to optimise the stress distribution across all plates
 - Do not exceed the stress limits in current TS1 (we know it works!)

Plate Thickness Optimisation

Result: 8 plates required at 180μA

Target Design 1: Parallel Flow

Target Design 2: Series Flow

- Can reduce water volume further by having one water channel cross several plates – 'series flow'
- A 2 channel scheme is proposed:

- Every plate is cooled by both channels
- Less face coverage, but channels are offset diagonally
- Lower flowrate, higher pressure drop

Target Design 2: Series Flow

There are several options for cross section geometry:

Better Neutronics

Easier Manufacture

- There are also various options for plate face cooling
- Optimisation of cooling flow is still in progress

Target Design 2: Series Flow

Initial FEA Modelling

Comparison

	Series Flow (9m/s)	Parallel Flow (6m/s)
Max core temp (°C)	212	205
Max surface temp (°C)	170	132
Max heat flux (MW/m²)	2.4	2.1
Max pressure drop (bar)	5.0	0.3
Water mass flow rate (kg/s)	1.6	8.0
Total water volume (cm³)	250	840

- Series flow target has higher temperatures (but within acceptable limits)
- Heat flux is acceptable in both targets
- Series flow target has much higher pressure drop, but lower flow rate
- Parallel flow target has a significantly higher volume of water

Extra Neutronic Gains

- Can add a flux trap to get more neutrons out
- Can use a horizontally elliptical beam wider area seen by the moderators

- ... but these options will also increase manufacturing cost and complexity
- Further engineering design and neutronic modelling will help quantify the costs and benefits

Increasing Beam Power – Engineering

Tristan Davenne modelled plate 2 of the current target at 200 and 550μA

• At 550μA:

- Heat flux exceeds ISIS design limits: still below burnout curve, but lower factor of safety.
 May need to increase water pressure to prevent boiling.
- Tungsten may exceed its yield stress (according to some sources). ISIS design limit is 275MPa.
- Tantalum stress appears to depend more on HIP pre-stress than beam heating this will be validated using pre-stress measurements from ENGIN-X

Increasing Beam Power – Neutronics

 Stuart Ansell and Goran Skoro modelled neutronic gain as a function of beam current for several target types:

 Higher beam power => more plates required => more water in target => longer neutron pulse width

Increasing Beam Power

- For neutronics, plate targets are undesirable at above ≈420μA
- This limit could be raised by reducing the number of target plates used at a given beam power – but go too far and reliability will be compromised
- The current beam window can only withstand ≈300µA; this will probably be the limiting factor for first upgrade

- At 1MW and above, a radically different target design will be required
 - SINQ uses a cannelloni target at 1MW but as a pulsed source, ISIS may have problems with thermal shock and neutron pulse width
 - SNS second target station will be 1MW long pulse, rotating tungsten and liquid mercury targets under consideration

Conclusions

- The coming TS1 upgrade will require a target to operate at 200-300μA
- Parallel flow target is a conservative baseline
 - Significantly better neutronic performance without compromising reliability
- Series flow target should be neutronically better, if it is worthwhile from an engineering/manufacturing perspective
- Both designs can be adapted to include a flux trap and/or elliptical plates, if this is found to be worthwhile
- Parallel flow target should be suitable at 500µA or more, however...
 - Limited by neutronics at ≈420μA
 - Limited by beam window at 300μA
- At 1MW+ plate targets are no longer suitable and a completely new target design will be required