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ISIS TS1 target
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Implementing the TS1 target geometry
into GEANT4
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The Neutron Moderators

and Methane

Water moderators modetators




The Neutron Reflector

Session :




Neutron Shielding and Beamlines to the Instruments

Instruments
channels

-18 neutron beamlines implemented at
various angles;

- vertical offsets allowing different
beamlines to point to different
moderators;

- the space between the instrumenig
channels was filled with steel shje
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» As in the engineering drawing, | pointed the

 Then | checked by

Issues encountered.

neutron beamlines to the (0,0) point;

how much to shift
the reflector in
order to have the
beamlines see the
corresponding
moderators;

66666

" "3 VOIDNVESSEL WINDQHS AT 1585
|\ %\ 0.5 Jick AL.ALLOY BS1870/
A *2 SAUTTER WINDOWS AT 1670
0525 THICKNAL.ALLOY BS1970/
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¥ (0,0)

| asked Ali to check this for me by looking into
the ISIS MCNPX model which contained the
neutron instruments’ channels;

Reflector position adjusted — beamlines started
to “see” the moderators, but only parts...

(0,9.2)

This is the centre of the shielding cylinders
i.e where the beamlines are pointing



Issues encountered (continued)

o Solution: each instrument beamline channel should have a different
angle in order to fully face the moderators, so the beamlines should
no longer be focused in the same point in horizontal plane;

» Small (different) rotations applied to each beamline:
Each beamline faced its corresponding moderator;

But several volumes overlaps;
> Add additional logical volume operations (such as intersection) to avoid the overlaps;

o

.

i‘;r' A

e Finally ... all the beamlines in place, having correct angles in order
to face the moderators, and no overlapping volumes whatsoever.



Comparison between the GEANT4
code prediction and the MCNPX
code predictions for neutron spectra
for each moderator type
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Future plans for TS1 power
upgrade studies

Increase the proton beam current to increase the power to 1 MW
and beyond;

As a figure of merit use the flux of useful neutrons reaching the
instruments;

Monitor the increase in heat deposition and reduce the target
plates thickness as needed;

Determine at what point during the power increase the target has
to be changed to a liquid target;

Consider also a rotating solid target and continue to monitor the
temperature rise;

At every step, consider the neutron pulse width, which should be
kept at the present value;



Timescale

» Monitor the increase in heat deposition and reduce the target
plates thickness as needed;

» For each new power on target configuration run an optimization
study of moderators + reflector configuration;

» Determine at what point during the power increase the target
has to be changed to a liquid target;

» 0.5 MW -5 MW in 10 steps
» Approx 4 weeks / new optimization study (!') ~ 40 weeks starting Jan’14

» Consider also a rotating solid target;

» For each new power on target configuration run an optimization
study of moderators + reflector configuration;

» 1.5 MW (?) — 4.5 MW in 4 steps
» Approx 4 weeks / new optimization study ~ additional 16 weeks



ESS Activation Studies using
GEANT4



The HEBT line

HEBT-S3

HEBT-S2 | ‘

21.300m >

+ 14.4m >

HEBT-S1
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: H T 1

HEBT-S1: 100 m long (collimation system + space for
additional cryo-modules) o
HEBT-S2: brings the beam from underground (1.6 m above
0.01

the ground)

HEBT-S3: - includes the expansion system to provide the 1 | |
beam footprint at the target -100 | /\ g 0.001

- peak current density is minimal T R R
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Beam profile at the
target surface



The HEBT-S3 magnets and collimator

- includes a large number of magnets with associated power supplies

- both normal conducting and superconducting magnets considered

These magnets and the
Length Aperture SUCENE  collimator are exposed
(mm) (mm) th (T) to a high radiation level
Dipoles 1570 40x80 (gap) 1.47 from back streaming

neutrons !
Quadrupoles 400 or 800 40 (radius) 0.48
Octupoles 800 25 (radius) 0.35




Radioactive inventory

Experience with radionuclide inventory from accelerator components have shown that

the gamma-emitting isotopes are dominant along with relatively short-lived beta

isotopes !
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Isotopes produced inside the magnets

- isotope yield was calculated for each magnet separately
- plots show the total amount of each isotope in all quadrupoles and octupoles
- results are for 3x108 POT

-91Cr, %4Mn, %%Fe and %°Co are predominant in the magnets

Isotopes produced inside quadrupoles Isotopes produced inside octupoles
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ide the collimator

NSl

Isotopes produced

- high isotope rates found in the Cu parts: 5'Cr, %4Mn,%°Fe, %6Co, 5"Co, °8Co, 6°Co, 65Zn

- isotopes found in the tungsten coating: 1%9Yb, 172Hf, 182Tg
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Half life of isotopes produced in the Cu parts of
magnets and the collimator

46Sc 84 d

44T 63y EC .
S1Cr 28 d EC 4.3
54Mn 312d EC, B* 114
Fe 44 d B 147
56Co 77 d B+ 350
>'Co 272d EC 17.5
58Co 70 d B+ 131
80Co 53y B 340

65Zn 245 d EC, B* /6



Half life
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Activity (Bq)
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Activity (Bq)
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» paper submitted
to PRST-AB;
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The residual activity induced in particle accelerators by high-cnergy neutrons is a serious is-
suc from the point of view of radiation safety as the long-lived radionuclides produced by fast or
moderated neutrons cause problems of radiation exposure for staff involved in the maintenance
of accelerators. The long-lived radionuclides also contribute to the radioactive waste at the de-
commissioning of the accelerator facility as beam components that becomes radicactive are certain
candidates for failure as a result of radiation damage. This paper presents activation studies of
the magnets and collimators in the High Energy Beam Transport line of the European Spallation
Source due to mainly the back-scattered neutrons from the target and also to the direct proton in-
teractions and their sccondaries. An estimate of the radionuclide inventory and induced activation

are predicted using the GEANT4 code.

I. INTRODUCTION

Activation induced by particle nuclear interactions in
beamline components represents one of the main radia-
tion hazards of high-energy accelerators. Elements such
as target, collimators, magnets and beam dumps are the
first candidates for failure as a result of induced activa-
tion. Induced radioactivity is due either to direct inter-
actions of the incoming beam or indirect interactions of
secondary particles in the accelerator components leading
to radionuclides production. This activation causes rem-
nant ambient dose rates inside accelerator tunnels and
target areas but also means that when components are
being replaced at the end of their operational lifetime,
they must be treated as radioactive waste. Big quantities
of activated material arises when the whole accelerator
is decommissioned as dismantling it will pose a major
challenge for radiation protection. Exposure to radia-
tion from induced activation can oceur in connection with
handling, transport, machining, welding, chemical treat-
ment and storage of irradiated items, These procedures
can be extremely difficult because the personnel accumu-
late dose and if they exceed the permitted limits, remote
handling becomes necessary. In the field of radioactive
materials and waste there are no internationally agreed
recommendations like in radiation protection. Both the
International and European Basic Safety Standards [1]
only contain tables with radionuclide specific exemption
limits [2] and do not make recommendations with respect
to the clearance of radioactive material. In countries like
France or Switzerland for example, the accelerator waste
is not accepted contrary to waste coming from nuclear

* C.Bungauiihud.ac.uk

industry with the argument that its radionuclide inven-
tory as a result of high energy spallation reactions is not
well known [3].

Because the accelerator components reveal high in-
duced activation during normal operations and after ac-
celerator shutdown, it is of primary importance to predict
correctly their radionuclide inventory and residual ac-
tivity before any handling and maintenance procedures.
The technical challenge is firstly to ensure that the beam
losses are small as residual activity depends greatly not
only on material properties but also on the amount of
beam loss. The main causes of beam loss in high current
accelerators are:

e space charge effects that arise due to Coulomb re-
pulsion between particles; the Coulomb repulsion
becomes more important as the beam current is in-
creased and causes an increased emittance leading
to beam losses

beam halo surrounding the beam core, caused by
space charge induced emittance growth

emittance increase which could be due to several
reasons like space charge effects, non-linear reso-
nances, chromatic aberrations in lenses

back-streaming neutrons coming from the target on
the beam pipe

mismatch of the beam across accelerator elements
transitions

e low aperture to rms beam size ratio; this should
be kept reasonably high to prevent the beam from
hitting elements and getting lost

The high energy protons lost along the beamline gen-




