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Tungsten Powder programme live areas of work

* Rig improvement
e CW upgrade
* Improving the receiver vessel
* Improving diagnostic
* Increasing the solid fraction
* calorimetry
* In beam tests HiRadMat
* Understanding factor/factors for beam powder lift
e aerodynamic
e stress propagation
e Electrostatic
* acombination of all the above!
* Understanding fluidisation conditions and pressure loss
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Tungsten Powder Test Programme in PASI-WP3 + ASTEC

e Offline testing

— Pneumatic conveying
(dense-phase and lean-phase)

— Containment / erosion
— Heat transfer and cooling of powder
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Dense-phase delivery
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Unstable tungsten powder jet
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animations/unstable.avi
animations/contained.avi
animations/stable.avi

CW operation requires a few more components

Not technically challenging but
logistically difficultin R12

height limit in the building

Available experimental length
Dan Wilcox



Improving diagnostics to increase the solid fraction

New glass parts show early stages of phase separation
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glass 3.avi

Phase separation diagnhostic improvement

Next stages:
* Vary system characteristic pressure drop (i.e. pipe diameter and length)
* See how the powder flows through the dense phase hopper
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In beam tests at CERN
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Prompt energy deposition/radiation
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Charitonidis
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Shot #8, 1.75e11 protons . . [ ] L -’ -

Note: nice uniform lift

Shot #9, 1.85e11 protons

Note: filaments! Trough photographed after the experiment.
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LDV: the good bits

Having taken all the bad data away (technically defined as data massaging!!)

« the amplitude of vibration appears proportional to PoT
* Vibration amplitude is higher in the inner trough than on the outer trough
« Thereis a 1kHz resonant frequency peak (expected from trough resonance )
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Max velocity as a function of PoT
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Davenne: CFD predictions/post fits

Beam heating
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Appendix 1: Drag and equations of motion

D: drag force

Re: Reynolds number

Cy: Drag coefficient

v: Particle velocity

p: density of fluid

W: viscosity of fluid

d: diameter of particle

a: acceleration of particle
x: displacement of particle from peak height
t: time

m: particle mass
B:Buoyancy

pp: particle density

a: acceleration

Re = prd
M
_ pv*rd®Cy
r—
D+B
mg mpa
p = mpa
Pp
D + B — mg = ma (defining up
positive)

x = vt + 0.5at?
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Powder lift didn't match expectations..
So looking at the powder falling: Drag coefficient calculations

Rachel Salter
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Tungsten powder drop tests

Particle size: 50 to 75 um
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Particle size: 0 to 50 um
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Agglomerates only appear
to form when there are
particles smaller than 50
microns present
* Geldart Group C
particles
* For Tungsten
powder, 20 microns
is the estimated
threshold size for
agglomeration



Tungsten powder drop tests (2)

Rate of change of displacement comparing theoretical and experimental
data for particle size 106 to 150
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Theoretical data fits quite closely to data
obtained by tracking single particles- drag
equations are therefore justified using
spherical assumption

HiRadMat data follows a similar trend to
agglomerates tracked in the powder drop
test- therefore more likely that clumps of
particles were being tracked
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Tungsten powder puff experiment. Trying to understand the powder lift

piston

Puff cell
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Tungsten powder puff experiment

« Aim: To compare behaviour of Tungsten
powder after a short pressure spike against
the behaviour in the HiRadMat experiment

« Method: Use a short pressure pulse to lift the
powder




Tungsten powder puff experiment (2)

Maximum height of powder against energy input ¢ The maximum he|ght reached by the
powder is proportional to the energy put
in by the compression of the piston
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« The powder sample containing smaller
particles was lifted higher than the
. sample containing only larger particles
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\ There is a threshold energy
which has to be reached
before the powder begins to
lift. The threshold depends
on the depth of the powder
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Tungsten powder puff experiment (3)

Powder depth  Powder depth Powder depth  « The smaller the depth of powder,
=13.5mm =15.5mm =22.5mm the larger the maximum powder

height reached

Max powder height against input energy for different depths of powder

Powder height (m)
o

o
g e
g

Piston height (m)

3
3

Science & Technology Facilities Council 18

W@ Rutherford Appleton Laboratory




Understanding powder lift part 2

Pressure drop for air flowing through a bed of powder

o Atherton, Salter, Bennetton



Fluidised bed experiment (2)

Comparison of different powder sizes at a

« The experimental change in pressure is powder depth of 60mm

consistently much larger than the expected
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Future work to understand W powder dynamics

e  Studying the effect of sphericity on
flowability and on pressure drop

* Validating the fluidisation experiments on
a lighter material (e.g. Glass)

* Investigating electrostatic effects

-

Science & Technology Facilities Council

W@ Rutherford Appleton Laboratory 21



