TS1 upgrade

- Brief function of targets / moderators
 - Reminder why.....
- Brief description of TS1
- Challenges
- Importance of QA

Target function

High energy protons (800MeV) create neutrons in all directions with varying energies below incoming energy

Neutrons

- Instruments want particular speed neutrons at the right time
- Moderators slow down the incoming neutrons
- Reflectors change the direction (also slow them down)

Useful Neutrons and Background

- A useful neutron is one where the wavelength is consistent with the arrival time at the detector.
- A background neutron is one where the wavelength is not consistent with the arrival time at the detector.
- (Gamma rays can also present background problems)
- Sources of Background:
 - Fast neutrons scattering in shielding and moderating near the instrument (Poor shield design)
 - Moderated neutrons drifting to the instrument (Collimator design)
 - Leakage from the TRAM down the beam channel
 - Delayed neutron production in the target

Challenges

- Optimising performance
 - Engineering / neutronic / operation balance
- Developing on an operational machine

Challenges ctd (Heat)

Target Choice (Solid)

- High atomic weight for neutron yield
- High density for brightness
- High melting point
- High thermal conductivity
- Chemically inert
- Resistance to radiation damage
- Low resonance integral (absorption of keV neutrons)
- (Low absorption cross section for thermal neutrons)
- High scattering cross section (reflector)
 Candidates: Lead, Tantalum, Tungsten

Challenges ctd

- Material integrity in multiple dpa condition
 - Limited data engage with other facilities
- Instrumentation 'ready to accept beam'
- Fixed (or at least very inflexible) infrastructure
- Remote handling
- Robustness
- Operability
 - Monitoring / maintenance etc

Challenges ctd

- Lifetime (component change)
- Cost E.g. targets circa £100k each to manufacture – Disposal £000's each
- Knowledge / experience of staff
- Investigation compromise to operations
- QA (manufacture)

Quality Assurance

- Demanding requirements on the target in operation (likely to be at the edge)
- Costly
- Difficult to investigate after first operation
- Manufacture is complex
- When you do have a concern one of the first questions is about the manufacture and first test results

Target Manufacturing

Target Testing

- Offline pressure tests
- Offline heat transfer tests
- Offline water flow tests

Moderator testing

Offline instrumentation tests (strain gauges)

TS1 Upgrade

Hydrogen **Ambient Water** Methane Tungsten Block Transition Manifold Tantalum Cladding Thermocouples Water manifolds Target Plates Water Outlet Proton Beam Water Inlet Pressure

Vesse

Performance (same protons)

Current says circa 5 times more flux

Goal – at least twice

Suspect that with engineering reality this will drop

to circa 3 increase

Moderator upgrades

Target	Baseline model	Mark II model
Plates (current)	1	4
Cylindrical	1.10	7
Cylindrical with inner core	0.98-1.02	5
Thick plates	1.05	
Thin plates	0.95	
Split target**	1	7
Cannelloni	Model ready. Optimisation just started. Many parameters to vary	

Trolley movement

Timeline

Current project challenges

- Creating a decent baseline
 - Neutronics of targets and instruments
 - Engineering analysis
 - Exact understanding of existing equipment
- Iterating through proposed concepts
- Communication and understanding
 - Helped by co-location
 - Momentum building

Key points for TS1 Upgrade

- Operationally robust
- Low risk
- QA of design / manufacture
- Limited data for materials
 - Engagement with other facilities for data share
- Moderator upgrades in future possible
- Existing infrastructure constraints
 - Ensure don't build in any more than necessary

Importance of the input

- Proton beam critical
- Not just the theoretical but the expected variation also

Over to Bryan Jones.....