TS1 Upgrade

Start Point

- Belief that with modern analytic tools we can make neutron production twice as efficient at a modest cost
 - £15m TS1 upgrade = 1 or 2 instruments
- Important to understand the upgrade possibilities with the existing machine

Plan of approach

- Run as a project
 - Feasibility first
 - Quantify options

Performance

Risk

Time

Cost

- Three tasks feeding back progress
 - Neutronic and activation calculations
 - Instrument desires
 - Engineering assurance

PASI interactions

- Internal ISIS expertise on
 - Neutronics, and benchmarking performance
 - Moderator and instrument interactions / impact
 - Thermo-mechanics
 - Operations
 - Diagnostics
 - Practical
 - Installation etc etc
 - Knowledge of the existing equipment (no small task)

PASI Interactions

- Expertise and effort in neutronic and thermo mechanics calculations related to targets
 - Neutronics modelling with MCNPX
 Ali Ahmad
 - Neutronics modelling with GEANT4 Cristian Bungau
 - Thermo-mechanical and Fluka simulations Tristan Davenne
- Material understanding / testing all relevant
 - Erosion, stress, etc

Timeline

2019 / 20

TS1 Reflector, Moderators, Target change circa £15m

Tank 4 and 1 replacement £3m each

2025

New Linac – up to 180 MeV. £100m

Built alongside.

Energy directed by Target optimisation

Beyond

Feasibility only

Expectations

- Average factor two gain in performance minimum
- Possibility of higher but localised / specialised gains
- Proton power as it is, but benefits / consequences understood of increasing to max of 500kW
- RISK Low on implementation
- Technology understood
 - Target water cooled (H2O or D2O)
 - Moderator tech tested thoroughly
 - Benefits understood
- Re-configuring instruments not in the scope
 - Filters (to limit saturation should this occur) in scope
- Upgradability built in (probably moderator tweaks)
 - Development moderator considered

Pressure Vessel

'Features'

- Neutron windows
 - V difficult to access

- Proton window
 - Possible limit

Infrastructure

Progress

- Baseline Understanding
 - Neutronic Baseline model 90%
 - Engineering baseline model 70%
 - Physical model 80%
 - Analytic engineering baseline model heat transfer, fluid flow 80%

Science & Technology

- Understanding / relearning constraints
- Science input internal discussion started
- Target manufacture in house transfer started