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Programme

Thursday 12 December 2002

14:00 (PGR) Welcome & Introduction

14:20 (PGR) Magnetic SG Symmetry
Shubnikov Groups.

15:10 Coffee Break 

15:40 (PGR) Generating magnetic structures from SG
Defining a SG from a known magnetic structure.
Additional topics in Shubnikov groups.

16:10 Break

16:20 (JRC) What is a Magnetic Structure?
Description of Magnetic Structures
Propagation Vectors

17:10 Break

17:20 (JRC) Examples of Common Magnetic Structures
Additional topics

18:10 Close

19:00 Dinner

20:30 (All) Problem-Solving Session with Tutors: Analysis and 
Description of Magnetic Structures 

22:00 Close
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Programme (cont’d)

Friday 13 December 2002

7:30 Breakfast

8:30 (ASW) Symmetry of Magnetic Structures
Representation Analysis

09:30 Break

09:40 (ASW) Representation Analysis (con't)

10:30 Coffee Break

11:00 (ASW ) Introduction to Software for Symmetry Analysis: 
SARAH, etc.

11:50 (All) Additional topics/discussion

12:15 Lunch

13:30 (All) Training Session on Software for Symmetry 
Analysis

15:30 Coffee Break

15:50 (JRC) Unpolarised Neutron Scattering - Powder 
Diffraction

16:40 Break

16:50 (PGR) Software for magnetic PD: GSAS

17:40 (JRC) Software for magnetic PD: FULLPROF

18:30 Close

19:00 Christmas Dinner

20:30 (All) Training Session with Tutors: Refinements of 
Magnetic Structures

22:00 Close
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Programme (cont’d)

Saturday 14 December 2002

7:30 Breakfast

08:30 (Tutors) Additional software topics (if required)

09:00 (All) Training Session with Tutors: Refinements of 
Magnetic Structures (cont'd)

10:00 Coffee Break

10:30 PGR Powder Diffraction Instrumentation

11:10 Break

11:20 (JRC) Additional Topics: Polarised Neutrons, etc.

12:15 Lunch & Close
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Magnetic Symmetry - Shubnikov Groups
Paolo G. Radaelli
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Objectives of this module

• To learn the relevance of time reversal for magnetic 
structures.

• To learn how PG and SG operators act on spins.
• To learn how magnetic groups can be constructed 

from subgroups of index 2.
• To learn how to find those on the International 

Tables for PG and SG.
• To learn about magnetic lattices.
• To be able to construct invariant spin arrangements 

for magnetic SG, with specific examples.
• To learn the relation between Shubnikov groups and 

representations.

Reference: W. Opechowski and R. Guccione, “Magnetic Symmetry”, in 
Magnetism, Vol II part A, ed. By G.T. Rado and H. Suhl. Academic Press 
(New York and London), 1965, pp 105-165.

Notation-1

Element of Space group {F}: F=(R|τ(R)+t),
whereR is a proper or improper rotation,t is a primitive
translation and τ(R) is a non-primitive translation.

{ R} is the point group associated with {F}.  If {( R|0)} is 
a subgroup of {F}, then {F} is calledsymmorphic.

Given a position r on the lattice, the subgroup {F (r)} for 
which (R|τ(R)+t) r = t’+ r is called site space group, and 
its point group {R(r)}.

We shall call {A}={E, E’} the 2-elements group of the 
time identity (E) and time inversion (E’).  Because 
crystal structures are static, {F} ⊗ { A} is also a 
symmetry group of the crystal.
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Notation-2

However, if we add spins (i.e., magnetic moments) to 
some of the atoms, time reversal will switch the direction 
of the spins.  So {F} ⊗{ A} cannot be a symmetry group 
of the magnetic structure, and the magnetic symmetry 
group, {M}, must be a subgroup of {F} ⊗{ A} . In
particular, (I|E’) cannot belong to it.

Forward time Backward time

Purpose of the study of magnetic symmetry is to generate 
systematicallyall the magnetic groups associated with a 
particular space group of the crystal structure.

Caveat

Magnetic space groups, also known asShubnikov
groups, are perhaps the most elegant description of 
magnetic structures.  However, in the presence of 
magnetic ordering, the crystallographic space group is 
oftennot known a priori, because the symmetry subtly is 
lowered by magnetic ordering itself.  One has therefore 
to lower the symmetry in a systematic way, which is the 
purpose of representation theory.  The study of
Shubnikov groups with therefore serve as an 
introduction to the more general methods to be described 
in the remainder of the workshop.
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‘Coloured’ groups

We have just seen that the magnetic space group {M} must
be a subgroup of {F} ⊗{ A} , and cannot contain (I|E’).
However, it can contain elements of the form (F|E’),
which will be called primed (F’).  If it does not, it is called 
a trivial (or colourless) group. Trivial groups can describe
magnetic structures.  Groups of the type {F} ⊗{ A} are 
calledgray or paramagnetic groups.  All non-trivial 
subgroups of {F} ⊗{ A} are calledblack and white groups.

The original concepts and terminology were developed by Heesch (1930) and 
later by Belov and by Zamorzaev (~1955, including a complete list of the 
magnetic SG).  The original aim was purely mathematical or crystallographic 
(study of coloured patterns on lattices, with A being colour inversion). The 
application to magnetism is due to Landau & Lifshitz (1958).  These concept 
can be extended to multicoloured SG, which are also of some interest for 
magnetism. Aleksei Vasil'evich Shubnikov was the founder and first director 
of IC-RAS. 

Colour vs. Spin

The analogy between colour and spin can be made by replacing 
the meaning of E’ fromtime reversal to colour change.
However, colour and spin differ fundamentally in the way the 
regular space group operators act upon them.  Colours are 
scalars, whereas spins are axial vectors.

It is important to remember that an axial vector is left 
invariant by centering.  Therefore, proper rotations act on 
spins in the same way as on normal (polar) vectors, whereas for 
mirror operations and centering there is an additional spin flip.

On top of this, priming any operator will entail and additional 
spin flip.
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Flip sx,sy,sz 

No effect

1

Does not 
occur

Rotate sx, sy

Flip sx, sy, sz

Flip sxPrimed

No effectRotate sx, syFlip syszUnprimed

12z, 3z, 4z, 6zmx

Constructive theorem

We will give here the ‘fundamental lemma’ to construct 
magnetic groups.  It will apply equally well to SG, PG or 
lattices.  Let {G} be a crystallographic group, {M} a 
derived magnetic group (subgroup of {G} ⊗{ A}) and 
{ GM} the group of the elements of {G} that are
unprimed in {M}.  It can be easily shown that

{ G}= { GM} +p { GM}
wherep does not belong to {GM}, which is therefore a 
subgroup of index 2 in {G}.
This simply has to do with the fact that the product of 2 primed elements 
must be unprimed.

Follows {M}= {( GM|E)} +p {( GM|E’)}
So, the problem of finding all magnetic groups arising 
from a crystallographic group {G} is reduced to that of 
finding all subgroups of index 2  of {G}.
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Example: magnetic point groups

To apply this rule to magnetic point groups, one needs to 
look no further that page 781 of the International Tables 
(copied overleaf).  Subgroups of index 2 are those that 
have exactly half the number of elements of the original 
group.  Elements of the subgroup will beunprimed, all 
the remaining elements being primed.

Example 1: mmm
mmm
222

222 2mm
m
2

mmm ′′′
222

mmm ′
′′ 222

mmm ′
′

′
′ 222
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Example 2: 4/m m m

mmm
224

224

mmm ′′′
224

mmm ′
′

′
′ 224

m24 mm4
m
4

1
22
mm

mmm
224 ′

′′
′

mmm
224 ′′

′ mmm ′
′22'4

Admissible magnetic point groups

A point group is called admissible if all its operators leave at 
least one spin component invariant. Admissible MPG are 
marked with an asterisk in OG, Table I.  

As we shall see,admissible point groups (AMPG) have two 
very  important applications.  

• The site symmetry of a magnetic atom must be a AMPG.
• A  Ferromagnetic MSG must have a AMPG as its MPG.

The second is a necessary but not sufficient condition for the 
MSP to support FM.  The other condition is that its lattice is a
trivial magnetic lattice (see below).
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Examples of admissible PG

1* 1* 1’

42m 4’2’m 4’2m’ 42’m’ *

(any direction)

Spin along z

Page 12 / 142



Things to remark about the          example 

• Spin must be parallel to the 4-fold axis (always true except 
for 2-fold axes).

• must be black.  In fact, for spins,    = 4
• If a spin is in a plane, that plane must be red.
• If a spin is perpendicular to a 2-fold axis, that axis must be 

red.
• Note that the central 2-fold axis of     or 4’ is always black.

This is because the product of two primed 45-degree 
rotations is an unprimed 90-degree rotation.

42m

4 4

4’
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Magnetic Bravais Lattices

The constructive theorem we have used to generate the 
magnetic point groups , based on the identification of 
subgroups of index 2, can be applied to generate magnetic 
lattices {TM} from Bravais lattices {T}.

In general, a group of lattice translations generated by a set of 
primitive vectors a1, a2, a3 has exactly seven subgroups of index 
2.  However, they do not always generate independent MBL, as 
some of them can be equivalent by interchange of the axes.
Also, we are only interested in MBL that belong to the same
holoedry of the original BL.

In fact, as we shall see in the remainder, MSG either share the same lattice
with the original SG (trivial ML) or the same point group (and therefore, 
necessarily, the same holoedry).

2a, b, c a, 2b, c a, b, 2c

a, b+c, 2c 2a, b, a+c 2a, a+b, c 2a, a+b, a+c
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Magnetic Space Groups

Once again, the constructive theorem, based on the 
identification of subgroups of index 2, can be applied to 
generate magnetic lattices {FM} from space groups {F}.

The method to generate all the MSG systematically is explained 
in OG.  We will limit ourselves to use the International Tables 
volume A.  In there, for each SG, there is a list of  minimal non-
isomorphic subgroups (Types I, IIa and IIb), and minimal
isomorphic subgroups of lowest index (Type IIc).  The index is 
indicated in brackets (e.g., [2]).

Therefore, each subgroup listed as [2] will generate a non-
trivial magnetic space group.  There are 1421 of them in 
total, 1191 of which are non-trivial. All SG except F23 and 
P213 generate at least 1 non-trivial MSG.

Rules to construct Magnetic Space Groups

1. Identify the subgroups of type I.  They share the same 
lattice (trivial MBL) but have different PG, so they 
correspond to all the subgroups of index [2] of the 
associated PG (with multiplicity).  For these, it is sufficient 
to prime the generators that correspond to missing 
operators.

2. Identify all the other subgroups of index 2 (IIa, IIb and III, 
no distinction).  Then
• Identify the MBL based on the supercell, and write its 

symbol.
• For the Belov symbol (right column in OG), one simply 

need to complete the H-M symbol with that of the 
subgroup.

• For the OG symbol, the modified operators with respect 
to the original symbol will be primed (e.g. m->n=m’)

Page 17 / 142



Page 18 / 142



Page 19 / 142



Page 20 / 142



Page 21 / 142



Page 22 / 142



Page 23 / 142



Page 24 / 142



Page 25 / 142



Rules to construct invariant spin arrangements

• Define a magnetic space group generated by the SG of the 
crystal structure.

• Identify the magnetic site, and define its magnetic point 
symmetry.  A graphic representation of the MG is useful.

• Check that the site MPG is admissible for at least one spin 
component.  Otherwise, the MSG does not support any 
magnetic structure on that site.

• Pick one admissible component, and apply in turn all the 
MSG operators on that component, propagating it to all 
equivalent sites.

Rules to determine the MSG from a given structure

• Check that the magnetic structure Γ is Shubnikov-compatible.  
This is easily done by applying the operators of the crystal
space group {F} upon Γ (including lattice doublings). Γ is
Shubnikov-compatible if and only if, the structure is either 
invariant (× 1) or reversed (× -1) for each and every F in {F}.

• Prime all the operators in {F} for which Γ is reversed, and 
identify the new primitive translations.  This completes the 
process.
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Shubnikov groups and representations

To make a link with the more powerful representation analysis, 
we can simply think of how  a magnetic structure Γ, which is 
invariant under a particular magnetic groups {FM}, will transform 
under the ‘parent’ space group  {F}.  It is apparent that Γ will be 
invariant (× 1) under the operators which areunprimed in {FM},
whereas all the spins will be switched (× –1) for the operators 
that are primed in {FM}.  In other words, the set of numbers 1 or 
–1 is a representation of {F} onto the linear space generated by 
Γ.  We can easily prove that the reverse is also true.

We can conclude the Shubnikov groups are equivalent to 1-dimensional real 
representations of {F}, with the invariant Γ being their basis sets.  In general, 
if we relax the requirement for invariance of the crystal structure, there is no 
reason to prefer these to all the (infinite) others, whence the need for extending 
the analysis to the full expansion in irreducible representations.
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P422 (No 89)

Special position: 4o [.2.] x, ½, 0
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P42’2’

Special position: 4o [.2.] x, ½, 0

PP422
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Magnetic Structure Determination
Juan Rodriguez-Carvajal
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December 2002 Workshop on Magnetic Structures (Abingdon )

Magnetic Structure Determination. 
What can we learn from a magnetic 

structure  refined from neutron powder 
diffraction?

(Tutorial, overview, ... )
Juan Rodríguez-Carvajal

Laboratoire Léon Brillouin (CEA-CNRS)
DRECAM-CEA/Saclay, France

&
Service de Physique Statistique, 

Magnétisme et Supraconductivité
DRFMC-CEA/Grenoble, France

December 2002 Workshop on Magnetic Structures (Abingdon )

Content:
• What’s and why magnetic structures
• Formalism to describe magnetic structures
• The Rietveld method
• Magnetic neutron scattering
• Magnetic structure determination:

Indexing: SuperCell
Symmetry Analysis: BasIreps
Simulated Annealing: FullProf

• Examples
• SIMBO and ENERMAG: programs to 
analyze exchange interactions.
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December 2002 Workshop on Magnetic Structures (Abingdon )

Ions with intrinsic magnetic moments
Atoms/ions with unpaired electrons

Intra-atomic electron correlation
Hund’s rule: maximum S 

core

m = gJ J (rare earths)

Ni2+ m = gS S (transition metals)

December 2002 Workshop on Magnetic Structures (Abingdon )

What is a magnetic structure? (1)
Paramagnetic state: 
Snapshot of magnetic moment configuration

Jij

 S Sij ij i jE J

0Si
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December 2002 Workshop on Magnetic Structures (Abingdon )

What is a magnetic structure? (2)
Ordered state: Anti-ferromagnetic
Small fluctuations (spin waves) of the static configuration

 S Sij ij i jE J

Jij0Si

Magnetic structure:
Quasi-static configuration of magnetic moments

December 2002 Workshop on Magnetic Structures (Abingdon )

Magnetic structures for what?
• Fundamental properties of condensed matter. Exchange

interactions related to the electronic structure.

• The first step for determining the exchange interactions 
by inelastic neutron scattering

• Permanent magnet industry. Chemical substitutions 
controlling single ion anisotropy, strength of effective
interactions, canting angles, etc: NdFeB materials,
SmCo5, hexaferrites, spinel ferrites.

• Spin electronics, thin films and mutilayers
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December 2002 Workshop on Magnetic Structures (Abingdon )

Formalism to describe 
magnetic structures

December 2002 Workshop on Magnetic Structures (Abingdon )

a

b

1 3 4
13
2

R a b a b( , ) y1

2
3

4

4

(1,3)

Geometric relation between magnetic moments of 
crystallographically equivalent atoms

(0,0)

y
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December 2002 Workshop on Magnetic Structures (Abingdon )

Magnetic structures
Magnetic moment of each atom: Fourier series

k
k kRSm ljlj iexp 2

jj kk- SSNecessary condition for real mlj

Position vector of atom “j” in the unit cell “l”

cbacbarRR jjjjllj zyxlll 321

December 2002 Workshop on Magnetic Structures (Abingdon )

Examples of Fourier coefficients 
for simple magnetic structures 
The simplest case: 

Single propagation vector
k = (0,0,0)

2k k
k

m S kR Slj j l jexp i

• The magnetic structure may be described within the 
crystallographic unit cell

• Magnetic symmetry: conventional crystallography plus
time reversal operator: crystallographic magnetic groups 
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December 2002 Workshop on Magnetic Structures (Abingdon )

Examples of Fourier coefficients 
for simple magnetic structures

Single propagation vector
k=1/2 H

)(2 ln
jljlj -1iexp k

k
k SkRSm

REAL Fourier coefficients magnetic moments
The magnetic symmetry may also be described using
crystallographic magnetic space groups

December 2002 Workshop on Magnetic Structures (Abingdon )

a = am

b=bm

a

b

am

bm

k= (1/2, 1/2) k= (0, 0)
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December 2002 Workshop on Magnetic Structures (Abingdon )

Fourier coefficients of sinusoidal structures
k interior of the Brillouin zone (pair k, -k)
Real Sk, or imaginary component in the 
same direction as the real one

2 2k -km S kR S kRlj j l j lexp( i ) exp( i )

1 2
2k kS uj j j jm exp( i )

km u kRlj j j l jm cos2 ( )

December 2002 Workshop on Magnetic Structures (Abingdon )

Sinusoidal magnetic structure

k= (kx, ky)
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December 2002 Workshop on Magnetic Structures (Abingdon )

Fourier coefficients of helical structures
k interior of the Brillouin zone

Real component of Sk perpendicular to 
the imaginary component

1 2
2k kS u vj uj j vj j jm im exp( i )

k km u kR v kRlj uj j l j vj j l jm cos2 ( ) m sin2 ( )

December 2002 Workshop on Magnetic Structures (Abingdon )

The Rietveld Method
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December 2002 Workshop on Magnetic Structures (Abingdon )

A powder diffraction pattern can be recorded in numerical 
form for a discrete set of scattering angles, times of flight or
energies. We will refer to this scattering variable as : T.
The experimental powder diffraction pattern is usually 
given as two or three arrays :

The profile can be modelled using the calculated counts: yci
at the ith step by summing the contribution from 
neighbouring Bragg reflections plus the background.

1,...,
, ,i i i i n

T y

December 2002 Workshop on Magnetic Structures (Abingdon )

yi

Bragg position Th

zero

Powder diffraction profile:
scattering variable T: 2 , TOF, Energy

yi-yci

Position “i”: Ti
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December 2002 Workshop on Magnetic Structures (Abingdon )

profile
The profile of powder 
diffraction patterns

The model to calculate a powder diffraction pattern is:

( )h h
h

ci i iy I T T b

( ) 1x dx Profile function characterized by its 
full width at half maximum (FWHM=H)
and shape parameters ( , m, ...)

( ) ( ) ( )x g x f x instrumental intrinsic profile

December 2002 Workshop on Magnetic Structures (Abingdon )

The profile of powder 
diffraction patterns

( )h h
h

c i iiy I T T b

Contains structural information: 
atom positions, magnetic moments, etch h sI I

( , )hi mx Contains micro-structural information: 
inst. resolution, defects, crystallite size, ...

i i bb b Background: noise, diffuse scattering, ...
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December 2002 Workshop on Magnetic Structures (Abingdon )

The Rietveld Method consist of refining a crystal 
(and/or magnetic) structure by minimising the 
weighted squared difference between the 
observed  and the calculated pattern  against the 
parameter vector:

22

1
( )

n

i i ci
i

w y y

2
1
i

iw
2
i : is the variance of the "observation" yi

December 2002 Workshop on Magnetic Structures (Abingdon )

Magnetic neutron scattering
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December 2002 Workshop on Magnetic Structures (Abingdon )

Diffraction pattern of incommensurate magnetic structures

Portion of reciprocal space 

Magnetic reflections:   indexed  by 
a set of propagation vectors {k}

h = H+k

Magnetic reflections
Nuclear reflections

H is a reciprocal vector of the crystallographic structure
k is one of the propagation vectors of the magnetic structure 

( k is reduced to the Brillouin zone)

December 2002 Workshop on Magnetic Structures (Abingdon )

Setting up of magnetic ordering in a Tb-Pd-Sn compound
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December 2002 Workshop on Magnetic Structures (Abingdon )

Magnetic structure of DyMn6Ge6

Conical structure with two propagation vectors

k=(0,0,0)

k= =(0,0, )=(0,0, 0.165)

Nuclear contribution in blue

December 2002 Workshop on Magnetic Structures (Abingdon )

Magnetic scattering of neutrons

kI=2 / uI

kF=2 / uF

Q= kF - kI

Dipolar interaction ( n , m): vector scattering amplitude 

2

1
2

Q m Q
a Q Q mM er f

Q
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December 2002 Workshop on Magnetic Structures (Abingdon )

Magnetic scattering of neutrons

2

1
2

Q m Q
a Q Q m Q mM er f p f

Q
p=0.2696 10-12 cm

3exp( )Q r Q r rmf i d

m

m

Q=Q e
Only the perpendicular
component of m to Q=2 h
contributes to scattering

December 2002 Workshop on Magnetic Structures (Abingdon )

Magnetic Bragg scattering

*
hhhhh MM*NNI

Intensity (non-polarised neutrons)

Magnetic interaction vector

hM e M(h) e M(h) e (e M(h))

kHh he
h

Scattering vector
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December 2002 Workshop on Magnetic Structures (Abingdon )

The magnetic structure factor:

s
jjsjs

n

j
jjj SiexpTfOp kk rtkHShhM 2

1

k
kS Sjs n n

n

C js

n
jjsn

s
n

n

j
jjj iexpjsCTfOp k

k rhShhM 2
1

December 2002 Workshop on Magnetic Structures (Abingdon )

Magnetic structure 
determination
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December 2002 Workshop on Magnetic Structures (Abingdon )

LaMnO3 : 50K and 150 K

December 2002 Workshop on Magnetic Structures (Abingdon )

Difference: 50K -150K

Magnetic reflections

Thermal expansion

LaMnO3 : magnetic scattering

Page 51 / 142



December 2002 Workshop on Magnetic Structures (Abingdon )

Propagation vector(s)
SuperCell

Symmetry Analysis
BasIreps

Magnetic structure solution
FullProf (Simulated Annealing)

Steps for Magnetic structure determination
from Neutron Powder Diffraction

Peak positions of 
magnetic reflections
Cell parameters

Propagation vector
Space Group
Atom positions

Integrated intensities

Coefficients of  the
atomic components
of basis functions

December 2002 Workshop on Magnetic Structures (Abingdon )

The Program SuperCell
(distributed within WinPLOTR)

Program: SuperCell (J.Rodríguez-Carvajal, LLB-December-1998)

• This program can be used to index superstructure reflections from
a powder diffraction pattern. 

• The first approach consist in searching the best "magnetic unit cell"
compatible with a set of observed SUPERSTRUCTURE lines in the
powder diffraction pattern.

• If the first approach fails to give a suitable solution, the superstructure 
may be incommensurate and a direct search for the propagation
vector and one of its harmonics have to be used.
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December 2002 Workshop on Magnetic Structures (Abingdon )

LaMnO3: Extraction of magnetic integrated intensities

Main magnetic reflections

Propagation vector k=(0,0,0) magnetic cell=crystal cell

December 2002 Workshop on Magnetic Structures (Abingdon )



December 2002 Workshop on Magnetic Structures (Abingdon )

BasIreps provides the basis functions (normal modes) of 
the irreducible representations 

of the wave-vector group Gk

k
k kRSm ljsljs iexp 2

jsC n
n

njs
k

k SS

jsn
kSBasis Functions (constant vectors):

December 2002 Workshop on Magnetic Structures (Abingdon )
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December 2002 Workshop on Magnetic Structures (Abingdon )

Format for FullProf
The constant “2” may be substituted by “1”

jsn
kS

k=(0,0,0), =1, n=1,2,3
=1, s=1, j=1,2,3,4

December 2002 Workshop on Magnetic Structures (Abingdon )

Example of magnetic structure in terms of basis 
functions of the irreducible representations of the 

propagation vector group (1)

jsC n
n

njs
k

k SS
For LaMnO3 this sum is reduced to three terms for each 
representation to be tested. Example, for representation =1,
dropping the superfluous indices k, s, :

1 1

1 2 3
S Sj n n

n , ,

C j

1 1 1 1 1 1
1 1 1 2 2 3 3

1 1 1 1 1 1
2 1 1 2 2 3 3

1 1 1

2 2 2

S S S S

S S S S

C C C

C C C

.............
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Example of magnetic structure in terms of basis 
functions of the irreducible representations of the 

propagation vector group (2)

1 1

1 2 3
S Sj n n

n , ,

C j

1 1 1 1 1 1
1 1 2 3 1 2 31 0 0 0 1 0 0 0 1S C , , C , , C , , C ,C ,C

1 1 1 1 1 1
2 1 2 3 1 2 31 0 0 0 1 0 0 0 1S C , , C , , C , , C , C ,C

1 1 1 1 1 1
3 1 2 3 1 2 31 0 0 0 1 0 0 0 1S C , , C , , C , , C ,C , C

1 1 1 1 1 1
4 1 2 3 1 2 31 0 0 0 1 0 0 0 1S C , , C , , C , , C , C , C
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Refinement of the magnetic structure: mode (0,Ay,0)
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Magnetic structure 
determination in complex 

systems: Simulating Annealing

December 2002 Workshop on Magnetic Structures (Abingdon )

Direct space methods:

•Look directly for coefficients of the expansion: 

or components of Sk and phases, explaining the 
experimental data

•Minimize a reliability factor with respect to the
“configuration vector”

1 2 3 4 5, , , , ,... mC C C C C C

jsC n
n

njs
k

k SS

2 2

1
,h h

N

m r robs calc
r

R c G G
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Behavior of parameters in 
Simulated Annealing runs
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Interpretation of the magnetic 
structure as the ground state 

(first ordered state) of a classical 
spin system

Classical magnetic energy:  E = - ij Jij Si Sj

First ordered state corresponds to the lowest 
eigenvalue of the Fourier matrix of the exchange 
interactions:

ij(k) = - m Jij(Rm).exp{-2 i k Rm}

December 2002 Workshop on Magnetic Structures (Abingdon )

Crystal structure of R2BaNiO5 (R: Pr, Nd, Tb, Dy…)

Ba

R

NiO6
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Neutron powder diffraction pattern of Dy2BaNiO5 at 1.5K
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Temperature (K)

The magnetic structure 
of all members of the
family R2BaNiO5 has
the propagation vector
k=(1/2,0,1/2)

•Ni ions are in a single Bravais 
sublattice at (000)(2a) site.

•The rare earth site (4j) 
generates two sublattices 
1: (1/2, 0, z) and 2: (-1/2, 0, -z)
in a primitive unit cell

Space group: Immm
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Ni2+

R3+

J1

J2

J3

J4

J5

a

c
b

J6
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R2BaNiO5: 1 Ni and 2 R ions in the primitive cell 
Exchange Fourier matrix 3 x 3, k=(X, Y, Z)

J11(k) = 2J1 cos 2 X
J12(k) = J21(k)* = J2(1+ exp{2 iX}) + 2J3 cos Y exp{ i(X+Z)}
J13(k) = J31(k)* = J2 (1+exp{2 iX}) exp{2 iZ}+2J3 cos k exp{ i(X+Z)}
J22(k) = J33(k) = 2J4 cos2 X
J23(k) = J32(k)* = 4J5 cos X cos Y exp{ iZ} + J6 exp{2 iZ}

If we neglect R-R interactions (J4=J5=J6=0) the eigenvalues are:
1(k)=0,
2,3(k)= 2J1 cos 2 X ± ( J1

2cos22 X + 4 J3
2{1+cos22 Y})1/2

The energy is independent of Z, so no 3D order is possible with 
isotropic exchange neglecting R-R interactions.
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Phase diagram for the topology 
of MFePO5

Fe2

Cu4

Cu2

Cu4

O4

O3

O1Fe1

O4 O4

O3
O2
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Fe3

P
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CuFePO5

a
b

c

O3Fe1

O3

Cu1

P

PFe1

O4

P

P
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Cu1

P

O2
P
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Similar magnetic structures
k=(0,0,0), two sites M and Fe
of four sublattices

GM+GFe = (+ - + - ; + - + -)

December 2002 Workshop on Magnetic Structures (Abingdon )

Sublattice magnetization
of three members of the
family MFePO5

Continuous curves: 
Adjusted by self-consistent 
Brillouin functions
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The program SIMBO
• Geometrical analysis of the exchange paths for 
ionic structures (input: cell parameters, space group, 
atom positions in the asymmetric unit, magnetic 
moments)
• Automatic generation of the formal expression of 
the Fourier matrix of the exchange integrals 
• Output file for ENERMAG

2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( )
2 1 3 1 3

2 ( )
2 3 1 3 1

2 ( ) 2 ( ) 2 ( ) 2 ( )
2 1 3 1 3

2 ( ) 2 ( ) 2 ( )
2 3 1 3 1

2 ( ) 2 ( )
1 3 1 3 4

0 0 (1 ) 0
0 0 0 (1 )

(1 ) 0 0 0
0 (1 ) 0 0

( )
0

i Y i Z i X Z i X Y i Y

i Y

i Y i Z i X Z i X

i Y i Y i Y

i Z i Z

J e J e J e J e J e
J e J J J J

J e J e J e J e J

J e J J J e J e
k

J e J J e J J 2 ( )

2 ( ) 2 ( ) 2 ( )
3 1 3 1 4

2 ( ) 2 ( ) 2 ( ) 2 ( )
1 3 1 3 4

2 ( ) 2 ( ) 2 ( )
3 1 3 1 4

(1 ) 0 0
(1 ) 0 0 0

0 0 0 (1 )
0 0 (1 ) 0

i X

i X Z i X Z i X

i X Y i X i Y i X

i Y i Y i X

e
J e J J e J J e

J e J J e J e J e
J e J J J e J e
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The program ENERMAG

ij(k) = - m Jij(Rm).exp{-2 i k Rm}

The program handles the diagonalization of the Fourier matrix 
solving the parametric equation:

(k, J) v(k, J)= (k, J) v(k, J)

• For a given set J ={Jij}, and no degeneracy, the lowest 
eigenvalue min(k0, J) occurs for a particular k0.
• The corresponding eigenvector vmin(k0, J) (that may be complex 
for incommensurate structures), describes the spin configuration
of the first ordered state 
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GM-GFe

GM+GFe FM+FFe

FM-FFe

J1

J3-20
-20

20

20
J2=-6.7

• J1 corresponds to the exchange between 
M2+ and Fe3+ nearest neighbours.

• J2 corresponds to the exchange 
between two M2+ cations (double 
oxygen bridge).

• J3 corresponds to the exchange between 
next nearest neighbours M2+ and Fe3+

cations (single oxygen bridge).

• J4 exchange between nearest 
neighbours Fe3+ cations (single 
oxygen bridge), taken here as J4=-1

The compounds of formula 
MFePO5 can be modelled with 
four exchange interactions:

December 2002 Workshop on Magnetic Structures (Abingdon )

GM+GFe
FM+FFe

FM-FFe GM-GFe

IncommensurateJ1

J3
-20

-20
20

20
J2 = -15
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Conclusions
• Magnetic Powder diffraction is the primary technique for

determining magnetic structures. 
• Sometimes diffraction alone is not sufficient to determine

without ambiguities a unique solution, even using single 
crystals.

• The Rietveld method extended for incommensurate 
structures has powered the powder method, providing 

not only the average structure but also the correlation 
lengths along different crystallographic directions.

• The analysis of exchange paths and the use of classical 
models for studying the magnetic ordering gives
a first estimation of the relative exchange interactions.
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THE PHASE PROBLEM OF MAGNETIC STRUCTURES WITH

NON SYMMETRY�RELATED PROPAGATION VECTORS

Juan Rodr��guez�Carvajal

Laboratoire L�eon Brillouin� C�E�A��C�N�R�S�� F�������Gif�sur�Yvette CEDEX� France

ABSTRACT

In these notes the limitations of neutron di�raction for determining the true

magnetic structure of some compounds are discussed� The analytical expres�

sions linking the measurable quantities to the model of a magnetic structure

do not contain a crucial parameter� the phase factor between two Fourier co�

e�cients not related by symmetry� The impossibility to obtain this parame�

ter by conventional methods precludes the access to the true spin arrangement

in the solid� The problem is �rst formulated analytically and illustrated by

some simple examples� secondly we shall present some real examples concerning

incommensurate�to�commensurate magnetic phase transitions and� �nally� some

conclusions are stated

�� Introduction

It is frequent the discovery of magnetic compounds that exhibit more than one prop�
agation vector� The typical case is the so called multi�k structures� observed in some
intermetallic compounds of high crystallographic symmetry �� Multi�k structures refers
to a magnetic structure in which more than one arm of the star of k participates into
the actual spin arrangement �� That is� the transition chanel� in terms of the Izyumov	s
school �� has more than one propagation vector� Symmetry relations between the Fourier
coe
cients of the magnetic structure� when all the propagation vectors belong to a single
star� can be obtained by group theory using the geometrical method of Bertaut � or the
algebraic straightforward expressions that have been given by Izyumov and collaborators
�� The practical determination of the transition chanel could be di
cult because the mag�
netic phase transition� and the concommitant domain formation� produces satellites �in a
single crystal di�raction pattern
 which are not distinguishable �in usual conditions
 from
those of a true multi�k structure� External �elds have to be applied to decide what is the
actual situation� More unusual is the case showing two propagation vectors not belonging
to the same star� However� a well known case is particularly common� the conical struc�
tures� Nagamiya � has given the conditions for two independent propagation vectors to
describe constant moment �CM
 magnetic structures� Nagamiya treated combinations of
propagation vectors of the form k� � ���H �or k� � ���H � k� � �q
 and k� � q at the
interior of the Brillouin Zone �k� � IBZ
� so that the relative orientation of the Fourier
coe
cients is �xed and the relative phase is irrelevant� In this paper we shall formulate
the problem in its full generality in relation with the practical structure determination�
For that a summary of the most important scattering formulas is �rst given�

�� Neutron Scattering Cross Sections and Magnetic Structure Factor

For polarized neutrons the total scattered intensity and the �nal polarisation of scat�
tered neutrons for the scattering vector h is given by the Blume	s equations �� The
scattered intensity is�

Ih � NhN
�

h
�NhfP �M�

�h
g�N�

h
fP �M�hg�M�h �M

�

�h
� iP � fM�h �M�

�h
g ��


�In this paper we use the terms spin and magnetic moment indistinctly� The term spin arrangement is

also used as synonymous of magnetic structure

�

Page 72 / 142



The equation de�ning the scattered polarisation is�

PsIh � PNhN
�
h
�NhM

�
�h �N�

h
M�h � iP� fM�hN

�
h
�M�

�hNhg�M�hfP �M�
�hg

� M
�
�hfP �M�hg � PfM�h �M

�
�hg� ifM�h �M

�
�hg ���

Where P and Ps are the incident and scattered neutron polarisation� Nh is the nuclear
structure factor and M�h is the magnetic interaction vector de�ned as�

M�h � e� �M�h�� e� �M�h�� �e �M�h��e �	�

M�h� is the magnetic structure factor� and e is the unit vector along the scattering
vector h
 The scattering vector is h�H�k where H is a reciprocal lattice vector of the
crystal structure and k the propagation vector corresponding to the current magnetic
re�ection
 For a pure magnetic re�ection Nh � �

The magnetic structures that we are considering have a distribution of magnetic mo

ments that can be expanded as a Fourier series�

mlj �
X

fkg

Skj expf���ikRlg ���

The sum is extended to all propagation vectors that could belong to di�erent stars

The Fourier coe�cients Skj are� in general� complex vectors
 The magnetic structure
factor can be written as�

M�H� k� � p
ncX

j��

fj�H� k�Skj expf��i�H� k�rjg ���

The sum is over all the magnetic atoms in the crystallographic cell
 The constant
p�� re���� is �
���� and allows the conversion of the Fourier components of magnetic
moments� given in Bohr magnetons ��B� to scattering lengths units of �����cm
 fj�H�k�
is the magnetic form factor and rj is the vector position of atom j
 In the above expression
the atoms have been considered at rest
 If thermal motion is considered and if symmetry
relations are established for coupling the di�erent Fourier components� we obtain the
general expression of the magnetic structure factor�

M�h� � p
nX

j��

Ojfj�h�Tj�iso�
X

s

MjsSkjTjs expf��i��H� k�fS j tgsrj � �kjs�g ���

The sum over j concerns the atoms of the magnetic asymmetric unit for the wavevector
k �the Fourier component with index k contributes only to the k
satellite�
 So that j labels
di�erent sites
 The anisotropic temperature factor� Tjs� is not generally necessary to be
used in magnetic re�nements�Tjs � ��
 The sum over s concerns the di�erent symmetry
operators of the crystal space group that belong to the wave vector group
 The matrix
Mjs transform the components of the Fourier term Skj � Skj� of the starting atom j� to
that numbered as js in the orbit of j
 The phase factor �kjs has two components�

�kjs � �kj � �kjs ���

�kj is a phase factor which is not determined by symmetry
 It is a re�nable parameter
and it is signi�cant only for an independent set of magnetic atoms �one orbit� which
respect to another one
 �kjs is a phase factor determined by symmetry
 The Fourier
component k of the magnetic moment of atom j�� Skj � is transformed to

Skjs �MjsSkj expf���i�kjsg ���

�
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The matrices Mjs and phases �kjs can be deduced from the atomic basis functions�
obtained by applying projection operator formulas� corresponding to the active represen�
tation�s� participating in the de�nition of the actual magnetic structure� The sign of �kjs
changes for �k�

In the general case Skj is a complex vector with six components� These six components
per magnetic orbit constitute the parameters that have to be re�ned from the di�raction
data� Symmetry reduces the number of free parameters per orbit to be re�ned� An alter�
native expression of the magnetic structure factor can be written as a function of mixing
coe�cients �parameters to be re�ned� and the atomic components of the basis functions
of the relevant representation�s� �� In the case of a commensurate magnetic structure one
can calculate the magnetic structure factor in the magnetic unit cell� In such a case Skj
are real vectors corresponding to the magnetic moment of the atom j� the matrices Mjs

are real and all phases verify �kjs � 	� The crystallographic magnetic groups theory can
be fully applied in such a case ��

If the magnetic structure represents an helical order the Fourier coe
cients are of the
form�

Skj �
�



�m�juj � im�jvj� expf�
�i�kjg ���

where uj and vj are orthogonal unit vectors� If m�j � m�j � m� the magnetic structure
for the sublattice j corresponds to a classical helix �or spiral� of cylindrical envelope� All
j atoms have a magnetic moment equal to m�� If m�j �� m�j the helix has an elliptical
envelope and the moments have values between min�m�j�m�j� and max�m�j�m�j�� If
m�j � 	 the magnetic structure corresponds to a modulated sinusoid of amplitude m�j�

�� The phase between independent k�vectors

When more than two independent propagation vectors appears in the di�raction pat�
tern� the analysis of the data is unable to give a unique answer to the problem of the
magnetic structure� In general is not possible to discriminate between the presence of
two magnetic phases co�existing in the crystal and a coherent superposition of these two
magnetic structures� We shall be concerned only with the latter picture� Even from this
hypothesis it is not possible to get uniqueness� This can be seen adding a phase factor�
depending only on k� to the Fourier series equation ����

mlj �
X

fkg

Skj expf�
�i�kRl ��k�g ��	�

The magnetic structure factor �equation ���� transforms to�

M�H� k� � p expf
�i�kg
ncX

j��

fj�H� k�Skj expf
�i�H� k�rjg ����

The phase �k appears in the expresion of the magnetic structure factor as a multi�
plicative phase factor that does not change the intensity of equation ��� or the scattered
polarisation of �
� for a pure magnetic re�ection� The phases �k are not accesible experi�
mentally� so the real magnetic structure cannot be obtained from di�raction measurements
alone�

The most simple case in which the phase plays an important role is the sinusoidally
modulated structure in a simple Bravais lattice �a single magnetic atom per primitive
cell� when the propagation vector takes special values� The Fourier coe
cient and the
corresponding magnetic moment at cell l are�

Sk �
�



mou expf�
�i�kg ml � mou cos 
��kRl ��k�

�
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The phase �k plays no role when k � IBZ and has no rational components� A change in
the phase has the same e�ect as a change of the origin in the whole crystal� All magnetic
moments between �mou and mou are realized somewhere in the lattice� However� if
k � ���H and �k � ��� the magnetic structure is a CM	structure with the sequence
f

� �

� � ���g� This structure is indistinguishable of the sinusoidally modulated
structure obtained with an arbitrary value of �k� If all the components of k are rational
the selection of the phase can have important consequences for the spin arrangement� This
is the simplest case in which the physical picture depends on the election of a parameter
��k� that is not accessible by di�raction methods� Physical considerations lead us to prefer
one model among several other� For instance� CM	structures are normally expected at
vey low temperatures when magnetic atoms have an intrinsic magnetic moment� This
condition reduces the number of ways to combine non symmetry	related propagation
vectors to several speci
c cases that have been discussed by Nagamiya �� Let us discuss
some unusual simple cases that will be illustrated with real examples�

�� Fluctuating magnetic structures

The magnetic structures with more than one pair �k�	k� of propagation vectors not
satisfying the Nagamiya�s conditions are� as is the sinusoidally modulated magnetic struc	
ture� general non	constant moment structures� We shall call these spin con
gurations�
�uctuating structures y�

Fluctuating Structures with irrelevant phase�factors

This case corresponds to the combination of k � ���H and q � IBZ vectors� To
simplify the notation we shall treat only one of the atoms of a particular Wycko� site
and we drop the reference index� The propagation vector q describes a helical con
gura	
tion� and k corresponds to a uniaxial antiferromagnetic con
guration� so that the Fourier
coe�cients of the atom are�

Sq �
�

�
m��u
 iv� expf���i�qg Sk � m�n

where� as above� u and v are orthogonal unit vectors de
ning the plane of the spiral of
axis w � u� v� and n is a unit vector de
ning the axis of the spin con
guration related
to propagation vector k � ���H� The director cosines of n with respect to the axes
� u�v�w� are �n�� n�� n��� The magnetic moment distribution of a coherent superposition
of the two types of Fourier coe�cients is given by the following formula �notice that
�l � ���qRl 
�q� and lh � HRl��

ml � m� cos ���qRl 
�q�u
m� sin ���qRl 
�q�v
m� expf��iHRlgn

� m� cos�lu 
m� sin �lv
m�����
lhn

� �m� cos�l 
 ����lhm�n��u
 �m� sin �l 
 ����lhm�n��v
 ����lhm�n�w����

The modulus of the magnetic moment can be calculated by taking the square of
equation �����

m�

l
� m�

�

m�

�

 �m�m�����

lh�n� cos �l 
 n� sin�l�

� m�

�

m�

�

 �m�m�����

lh cos�l ����

If n is parallel to w the moment is constant and we obtain an antiferromagnetic con	
ical structure �if H� �� we obtain the classical ferromagnetic conical structure�� For the

yThe term �uctuating has no dynamic content in the present context

�
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general orientation of n �non vanishing components in the u�v plane� the modulus of
this distribution is not constant� The amplitude varies between the two extreme valuesq
m�

� �m�

� � �m�m� sin � and
q
m�

� �m�

� � �m�m� sin �� being � the angle of n with w�

A real system in which this behaviour seems to take place is the compound CsMnF�
��

Another interesting system is TbMn�Ge� � z� The second wave vector� in this case� is k � 	
and the associated magnetic moment lies within the u�v plane de
ning the spiral plane
of the 
rst propagation vector� This gives rise to a distorted spiral structure�
In all these cases� the selection of the phase factor �q is completely irrelevant� That is�
the physical picture obtained after using the equation ��	� is not changed by varying the
phase factor�

Fluctuating Structures Approaching CM�structures

We shall now consider the case of two pairs of propagation vectors �k��k� and �q��q�
verifying k�q � IBZ� Such a magnetic structure has as Fourier coe
cients�

Sk �
�

�
�Rk � iIk� Sq �

�

�
�Rq � iIq� expf�i�g

Using the notation �kl � ��kRl the magnetic moment distribution is given by�

ml � Rk cos�kl � Ik sin�kl �Rq cos��ql ��� � Iq sin��ql ��� ����

This moment distribution is generally a non�CM structure and the change of the phase
factor � can modify the physical picture if both vectors k and q have rational components�
This last case is interesting when the components are simple integer fractions because one
can treat the problem using the magnetic cell and search for a magnetic space group that

x automatically the phase� The 
nding of such a commensurate magnetic structure does
not eliminate the problem of uniqueness of the magnetic moment distribution compatible
with the experimental results� However� the possibility to have a simple spin arrangement
with magnetic moments of atoms approaching the expected intrinsic moment is more sat�
isfying form the physical point of view�

If a CM�structure can be found re
ning the magnetic structure using the magnetic
cell� a particular set of equations ���� can be established for atoms inside the magnetic
cell and the phase factor � can be obtained solving these equations� Of course� to get a
set of compatible equations the vectors R and I cannot be arbitrary� An example can be
readily shown if we consider only real Fourier coe
cients in equation ����� We can write
for the ��component�

R�

q cos��ql ��� � m�

l
� R�

k cos �kl �� � � cos��
m�

l
� R�

k cos �kl

R�
q

� �ql

The above equations must be veri
ed for the set of points l inside the magnetic cell
and for all components simultaneously� This indicates that only very special relation�
ships between Fourier coe
cients must be veri
ed to have a single � to connect the two
descriptions�

An interesting example is the magnetic ordering of TbGe�
�� This compound crys�

tallizes in the space group Cmcm� �a � ��	�� b � �	��� c � ���� �A�� with Tb�atoms in
positions ��c� � �	� y� ����� Below the N�eel temperature �TN � �	K� the magnetic order
is characterized by two independent propagations vectors k � �kx� 	� 	� and q � �qx� 	� qz�
with kx � qx � �

�
and qz �

�

�
� Below Tic � ��K the propagation vectors lock�in

to commensurate values� Both vectors verify k�q � IBZ with a two�arm star for k

zSee also the article� Magnetic Spiral Structures in the Hexagonal RMn�Ge� Compounds� by P�

Schobinger�Papamantellos� J� Rodr��guez�Carvajal� G� Andr�e and K�H�J� Buschow� in these proceedings

�
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�Gk � C�cm� and a four�arm star for q �Gq � Cc�� The re�nement of the magnetic
structure at low temperature in the magnetic unit cell using powder di�raction data
provides a quasi�collinear structure with two types of Tb�atoms having similar moments
�m�Tb�� � 	���B�m�Tb�� � 
�
�B�� The re�nement using real Fourier coe�cients for all
propagation vectors �including the second pair of the star of q� gave similar agreement� A
systematic search of the phase factors using a computer program �� allows the �nding of
a consistent set of phases that produces �uctuations of m�Tb� between 	�
�B and ����B�
The spin arrangement is similar to that observed in the magnetic cell re�nement� For the
incommensurate phase we suppose that the spin arrangement does not change dramati�
cally� so that the phases found for the lock�in phase are still valid�
Symmetry analysis can be applied to each wave vector separately� There is no interfer�
ence terms between re�ections belonging to di�erent sets of satellites� so that we can
proceed as if two magnetic di�erent phases co�exist and only at the end of the analysis
we can think in the coherent superposition of both phases� The computer program �� we
have written can be used as a general tool for searching phase factors between Fourier
coe�cients belonging to non�symmetry related wave vectors giving the lowest �uctuation
between mmin and mmax�

�� Conclusions

The physical origin of the stabilization of two propagation vectors belonging to di�er�
ent stars is not yet clear in the absence of external �elds� In Bravais lattices we have to
think in the action of higher order terms �biquadratic� in the spin hamiltonian to stabilize
two propagation vectors� In complex crystal structures the nature of the ground state is
not known in the general case and� probably� it is not necessary to invoke higher order
terms to stabilize two non�related propagation vectors� Only the case of conical structures
�k � � and q � IBZ� has been studied with some detail �� for the spinel lattice� We can
conclude that only a physical model based in the microscopic spin�spin interactions is able
to �x completely the phases appearing in the Fourier expansion of the magnetic moment
distribution in the solid� Experimentally� other techniques �like M�ossbauer spectroscopy�
neutron or X�ray topography� ��SR� etc���� may help� in some cases� to distinguish between
several models� Unfortunately there is no general method to overcome this phase problem�
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MAGNETIC STRUCTURE DETERMINATION FROM POWDER 
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In this paper the techniques for magnetic structure determination from neutron powder diffraction
(NPD) data as implemented in the program FullProf are reviewed. In the general case the magnetic
moment of an atom in the crystal is given as a Fourier series. The Fourier coefficients are complex
vectors constituting the “unknowns” to be determined. These vectors define the magnetic structure 
and they correspond to the “atom positions” of an unknown crystal structure. The use of group 
theoretical methods for the symmetry analysis is needed to find the smallest set of free parameters. In
general the Fourier coefficients are linear combinations of the basis functions of the irreducible
representations of the wave vector group. The coefficients of the linear combinations can be
determined by the simulated annealing (SA) technique comparing the calculated versus the observed
magnetic intensities. The SA method has been improved and extended to the case of incommensurate
magnetic structures within FullProf.

1 Introduction

In the last years the Rietveld Method (RM) has allowed great progress in the analysis
of powder diffraction data. The RM is not designed for structure determination, it is just a 
least squares optimisation of an initial model of the crystal and magnetic structure
supposed to describe approximately the experimental powder diffraction pattern. It is
important to start with a “good” initial model in order to succeed the refinement
procedure. In this paper we shall be concerned with the problem of getting the initial
model of a magnetic structure in order to refine it from powder diffraction data. We shall
describe the basis of the technique and the way the magnetic structure determination is
implemented in the program FullProf.

2 The formalism of propagation vectors for describing magnetic structures. 

The reader interested in the basis of the elastic magnetic scattering in relation with
magnetic structures may consult the references [1, 2]. Here we will follow the reference
[3] but using a different convention for the sign of phases and a somewhat different
notation. The intensity of a Bragg reflection (we neglect here the geometrical factors) for 
non polarised neutrons is given by:

*
hhhhh MM*NNI  (1) 

where Nh is the nuclear structure factor and the magnetic interaction vector M h is 
defined as:

hMeehMehMeM h  (2) 
M(h) is the magnetic structure factor, and e is the unit vector along the scattering vector
h=H+k, where H is a reciprocal lattice vector of the crystal structure and k the
propagation vector corresponding to the current magnetic reflection. The magnetic
structures that we are considering have a distribution of magnetic moments that can be 
expanded as a Fourier series:
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k
k kRSm ljlj iexp 2  (3) 

The sum is extended to all propagation vectors that could belong to different stars.
The Fourier coefficients Skj are, in general, complex vectors. The magnetic structure 
factor corresponding to such a magnetic structure can be written as: 

1
2k kM h h S H k t r

n
iso

j j j js j j jss
j s

p O f T M exp i S (4)

The sum over j concerns the atoms of the magnetic asymmetric unit for the wave
vector k. We are concerned only with magnetic atoms within the crystallographic unit
cell, so that j label different sites: fj(h) is the magnetic form factor and rj is the vector 
position of atom j. The constant p = re /2 = 0.2695 allows the conversion of the Fourier
components of magnetic moments, given in Bohr magnetons to scattering lengths units of 
10-12 cm. The sum over s concerns the different symmetry operators of the crystal space 
group that belong to the wave vector group Gk (subgroup of the crystallographic space 
group formed by the operators leaving invariant the propagation vector). The matrix Mjs

transform the components of the Fourier term Skj of the starting atom j to that numbered
as js in the orbit of j. The phase factor kjs has two components:

jsjjs kkk (5)

 kj is a phase factor that is not determined by symmetry. It is a free parameter and it 
is significant only for an independent set of magnetic atoms (one orbit) which respect to
another one. kjs is a phase factor determined by symmetry. The Fourier component Skj of 
the representative starting atom j is transformed to

jsjjsjs iexpM kkk SS 2  (6) 

The matrices Mjs and phases kjs can be deduced from the atomic basis functions,
obtained by applying projection operator formulas, corresponding to the active
representation(s) participating in the definition of the actual magnetic structure. The sign
of kjs changes for -k. In the general case Skj is a complex vector with six components.
These six components per magnetic orbit constitute the parameters that have to be refined
from the diffraction data. Symmetry reduces the number of free parameters to be refined.
In some cases, transformations like expression (6) cannot be obtained from the basis
functions of the irreducible representations of the propagation vector group; for those
cases an alternative expression of the magnetic structure factor can be written as a
function of "mixing coefficients" (parameters to be refined) and the atomic components of
the basis functions of the relevant representation [4]. The expression of the Fourier
coefficients in terms of the atomic components of the basis functions is given as:

k
kS Sjs jm m

m

C js  (7) 

The formula of the magnetic structure factor is then transformed to:

1
2k

kM h h S h r
n

iso
j j j jm m s j j

j m s

p O f T C js exp i (8)

In the above expressions,  labels the active irreducible representation, , of the of 
the propagation vector group Gk, labels the component corresponding to the dimension
of the representation , m is an index running between one and the number of times the
representation  is contained in the global magnetic representation M. Finally jsn

kS
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are constant vectors obtained by the application of the projection operator formula to unit
vectors along the directions of the unit cell basis. An addition sum over  is sometimes
necessary when more than one irreducible representation is involved in the magnetic
phase transition. See reference [4] for details. 

If the magnetic structure has several propagation vectors k, it is not possible in
general to determine unambiguously the spin configuration, because the phase between
the different Fourier components cannot be determined. Fortunately, nature often selects
simple solutions and many magnetic structures have a single propagation vector, or 
display some symmetry constraints that reduce the complexity of the periodic magnetic
structure given by Eq.3. Solving a magnetic structure consist of finding a set of
propagation vectors indexing the whole set of magnetic reflections and a set of “mixing
coefficients” (or, equivalently, the components of the Fourier coefficients and phases)
providing a good agreement between the intensities of the observed and calculated (using 
the above expressions) magnetic reflections. In some cases the search for a good starting
model may be formulated in terms of other set of parameters. For instance, in cases of
conical/helical structures involving magnetic atoms with a common cone-axis, the
magnetic structure factor can be written in terms of the module of the magnetic moments,
the angle between the moments and the cone-axis, and phases between the different
atoms. This description in real space gives a more intuitive picture of the magnetic
structure.

3 The search for the propagation vector and symmetry analysis. 

The first problem to be solved before attempting the resolution of the magnetic structure
is the determination of the propagation vector(s), i.e. its “periodicity”. To find k is 
necessary to index the magnetic reflections appearing below the ordering temperature.
With a single crystal the task is somewhat easy, but is tedious for a powder because only 
the module of reciprocal vectors is available. We have developed a method for searching
the propagation vector of a commensurate or incommensurate structure implemented in
the program SuperCell [5]. Once an approximate propagation vector is obtained the
symmetry analysis according to references [4] can be started. The program BasIreps may
be used for obtaining the vectors jsn

kS  in Eq.7 for each crystallographic site occupied 
by magnetic atoms.

To solve the magnetic structure, the integrated intensities of the magnetic reflections
may be obtained using the method of “profile matching”, simultaneously with the
Rietveld method, implemented in the program FullProf [3, 5]. This mixed procedure has 
to be used with caution: no structural parameter of the known phase must be refined. This
is the usual case of neutron diffraction patterns of magnetically ordered compounds,
where the nuclear reflections coexist with the magnetic reflections. For illustration
purposes we show in Fig.1 the plot of the observed versus calculated pattern of a portion
of the simulated diffraction pattern of DyMn6Ge6 at low temperature after performing the 
extraction procedure. The magnetic structure has two propagation vectors k1=(0,0,0) and 
k2=(0,0, ), with 0.165 with respect to the reciprocal lattice of the crystallographic unit 
cell. All satellite reflections are indexed with h=H k2. There are also contributions to the 
same positions of the nuclear reflections, h=H (k1=0), accounting for a ferromagnetic
component. The spin arrangement corresponds to a double cone magnetic structure.
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Figure 1. Profile matching refinement of the DyMn6Ge6 neutron diffraction pattern at low temperature. The
profile of the calculated nuclear contribution (upper reflection marks) is also displayed as a thick continuous 
line. The second set of reflection markers corresponds to the magnetic peaks. Markers at the same positions as 
the nuclear (first set) reflections correspond to k1=(0,0,0), the extra markers are the position of the satellites 
corresponding to k2=(0,0, ).

4 The resolution of magnetic structures from powder data: the simulated 
annealing method

We shall describe the Simulated Annealing (SA) technique to solve the magnetic structure
using clusters of overlapped reflections as single observations. The merging of clusters is
automatically performed using the option “profile matching” of the program FullProf [5].
The SA method described below is also valid for the analysis of single crystal data where, 
except for domains, there is no reflection overlap. 

The SA algorithm is a general-purpose optimisation technique for large combinatorial
problems introduced in 1983 by Kirpatrick, Gelatt and Vecchi [6]. The function, E( ) to 
be optimised with respect to the configuration described by the vector state  is called the
“cost” function. In the context of magnetic structures the configuration  is the list of all 
the components of the Fourier coefficients of magnetic atoms existing in the chemical unit
cell and this list is obtained from the independent parameters ß that are those really 
participating in the annealing procedure. The most general case of parameters constituting
the vector ß corresponds to the set of mixing coefficients of the linear combination given
by Eq.8, but, as stated above, another set of parameters in real space (moment amplitudes,
angles, …) may also be used. First we select an initial configuration, old, then each step 
of SA method consists of a slight change of the old configuration to a new one, new. If 

=E( new)-E( old)  0 the new configuration serves as old configuration for the next step.
If  is positive, new is accepted as current configuration only with certain probability that 
depends on the so-called “temperature”, T, parameter and . The probability, given by the
Boltzman factor exp(- ), that a worse configuration is accepted is slowly decreased on 
“cooling”.
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For magnetic structure determination, the cost function can be chosen as the
conventional crystallographic R-factor, or some function related to it. In the new version
of FullProf [5] the following expression is used:

E[ (ß)]= R[ (ß)] = c k|Iobs(k)- S j(k)Icalc(j)[ (ß)]|
The sum over k is extended for all the “observations” (clusters of overlapped reflections),
and that over j(k) for all the reflections contributing to the observation k. The constant
factor c is given by: 1/c=IT = kIobs(k). S is a scale factor.
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Figure 2. Evolution of the cost function for accepted configuration in
the resolution of the magnetic structure of DyMn6Ge6 by simulated
annealing as a function of the sequential order of temperatures. For a
single temperature on can see the dispersion of the R-factor,
corresponding to the different configurations, that is reducing as
temperature decreases. 

To start solving a 
magnetic structure with the
SA method one has to
create the intensity file 
where the indices of each
reflection and its intensity
are written. This is 
performed automatically
within FullProf by using
profile matching modes
and the option that outputs
the overlapped reflection
clusters in a file that can be
used as input for the SA
method. The usual PCR
file [5] of FullProf is then
used for controlling the
algorithm. A pseudo-code 
describing the SA
procedure was given in
reference [3]. The SA

parameters are those defining the limits of loops in the algorithm described in [3]: T_ini = 
initial temperature, N = maximum number of temperatures, NcyclM = number of 
Montecarlo cycles per temperature, Accept=Minimum percentage of accepted 
configurations; and the “cooling” schedule T(t+1)=qT(t) (q<1, q  0.9). The user may
select either a fixed step for each variable (that are defined within a simulation box of 
hard or periodic limits) or a variable step (Corana’s algorithm) that is dynamically
adapted in order to have an adequate rate of accepted configurations for each temperature
[7].

The starting point may be an arbitrary configuration or a given one. At variance with
least-squares optimisation methods, the SA algorithm never diverges. Always the
algorithm proceeds roughly in two steps. The first step, at high temperatures, the
algorithm is searching for the “basin of attraction” of the minimum in the configuration
space, this part constitutes the “magnetic structure determination”. Once the region is 
attained, a more or less sharp drop in the average “energy” (R-factor) occurs. Then, the 
second step starts when the average R-factor is low enough, the algorithm enters in its
phase of “refinement”, where the good configuration has already been found, and 
performs a progressive improvement of the solution. This is clearly seen in the behaviour
of the cost function versus the ordinal number of the temperature parameter in Fig.2,
illustrating the case of DyMn6Ge6. In figure 3 it is shown the behavior of the amplitude of 
the magnetic moments of Dy and Mn atoms. The plot shows that there are a large 
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dispersion at the stage of “magnetic structure solution” (starting phase of the algorithm)
and a progress toward definite values within the “refinement” region.

2

4

6

8

10

0 10 20 30 40 50 60 70

Amplitude of the magnetic
moments of Dy and Mn atoms

M
ag

ne
tic

 M
om

en
t(

B
)

Sequence Order

Figure 3. Evolution of the magnetic moment of Dy and Mn versus the 
number of sequential temperature. Similar plots can be observed for
other magnetic parameters (cone angles and magnetic phase angles).

For a given set of constraints the final average R–factor should be reasonably good
(below 20%) except for contradictory or false constraints. False minima are encountered

when the number of free
parameters is of the same
order of magnitude than
the number of
observations and/or the
observations are of bad
quality (very weak
magnetic reflections and 
large errors associated to 
them). Ambiguities can
be easily discovered.
When the intensity data
do not depend on a
parameter, this shows an
anomalous behaviour: in
a plot similar to that of
Fig. 3, large oscillations
persist even at low
temperature.

In conclusion, we 
have shown that the SA algorithm can be used for the magnetic structure determination
even in the case of complex incommensurate magnetic structures. The method is
straightforward and is fully implemented in the program FullProf that is publicly
available [5]. 
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1 Introduction

The determination of magnetic structures is a special area of condensed mat-
ter research. While being fundamental to the understanding of electronic
structures and properties, it remains a subject that is treated with difficulty
and is full of incorrect solutions. This article is based around two goals:

• The explanation of the different possible types of magnetic structure.

• The demonstration of how symmetry leads to their proper description,
and can aid their solution.

In content, the first part of this article is based on the practicalities of
what an experimenter should know in order to understand and describe a
magnetic structure. In the second part, symmetry arguments will be shown
to reduce the otherwise arduous task of determining a magnetic structure,
to the investigation of a handful of possible structures.

∗email: a.s.wills@ucl.ac.uk
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Figure 1: Some different types of magnetic structures.
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2 Basic crystallography

2.1 Nuclear crystal structures

A nuclear crystal structure can be described in terms of lattice translations of
a unit cell. If the unit cell contains only one atom it is said to be a primitive
cell; if it contains several atoms it is said to be a non-primitive lattice. The
atomic positions of an arbitrary atom in the lth unit cell is given by

Rtj = t + rj (1)

where

t = n1a + n2b + n3c (2)

and

rj = xa + yb + zc (3)

Here a, b, c are unit vectors of the nuclear cell defined according to the
International Tables; n1, n2, n3 are integers and x, y, z have values that are
less than unity.

2.2 Reciprocal lattice

In crystallography a useful and much used construction is the ‘reciprocal
lattice’- this can be defined as:

a∗ =
2π

v0
b ∧ c (4)

b∗ =
2π

v0

c ∧ a (5)

c∗ =
2π

v0
a ∧ b (6)

Where v0 is the volume of the unit cell, v0 = a · (b× c). A reciprocal lattice
vector τ connects the origin to a given node in reciprocal space

τ = ha∗ + kb∗ + lc∗ (7)

when h, k, and l are integer numbers.

3
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3 Propagation vector and its star

3.1 Description of moments

Before we detail what a magnetic structure is, we must begin with a descrip-
tion of the magnetic moment itself. There are of course a variety of ways
and coordinate systems that can be used to describe a magnetic moment,
e.g. Cartesian, polar or crystallographic coordinates. While it is of course
preferable to describe the particular properties of the final structure in the
most useful system (e.g. a rotation of a moment away from an axis is best
described in terms of an angle), in the general case it is easiest to describe
a moment in terms of projections along the crystallographic axes. Rather
than say that a moment is of unit length and makes an angle of 0 ◦ with
the c-axis, we will simply say that the projection of the moments along the
crystallographic axes can be described by a ‘basis vector’ Ψ which has com-
ponents along these axes. In this case, the basis vector is Ψ = (001). In fact,
when the basis vector is real, it simply corresponds to the projection of the
moment along the different crystallographic axes, and so :

mj = Ψj (8)

Often, however, the projections of the moment are described not just by one
basis vector, but by the summation of several (see Section 5) :

Ψj =
∑
ν

Cνψν (9)

In this work we will use ψν to represent the ν components of Ψj for a
given propagation vector k. The values of Ψj will be taken as being those
of atom j in the zeroth unit cell (i.e. the crystallographic cell) .

3.2 Formalism of a propagation vector k

Magnetic structures can be described by the periodic repetition of a magnetic
unit cell, just as crystal structures are described by translation of a nuclear
unit cell. For convenience, rather than building a complete magnetic unit
cell (which could contain thousands of magnetic atoms) we use a description
based on the nuclear unit cell and a ‘propagation vector’, k, that describes
the relation between moment orientations of equivalent magnetic atoms in
different nuclear unit cells. This provides a simple and a general formalism
for the description of a magnetic structure.

4
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We illustrate this for the moment distribution mj associated with the
atom j of a magnetic structure. This can be Fourier expanded, whatever the
nature of the ordering, according to:

mj =
∑
k

Ψk
j e

−2πik·t (10)

That the summation is made over several wave vectors that are confined to
the first Brillouin zone of the Bravais lattice of the nuclear cell is explained
in detail in Section 3.4. If only one wave vector is involved, this simplifies to:

mj = Ψk
j e

−2πik·t (11)

This equation describes the translation properties in real space of the
basis vector Ψj, which at present we can think of as the projections of the
magnetic moment along the a, b, c crystallographic axes with relation to
the atomic site in the zeroth (nuclear) cell. At another atomic site (of the
same type) in the crystal that is related by a lattice translation vector t, the
projections of the moment on the 3 crystallographic axes are related to those
in the nuclear cell by Equation 11. An example of this is shown in Figure 2.
Here the magnetic unit cell is 2 times larger along the c-axis than the nuclear
unit cell and the propagation vector is k=00 1

2
. The moment in the zeroth

cell is described by the basis vector Ψj=(0 1 0), that is to say the moment is
pointing along the b-axis. When we move to the cell above (i.e. to a site that
is related by the translation vector1 t=(0 0 1) the moment is rotated by 180 ◦

and now points along the (0 -1 0) direction. As we move up the structure we
find that the moment turns by 180 ◦ for each nuclear cell translation until
at t=(0 0 2) it is the same as in the zeroth cell. In this way, if we know the
basis vector that describes the moment orientation in the zeroth cell and the
propagation vector, we can use Equation 11 to calculate the basis vector and
moment orientation, of any equivalent atom in the crystal structure.

3.3 Stability of magnetic structures

When the sample is cooled and condenses into a state with magnetic order,
the magnetic structure that results must leave the Hamiltonian invariant to
lattice translations, i.e. the magnetic Hamiltonian of different unit cells must
be the same. The minimisation in the magnetic energy of the system results
in three possible situations:

1Remember that a lattice translation vector in real space is given the symbol t, while
one in reciprocal space has the symbol τ .

5
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Figure 2: Description of translational properties with the propagation vector
k. In this example the basis vector for the moment in the zeroth cell is Ψ
=(0 1 0), k=00 1

2
and each plane corresponds to a lattice translation of t=001

• one k vector is more favourable than the others and the system chooses
a ground state configuration that is described by:

mj = Ψk
j e

−2πik·t (12)

This is the most common situation and most of this work will be de-
voted to single k structures.

• several k vectors of the star are involved. The ground state is then
described by:

mj =
∑
k

Ψk
j e

−2πik·t (13)

This is termed a ‘multi-k’ configuration.

• One k vector and its harmonics are involved, e.g. k
2
. The ground state

is then described by:

mj =
∑

harmonics of k
Ψk

j e
−2πik·t (14)
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If the transition involves several arms of the star of propagation vector k
and their harmonic terms, we have the possibility of crossed harmonics
that are sometimes referred to as intermodulations.

3.4 Star of the propagation vector -k

We will now consider the effects of the space group, G0, of our crystal struc-
ture on the propagation vector k. For ease we will separate each symmetry
element g = {h, τ} into rotation and translation parts, these are h and τ
respectively. The action of the rotation part h on the reciprocal vector k,
results either in leaving k unchanged, or the generation of an unequivalent
wave vector k′ :

k′ = kh (15)

where,

k′ = k or k′ �= k (16)

In the general case, a number of distinct propagation vectors will result
from the operations of the rotational elements of the space group G0 on the
propagation vector k. The symmetry elements of G0 may then be classed into
cosets, where the first coset Gk is made up of elements that do not change
the vector k, the second coset (given the symbol g2) transform it into the
unequivalent vector k2, and so on. If gL represents the elements of the coset
L, we can write this relation as

kL = kgL (17)

In this way, we find that the rotation elements of the space group G0

gives rise to a set of unequivalent wave vectors. These we describe as being
the ‘star’ of the propagation vector k;[1] each wave vector is an ‘arm’ of the
star (and example of a star is given in Figure 3). The number of arms, lk,
that make up a star is of course equal to the number of cosets and cannot
exceed the number of elements in G0.

If Crystal Electric Field (CEF) or higher-order exchange interactions (e.g.
quadrupolar-type) are appropriate, several arms of a star can be involved in
the structure, it is then said to be a ‘multi-k’ structure (this notion will be
expanded upon in Section 4). More often, the magnetic structure is the result
of only the first k vector. For this reason, we will now focus on the rotation
elements that leave k invariant.
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Figure 3: The star of the propagation vector k=(x 0 0) in the tetragonal
space group I4/mmm (point group D17

4h). The arms of the star are: k1=(x 0
0), k2=(0 -x 0), k3=(-x 0 0) and k4=(0 x 0)

3.5 The little group of the propagation vector -k

The symmetry elements of G0 that leave the k vector invariant are of par-
ticular importance in the determination of a magnetic structure. For this
reason the elements of the first coset are given a special name- they make up
the ‘little group’ Gk, and it is on these that all the Group Theory arguments
that follow in Sections 7 and 8 are based. The little group will be discussed
in greater detail in Section 8.

4 Multi-domain and multi-k structures

While the majority of magnetic structures that we come across involve only a
single propagation vector k, it is useful to see how the different types of prop-
agation vectors can take part in a magnetic structure. Experimentally, these
situations are revealed by the appearance of more than a single reflection
around a reciprocal lattice point.

4.1 Multi-domain structures

The first magnetic neutron diffraction pattern collected was that of MnO,
published by Shull and Smart[2]. The period of the magnetic unit cell was
found to be doubled along each of the cubic axes of the FCC structure , and
so its volume is 8 times that of the crystallographic cell.

We now know that the structure in fact involves domains that order
according to the 4 different arms of the propagation vector. The four k
vectors involved are:

k1 =
(

1

2
,
1

2
,
1

2

)
k2 =

(
1̄

2
,
1

2
,
1

2

)
k3 =

(
1

2
,
1̄

2
,
1

2

)
k4 =

(
1

2
,
1

2
,
1̄

2

)
(18)
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Figure 4: a) The magnetic motif of MnO made up of ferromagnetic planes
of moments that are coupled antiferromagnetically. b) The star of k in
reciprocal space is made up of the four propagation vectors related by the
rotation elements of the space group G0: k1 =

(
1
2
, 1

2
, 1

2

)
,k2 =

(
1̄
2
, 1

2
, 1

2

)
,k3 =(

1
2
, 1̄

2
, 1

2

)
and k4 =

(
1
2
, 1

2
, 1̄

2

)
. Domains are found that correspond to each of

these k-vectors.

As there are domains that order according to vector k1, others to k2,..., k4,
this is termed a ‘multi-domain’ structure.

Experimentally, different k domains will lead to different magnetic re-
flections, just as in multi-k structures. In fact, the diffraction patterns of
multiple domain and multi-k structures are identical and it is impossible
to distinguish them without the application of an external constraint that
breaks the symmetry on a macroscopic scale, and favours the population of
one k domain over another.

4.2 k and -k structures

Structures that involve contributions from the two arms k and -k do not fall
simply into the class of multi-k structures because, as we will show in Section
5, the requirement of a contribution from the -k arm can simply be the result
of the form of the basis vectors, or the value of k. Typically, the contribution
of these two components gives rise to modulated magnetic structures, e.g.
sine and ellipse structures.
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4.3 Multi -k structures

As we have already seen, multi-k structures can involve different arms of
the star of the propagation vector k. This is a situation favoured by higher
terms in the exchange Hamiltonian of the magnetic system. Also possible
are structures that involve an ‘accidental’ degeneracy between the stars of
unrelated propagation vectors. A magnetic transition that involves several
stars does not necessarily follow the Landau theory for a second-order tran-
sition (Sections 7.3 and 7.2), but if suitable degeneracies occur the resulting
structure may still order under a single Irreducible Representation.

4.4 Structures that involve the harmonics of k

Addition of components of the harmonics of k to a structure will lead to a
squaring up of the modulation, that is to say the magnitudes of the moments
on the atoms becomes equal. This situation can be driven by CEF effects
that disfavour any reduction in the amplitude of magnetic moment, or an
instability of the modulated structure because of the large entropy associated
with it. This is exemplified by a sine structure, where decreasing temperature
leads to the structure becoming unstable and may lead to a squaring up of
the modulation of the moments. Examples of this are the metals Er and Tm
(see Figure 5) where third, fifth and higher order harmonics progressively
appear with decreasing temperature.[3]

5 Translation properties of magnetic struc-

tures

Now that we will return to the situations that involve only a single propaga-
tion vector k, and perhaps its inverse -k. We have already shown how basis
vectors and propagation vectors can be used in the description of magnetic
structures. In this Section we will examine the different types of magnetic
structures demonstrated in Figure 1. In the general case, the k vector may
refer to any point within or on the surface of the first Brillouin zone. This
gives rise to two general classes of magnetic structures:

• Commensurate- the magnetic cell that is a simple multiple of the nu-
clear cell. It is in this group that are found the majority of known
magnetic structures: simple ferromagnets, antiferromagnets and ferri-
magnets.
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Figure 5: The magnetic structures of the heavy rare earth metals.

• Incommensurate- there is no simple relation between the structural and
magnetic cells.

It is important to note that these classifications describe only the prop-
agation vector; the magnetic structure itself is the result of the propagation
vector k and the basis vector Ψj. It is the combination of both of these that
gives rise to the different possible structures[1, 4, 5, 6].

5.1 Simple structures and Sine structures

As we have seen, the translation properties of a magnetic structure may be
described by:

mj = Ψk
j e

−2πik·t (19)

Let us now expand the exponential:

mj = Ψk
j [cos(−2πk · t) + isin(−2πk · t)] (20)

and consider various possibilities for the basis vector Ψj and the propagation
vector k.
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5.1.1 Ψ is real and the sine component is null

The simplest situation occurs when Ψk
j is a real basis vector. The condition

that mj is real requires that the sine component is zero- this occurs only for
certain values of k. Equation 20 then reduces to

mj = Re(Ψk
j cos(−2πk · t)) (21)

As the sine component is null, the cosine component is necessarily of maximal
magnitude and so translation to another unit cell results only in some rotation
of the moment, and does not change its magnitude. This is the situation in
many simple ferromagnetic, ferrimagnetic, and antiferromagnetic structures
(examples are given in Figure 1a-f).)

5.1.2 Ψ is real and the sine component is non-zero

If the basis vector is real and the sine component is non-zero, Equation 20
leads to a magnetic moment that is complex- an impossible situation as the
magnetic moment is a real entity. We are therefore left with the problem of
how to relate our complex basis vector to the projections of a real moment.
This in fact turns out to be very simple: the moment here cannot be described
by a single propagation vector, but rather is described by contributions from 2
propagation vectors. The second propagation vector that is required in order
to describe the magnetic moment distribution is the propagation vector -k.

The atomic vector for an atom in the nth cell related to that in the zeroth
cell by translation t is then given by:[4]

mj = Ψk
j e

−2πik·t + Ψ−k
j e2πik·t, (22)

Where [4],

Ψ−k
j = Ψk∗

j (23)

Insertion of this relation into Equation 22 and expansion of the exponential
leads to

mj = 2Re(Ψk
j )cos(−2πk · t) + 2Im(Ψk

j )sin(−2πk · t) (24)

As we are considering real basis vectors, the imaginary component in Equa-
tion 24 is zero and this reduces to

mj = 2Re(Ψk
j )cos(−2πk · t) (25)

We therefore see that if the propagation vector k leads a non-zero sine com-
ponent in Equation 20, the magnetic structure involves both the wave vectors
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k and -k. A non-zero sine component requires also that the magnitude of
the moment changes with translation through the crystal. The resulting
structure has a sine modulation and an example is shown in Figure 1h.

5.2 Helical structures

5.2.1 Ψ is complex and Re(Ψ)=Im(Ψ)

A complex basis vector associated with the vector k requires also a contri-
bution from the -k. Therefore, we begin again from Equation 24:

mj = 2Re(Ψk
j )cos(−2πk · t) + 2Im(Ψk

j )sin(−2πk · t) (26)

If the real and imaginary components of Ψ are equal we find that this
simplifies to:

mj = 2Re(Ψk
j ) [cos(−2πk · t) + sin(−2πk · t)] (27)

As the sine and cosine components define the points on a circle, the resulting
structure is said to be a ‘circular helix’, i.e. one in which the magnitude of
the moment is constant, but its orientation changes (Figure 1i).

5.2.2 Ψ is complex and Re(Ψ) �=Im(Ψ)

As the real and imaginary components are of different size, the equation

mj = 2Re(Ψk
j )cos(−2πk · t) + 2Im(Ψk

j )sin(−2πk · t) (28)

describes an ellipse rather than a circle. The resulting structure is referred
to as an ‘elliptical helix’ (Figure 1j).

5.3 Summary of structures and basis vectors

In this Section we have shown that the class of a magnetic structure is the
result of both the propagation vector and the form of the basis vectors in-
volved. Sine structures and simple structures arise from real basis vectors,
while helices involve complex basis vectors. The key equations are

mj = Ψk
j e

−2πik·t (29)

and

mj = 2Re(Ψk
j )cos(−2πk · t) + 2Im(Ψk

j )sin(−2πk · t) (30)
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The calculation of these basis vectors will be detailed later in the section on
Group Theory calculations (Section 8).

6 Location of magnetic reflections

6.1 k=0 ferromagnetic (ferri- antiferromagnetic)

As the magnetic and crystallographic unit cells are of the same size, the
magnetic reflections occur at the nodes of the nuclear reciprocal lattice and
their intensities therefore add to those of the nuclear reflections. Assuming
an unpolarised incident beam, the magnetic cross section[7, 8] is then given
in barns by:

(
dσ

dΩ

)
mag

=
∑
τ

|M⊥(Q)|2 δ(Q − τ ) (31)

Where τ is a reciprocal space vector as defined by Equation 7 and M⊥(Q)
is the magnetic interaction vector (the component of the magnetic structure
factor perpendicular to the scattering vector Q, in units of 10−12 cm):

M⊥(Q) = 0.2695 10−12 FM⊥(Q), (32)

where FM⊥(Q) has units of Bohr magnetons.

6.2 k�=0 antiferromagnetic- commensurate

The example shown in Figure 6b is of the propagation vector k=( 1
2
00). As

the magnetic unit cell is 2 times larger in the a direction than the nuclear
cell, the reflections will occur at half-integer positions (h

2
kl).

6.3 k�=0 antiferromagnetic- incommensurate

We know that due to the form of Equation 11, contributions from the basis
vectors of both k and -k are required. Reflections will therefore be at posi-
tions associated with both of these propagation vectors, and pairs of Bragg
reflections will surround each reciprocal lattice point. As demonstrated in
Figure 6c, magnetic reflections will be observed at:

1. For k

Q = τ + k : reflection τ+ or (hkl)+
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2. For -k

Q = τ − k : reflection τ− or (hkl)−

6.4 Multi-k

Figure 6d demonstrates the diffraction pattern of a structure described by
two incommensurate propagation vectors. We see that there is a pair of
reflections for each propagation vector about the reciprocal lattice points.
This magnetic pattern is exactly the same as that from a structure with two
equally populated k domains and only the application of a suitable external
constraint can allow the distinction of these situations.

6.5 Harmonics of k

Contributions from the harmonics of k lead to the occurrence of reflections
at positions that correspond to fractions of k. The example given in Figure
6 is of an incommensurate propagation vector and its harmonic 1

2
k.

7 Symmetry in magnetic structures

7.1 The little group Gk and its irreducible representa-
tions

As we have already stated, the little group Gk that is made up of all the sym-
metry elements that leave k invariant, is a central concept in the symmetry
analysis of magnetic structures. For a magnetic structure to be possible,
it must be compatible with all of the symmetry operations of Gk simul-
taneously. The set of matrices that describes how the moments transform
under all of the operations of Gk makes up a ‘representation’. It is useful to
separate these representations into orthogonal Irreducible Representations[9]
(IRs), just as we separate the vibrations of a molecule into normal modes.

7.2 Landau Theory and its application to magnetic
phase transitions and structures

The power and utility of Group Theory calculations with regards to the
determination of magnetic structures comes from the Landau theory of a
second-order phase transition. In the simplest of terms, this states that a
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Figure 6: Cross-sections and graphs in reciprocal space for a variety of mag-
netic structure classes
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second-order transition can involve the build up of magnetic fluctuations that
have the symmetry of only one Irreducible Representation (in this case an
Irreducible Representation describes the symmetry properties of a magnetic
moment under all the symmetry operations of the little group Gk)[4, 6, 9].
Because of this, the resulting magnetic structure can be described by the basis
vectors associated with only that Irreducible Representation and the basis
vectors associated with the Irreducible Representations not involved in the
transition are necessarily zero. This greatly limits the number of possible
magnetic models and the number of parameters that are involved in their
refinement

Even in the cases where the transition is not second-order, nature is often
kind to us and the structures that result are often the same as would be
predicted for a second-order transition.The calculations detailed in Section
8 therefore continue to constitute a useful step in the determination, and
description, of a magnetic structure.

7.3 Application to structures with several magnetic
sites

If the unit cell of interest has several magnetic sites we have to consider how
they will behave. If there are two types of site, A and B, there are 3 limiting
cases and we will consider each separately[4]:

• The two intra-site interactions are dominant: IA > IB > IAB.
Here the coupling between the sites is small and so the sites behave
independently. Each will therefore have its own ordering transition and
no relation between the different Irreducible Representations involved
is necessary.

• The inter-site interactions are dominant: IAB > IA > IB.
The strong coupling between the sites leads to a single critical tempera-
ture. The basis vectors that are associated with both sites must belong
to the same Irreducible Representation. This places a great restriction
on the number of possible structures.

• One intra-site interaction is dominant: IA > IAB > IB.
Upon cooling 2 distinct phase transitions will occur. The first involves
the moments on the A sites. The inter-site coupling will lead to this
structure polarising the B moments. These will then display the same
magnetic structure as the A atoms. At a lower temperature, the B
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moments will undergo a symmetry-breaking transition and order coop-
eratively. The strong coupling between the A and B sites requires that
these two orderings involve the same Irreducible Representation.

As an example, let us consider a system where there are 4 possible Irre-
ducible Representations:

• Site A: 1Γ1 + 0Γ2 + 1Γ3 + 1Γ4

• Site B: 1Γ1 + 1Γ2 + 0Γ3 + 0Γ4

We know that only non-zero Irreducible Representations (labelled Γ) can be
responsible for a magnetic structure. We see immediately that not all the
Irreducible Representations occur on the two sites, i.e. on site A, Γ2 is not
involved. If site A orders separately, the resulting structure will correspond
to either that of Γ1, Γ3 or Γ4, that is to say there are 3 possible magnetic
‘models’. Similarly site B could order according to Γ1 or Γ2. If there is no
coupling between the sites and each orders separately, there are no symmetry
restrictions on the possible Irreducible Representations involved. The sites
can therefore order according to any of their allowed Irreducible Represen-
tations. However, if the situation is such that both order together, the two
sites must order under the same Irreducible Representation, and only the
Irreducible Representation Γ1 can lead to a magnetic structure. The deter-
mination of the magnetic structure is therefore greatly simplified, as it can
only involve the basis vectors associated with Γ1.

8 Representational Analysis

8.1 Group Theory and magnetic structures

In non-primitive cells we must also determine the relation between the dif-
ferent magnetic moments in the cell. This relation can be very difficult to
derive and is often found by comparison with known magnetic structures, or
by trial and error. Group Theory arguments allow us to calculate symmetry-
allowed relations between the moments and to greatly simplify this process.
The results of these calculations are precisely the basis vectors, that we have
been using to describe the magnetic structures.

The technique that will be presented in this work involving the appli-
cation of Group Theory to magnetic structures is termed Representational
Analysis[10, 1, 11]. The only pieces of information that are required for these
calculations are the propagation vector k, the crystallographic space group

18

Page 103 / 142



and the atomic coordinates of the magnetic atoms before the magnetic phase
transition. Rather than simply detailing the calculations involved, their ap-
plication to an example problem will be used.

Figure 7: The kagomé lattice.

8.2 Computer programs

A number of computer programs exist that perform the calculations that
make up magnetic symmetry analysis. Irreducible Representations can be
calculated using KAREP[12], MODY[13], BASIREPS[14], and SARAh[15].
Basis vectors for the symmetry-allowed magnetic structures can be calculated
using MODY, BASIREPS, or SARAh. All the Group Theory calculations
and refinements presented here have been made using the program SARAh.

8.3 Example: of AgFe3(SO4)2(OH)6 with k = 003
2

The jarosites are described in the space group R3̄m (point group D5
3d ) and

their crystal structure is displayed in Figure 8. All the calculations that
follow will refer to the hexagonal non-primative setting of this space group,
the symmetry elements of which are given in Table 1. As the cell is hexagonal
there are three kagomé layers in the crystal structure and these have the
stacking sequence ...ABC... The magnetic Fe3+ ions make up a 2-dimensional
geometry called a kagomé lattice (Figure 7). In the mineral argento-jarosite,
AgFe3(SO4)2(OH)6, the exchange is antiferromagnetic and magnetic ordering
with a propagation vector k = 00 3

2
(with respect to the hexagonal axes) has

been found at low temperature.[16, 17, 18] In this section we will calculate
the symmetry-allowed magnetic structures using Representational Analysis.
These calculations are also detailed in Ref. [17].
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Element number IT notation Jones symbol Rotation matrix

g1 {1 | 0 0 0} x, y, z




1 0 0
0 1 0
0 0 1




g2 {3+ | 0 0 0} ȳ, x− y, z




0 1̄ 0
1 1̄ 0
0 0 1




g3 {3− | 0 0 0} y − x, x̄, z




1̄ 1 0
1̄ 0 0
0 0 1




g4 {2 | 0 0 0} y, x, z̄


 0 1 0

1 0 0
0 0 1̄




g5 {2 | 0 0 0} x− y, ȳ, z̄


 1 1̄ 0

0 1̄ 0
0 0 1̄




g6 {2 | 0 0 0} −x, y − x, z̄


 1̄ 0 0

1̄ 1 0
0 0 1̄




g7 {1̄ | 0 0 0} x̄, ȳ, z̄




1̄ 0 0
0 1̄ 0
0 0 1̄




g8 {3̄+ | 0 0 0} y, y − x, z̄




0 1 0
1̄ 1 0
0 0 1̄




g9 {3̄ | 0 0 0} x− y, x, z̄




1 1̄ 0
1 0 0
0 0 1̄




g10 {m | 0 0 0} ȳ, x̄, z


 0 1̄ 0

1̄ 0 0
0 0 1




g11 {m | 0 0 0} y − x, y, z


 1̄ 1 0

0 1 0
0 0 1




g12 {m | 0 0 0} x, x− y, z


 1 0 0

1 1̄ 0
0 0 1




Table 1: Symmetry elements of the space group R3̄m. The notations used
are of the International Tables, where the elements are separated into rota-
tion and translation components, and the Jones faithful representations of
the rotation parts. The latter corresponds to the vector formed from the
operation of the rotation part of the element on (x, y, z).
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Figure 8: The jarosite crystal structure in the space group R3̄m .

8.4 The group Gk and its Irreducible Representations

As we have already explained in Section 3.4, for a given propagation vector
k, some of the operators of the space group G0, g = {h|τ}, leave it invari-
ant while others transform it into an equivalent vector that differs by some
arbitrary translation of the reciprocal lattice, τ , according to:

kh = k + τ (33)

This set of elements makes up the so-called little group, Gk, which is a
subgroup of G0. The Irreducible Representations of this little group are given
by the symbol Γν , where ν is the label of the irreducible representation, and
the matrix that corresponds to the symmetry element g is labelled by dk

ν (g)
Looking at the example of AgFe3(SO4)2(OH)6 with k = 003

2
, we find that

the little group contains all of the 12 symmetry operators of the space group
R3̄m. The Irreducible Representations of these are given in Tables 2 and 3.
One sees immediately that the second-order representations Γ5 and Γ6 have
the same elements for symmetry operations 1-6 and are related by a factor
of (-1) for the operations 7-12.

These Irreducible Representations may be verified against tabulated val-
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g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12
Γ1 1 1 1 1 1 1 1 1 1 1 1 1
Γ2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
Γ3 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1
Γ4 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1

Table 2: First-order Irreducible Representations for the group D5
3d for the

vector k= 00 3
2
.

g1 g2 g3 g4 g5 g6

Γ5,Γ6
1 0
0 1

ε 0
0 ε2

ε2 0
0 ε

0 1
1 0

0 ε2

ε 0
0 ε
ε2 0

g7 g8 g9 g10 g11 g12

Γ5
−1 0

0 −1
−ε 0

0 −ε2
−ε2 0

0 −ε
0 −1

−1 0
0 −ε2

−ε 0
0 −ε

−ε2 0

Γ6
1 0
0 1

ε 0
0 ε2

ε2 0
0 ε

0 1
1 0

0 ε2

ε 0
0 ε
ε2 0

Table 3: Second-order Irreducible Representations for the group D5
3d for the

vector k= 00 3
2
. ε=exp(- 2π

3
) .

ues of the projective (or ‘loaded’) representations, dpr
ν , given in works such as

Bradley and Cracknell[9] and Kovalev[19]. The tabulated representations are
given for the various point group symmetries and can be converted into the
Irreducible Representations of the little group Gk of the propagation vector
k by multiplicating them with a phase factor:

dν = dpr
ν · e−2πk·τ (34)

Where τ represents the translation part of the symmetry operator to which
dν is associated.

8.5 Effect of symmetry element on a moment bearing
atom

The effect of a symmetry element is two-fold: it will act to change the position
of an atom, and reorientate the magnetic moment, e.g. atom 1 moves to the
position of atom 2, and its moment is reversed. The combination of these
two results are described by the magnetic representation, Γ. We will examine
these two effects separately:
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8.5.1 Effect of symmetry element on atom positions: the permu-
tation representation

A symmetry operator g = {h|τ} acts on both the position rj of the atom
and on the components α of the axial vector that describes the moment.
The operation that sends rj in the zeroth cell to ri in the pth cell can be
symbolically stated as

g(j0) → (iap) (35)

In other terms, the effect of a symmetry operation g is to permute the
column matrix of atom labels, P:

g(P) → P′ (36)

This operation is governed by a permutation representation, Γperm, which has
matrices of order NA, where NA is the number of equivalent positions of the
crystallographic site. It is important to note that when a symmetry operation
results in an atomic position that is outside the zeroth cell, a phase factor
must be included that relates the generated position to that in the zeroth
cell. This phase is simply given by:

θ = −2πk · T (37)

Where T is the translation vector, that relates the original and generated
atoms.

As an example, from Table 4 we see that the permutation equation for
the atoms of the three Bravais sublattices under the g={3+ | 0 0 0} operation
is:


 2 · exp(θa)

3 · exp(θb)
1 · exp(θc)


 = Γperm


 1

2
3


 (38)

Where the atomic positions follow the labelling: 1=( 1
2

1
2

1
2
), 2=(1

2
0 1

2
),

3=(0 1
2

1
2
). For the operation g={3+ | 0 0 0}, θa = θb = θc = 0 for k= 00 3

2
.

The permutation representation is therefore given by

Γ{3+|000}
perm =




0 1 0
0 0 1
1 0 0


 (39)
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The character of this representation, χperm, for each symmetry operator
is then simply the sum of the phases θ(g) for the atoms that are transformed
into an equivalent atom under a symmetry operation, and so for both the
propagation vectors, χ{3+|000}

perm = 0.

8.5.2 Effect of symmetry element on moment vectors: the axial
vector representation

The second effect of this symmetry operation is to transform the spin com-
ponents with index α, (α = x, y, z) of the reference spin j into the index α′

of the atom at ri.[10, 1, 11] These transformations are described by the axial
vector representation, Ṽ , the character of which is given by

χh
Ṽ =

∑
a=b

Rh
abdet(h), (40)

Where Rh
ab refers to a specific element a,b of the rotation matrix h, and det(h)

represents the determinant of the rotation matrix Rh,and has the value of
+1 for a proper and -1 for an improper rotation. This is exemplified for the
3+ rotation, where the operation of h(3+) on the moment vector 	M=(mx my

mz) gives:

R(3+) 	M = det(h)




0 1̄ 0
1 1̄ 0
0 0 1





mx

my

mz


 (41)

= 1


 −my

mx −my

mz


 (42)

As 3+ is a proper rotation, det(3+) = 1 and the character of Ṽ for h(3+) is
therefore χ3+

Ṽ
=0.

8.6 Magnetic representation

As we have already stated, the magnetic representation, Γ, describes both the
result of the symmetry operation on the atomic positions, and on the axial
vectors that describe the magnetic moments. As these effects are indepen-
dent, the magnetic representation is given by their direct product[10, 11, 1]:

Γ = Ṽ × ΓPerm (43)

Or, in terms of the matrices for the representations themselves
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Atoms Axial vector components
g = {h|τ} 1 2 3 χperm mx my mz χṼ

{1 | 0 0 0} 1 2 3 3 mx my mz 3
{3+ | 0 0 0} 2 3 1 0 -my mx-my mz 0
{3− | 0 0 0} 3 1 2 0 -mx+my -mx mz 0
{2 | 0 0 0} -1 -3 -2 -1 my mx -mz -1
{2 | 0 0 0} -3 -2 -1 -1 mx-my -my -mz -1
{2 | 0 0 0} -2 -1 -3 -1 -mx -mx+my -mz -1
{1̄ | 0 0 0} -1 -2 -3 -3 mx my mz -3
{3̄+ | 0 0 0} -2 -3 -1 0 -my mx-my mz 0
{3̄ | 0 0 0} -3 -1 -2 0 -mx+my -mx mz 0
{m | 0 0 0} 1 3 2 1 my mx -mz -1
{m | 0 0 0} 3 2 1 1 mx-my -my -mz -1
{m | 0 0 0} 2 1 3 1 -mx -mx+my -mz -1

Table 4: The permutation of B3+ atoms (at position 9d) and the transfor-
mation of the axial components of the moment under the different symmetry
operators of the R3̄m space group (point group D5

3d) for k = 003
2
. The

characters of the representations Γperm and Ṽ are given.

DΓ
(h,τ h) = DṼ

(h) ×DΓPerm

(h,τ h) (44)

The characters of these representations are related according to:

χΓ = χṼ × χperm (45)

8.7 Reduction of the Representation Γ

The magnetic representation for a particular site can be decomposed into
contributions from the Irreducible Representations of the little group:

Γ =
∑
ν

nνΓν (46)

where nν is the number of times the irreducible representation Γν appears in
the magnetic representation Γ. nν is given by:

nν =
1

n(Gk)

∑
h∈Gk

χΓ(h)χΓ∗
ν
(h) (47)

Here, χΓ is the character of the magnetic space group and χΓ∗
ν

is the complex
conjugate of the character of the irreducible representation with index ν.
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8.8 Calculation of the basis vectors Ψ

The basis vectors, ψn, that transform according to the µ dimensional irre-
ducible representation Γ(µ)

ν are projected out of the representation matrix
Dν using a series of test functions φβ, where φ1 = (100), φ2 = (010), and
φ3 = (001). This is carried out by the projection operator formula:

ψiλ
n =

∑
g∈Gk

D∗λ
ν (g)δi,gi e−2πik·(rgi−ri)det(h)Rhφβ, (48)

The summation is over the symmetry elements of the little group Gk. ψ is
a spin component that we represent by a column matrix ψ(r). δi,gi is unity if
the atoms i and gi are equivalent positions of the crystallographic site that are
related by a primitive lattice translation, i.e. they are of the same sublattice
of the Wyckoff site. Equation 48 is applied sequentially to each element λ
of the matrix Dν , for each equivalent position i of the crystallographic site.
The row of the matrices Dν is fixed during the examination of a given IR.

In our calculations the µ elements are those that correspond to the first
row of the matrix of Dν . As for each element, labelled λ = 1...µ, three com-
ponents β are projected out, there are in total 3µ projected components. Of
these, the number of non-zero unique projected components for a represen-
tation is of course the same as calculated using Equation (47).

8.9 Refinement of basis vectors mixing coefficients

Any linear combination of basis vectors within one representation is neces-
sarily a symmetry-allowed basis vector. The atomic moment on a particular
atom,mj , is therefore most generally given by the sum of the basis vectors
for a particular irreducible representation:

mj =
∑
ν

Cνψν , (49)

where Cν is the mixing coefficient of the basis vector ν. In refining the orien-
tation of an atomic moment, we are in effect refining the mixing coefficients
Cν of the basis vectors within the irreducible representation being examined.
The number of variables in our refinement is simply the number of unique
basis vectors that transform according to a given representation, i.e. nνµ.

8.10 Refinement of complex basis vectors

The refinement of the mixing coefficients that relate complex basis vectors
will be dealt with in detail, to demonstrate how an ordered array of magnetic
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moments, which are necessarily real entities, can be described by complex
basis vectors.

8.11 Decomposition of the magnetic representation and

the basis vectors of AgFe3(SO4)2(OH)6

In the hexagonal setting the magnetic Fe3+ ions are found on the 9d sites.
For these sites the decomposition of the magnetic representation according
to Equation 47 is:

Γ = 0Γ
(1)
1 + 2Γ

(1)
2 + 0Γ

(1)
3 + 1Γ

(2)
4 + 3Γ

(2)
5 + 0Γ

(2)
6 (50)

The Landau theory of a second-order phase transition, requires that only
one representation is involved, and so for this k there are only three possible
magnetic structures. These correspond to representations Γ2, Γ4 and Γ5.

The basis vectors for these representations calculated according to Equa-
tion 48 are given in Table 5. The atomic sites are labelled following the
convention given in Section 8.5.1. The basis vectors have varied forms and
we will now explain in detail the types of magnetic structures that they
correspond to.

IR b-v Atom 1 Atom 2 Atom 3
mx my mz mx my mz mx my mz

Γ2 ψ1 1 -1 0 1 2 0 -2 -1 0
ψ2 0 0 1 0 0 1 0 0 1

Γ4 ψ3 1 1 0 -1 0 0 0 -1 0

Γ5 ψ4 1 0 0 0 −1
2
−

√
3

2
i 0 1

2
−

√
3

2
i 1

2
−

√
3

2
i 0

ψ5 0 1 0 1
2

+
√

3
2

i 1
2

+
√

3
2

i 0 - 1
2

+
√

3
2

i 0 0

ψ6 0 0 1 0 0 - 1
2
−

√
3

2
i 0 0 - 1

2
+

√
3

2
i

ψ7 0 1 0 1
2
−

√
3

2
i 1

2
−

√
3

2
i 0 - 1

2
−

√
3

2
i 0 0

ψ8 1 0 0 0 - 1
2

+
√

3
2

i 0 1
2

+
√

3
2

i 1
2

+
√

3
2

i 0

ψ9 0 0 -1 0 0 1
2
−

√
3

2
i 0 0 1

2
+

√
3

2
i

Table 5: The basis vectors of the Irreducible Group Representations of the
space group R3̄m (point groupD5

3d) appearing in the magnetic representation
with k = 003

2

Representations Γ2 and Γ4 are one dimensional. They therefore corre-
spond to simple magnetic structures in which the atomic moments are orien-
tated along particular crystallographic axes. It is noteworthy that both ψ1

and ψ2 correspond to 120◦ spin structures, with the total spin on any given
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triangle plaquette being
∑

iSi=0. While, the two spin structures are in fact
related by a global rotation of spins, the two representations differ in that Γ2

allows the introduction of an out-of-plane component, which corresponds to
ψ2. The combination of the 2 basis functions ψ1 and ψ2 creates a so-called
‘umbrella structure’ (of the type shown in Figure 1f) in which the degree of
out-of-plane canting is a refinement variable.

Representation Γ5 is two dimensional and is repeated 3 times. It therefore
corresponds to a 6 basis vector magnetic structure. As the general solution
involves any linear combination of these 6 basis vectors we can not ascribe to
this representation a simple structure. We do note however, that there are
relations between the basis vectors and these will simplify the refinement of
the mixing coefficients: ψ∗

4=ψ8, ψ
∗
5=ψ7 and ψ∗

6=-ψ9.
For pedagogical reasons we will ignore these relations and continue as if

Γ5 involved six untelated complex basis vectors. In this case, as the atomic
spins are real entities, it is necessary to introduce the corresponding basis
vectors of the propagation vector -k in order to make the summation of the
two components real (Section 5). A description of the translation properties
of this structures begins as normal from:

mj = Ψk
j e

−2πik·t + Ψ−k
j e2πik·t, (51)

However, as for k = 00 3
2

the vectors k and -k are equivalent, we have −k = k
and so

e−2πik·t = e2πik·t (52)

and

mj = (Ψk
j + Ψ−k

j )e2πik·t (53)

A further simplification arises from the fact that the addition of the -k
contribution corresponds to the addition of the conjugate of the basis vector
of k, i.e.

Ψ−k
j = Ψk∗

j (54)

We therefore obtain

mj = 2Re(Ψk
j ) [cos(2πk · tn) + isin(2πk · t)] (55)

For both k = 00 3
2

the sine component vanishes under the centring transla-
tions of the non-primitive cell, or integer translations of the crystallographic
cell, and so Equation 55 reduces to
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mj = 2Re(Ψk
j )cos(2πk · t) (56)

As in general, the basis vectors associated with Γ5 that are to be tested
against the magnetic structure are complex, when considering the transla-
tional properties of the magnetic moments it is sufficient just to add their
complex conjugate in order to arrive at real values for the atomic moments.
In these two cases this leads to Equation 56. The astute reader will have
noted that while this procedure began with six basis vectors, it finished with
only three: we have apparently halved the dimensionality of the basis vector
space. In order to determine the remaining three basis vectors we must look
at the imaginary part of ψ in Equation 53. This is done by first multiplying
the basis vector ψ by the imaginary number i. Equation 53 would then read

mj = (iΨk
j + iΨ−k

j )e2πik·t (57)

and Equation 56 would become

mj = 2Im(Ψk
j )cos(2πk · t) (58)

As the basis vectors on Γ5 are themselves related by complex conjugation,
we do not need in fact need to resort to this addition of the components
associated with -k. Instead, we can simply equate the mixing coeffients of
the conjugate pairs, i.e., C(ψ∗

4)=C(ψ8) ,etc..
There is an alternative way of dealing with complex basis vectors. Instead

of combinining the complex basis vectors with their conjugates as described
above, we can use the properties of irreducible representations. In some
cases2 unitary rotations can be applied to the Irredicible Representations
that make them real. These two techniques are equivalent.

8.12 Refinement of the magnetic structure of

AgFe3(SO4)2(OD)6

The collected neutron diffraction data were found to be compatible only with
a magnetic structure described by the representation Γ4. Figure 9 displays
the value of χ2 as a function of the mixing coefficients C(ψ1) and C(ψ2);
the only refinement variable in the least-squares matrix was the magnitude
of the magnetic moment. In all cases the sum of the mixing coefficients was
adjusted to be unity, and a trivial factor was then used to separately scale the
magnitudes of moments described. The best value of χ2 corresponds to the

2this criteria for this transformation is that the Coirreducible Representation (CIR)
derived from the Irreducible Representation is real
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Figure 9: χ2 as a function of the basis vector coefficients C(ψ1) and C(ψ2)
during the refinement of the magnetic structure of AgFe3(SO4)2(OD)6 at
1.5K.

coefficients C(ψ1)=0.99 (5) and C(ψ2)=0.01 (5), that is to say the refined
structure is coplanar and the contribution from out-of-plane canting is zero
within the error of these data. The final refined profile is presented in Figure
10 and the final magnetic structure in Figure 11.

8.13 Discussion of the magnetic structure of

AgFe3(SO4)2(OD)6

The magnetic structure that is refined is a triangular structure, that is to
say the neighbouring moments are related by 120◦. This is what we would
näıvely expect for a triangular array of antiferromagnetically coupled spins.
The Group Theory arguments we have used indicate that only particular ori-
entations are possible for this configuration. As we will show in the practicals
that accompany this course, the out-of-plane component that is only allowed
in Γ2 is important at higher temperatures and leads to the formation of an
umbrella structure.

9 Summary of course

As stated in the introduction, this course was intended to explain how to
describe a magnetic structure in terms of a propagation vector and some
of its associated basis vectors. The examples given show how the different
possible types of magnetic structure lead directly from this description. The
second part of this text has been devoted to magnetic symmetry analysis-

30

Page 115 / 142



Figure 10: Experimental and calculated diffraction patterns for
AgFe3(SO4)2(OD)6 at 1.5K. Magnetic and crystallographic reflections are
indicated by the upper and lower tick marks respectively.

Figure 11: Magnetic structure of AgFe3(SO4)2(OD)6 .
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Representational Analysis. The Group Theory calculations that this involves
are tedious, but now computer programs exist that perform these calculations
in seconds. The basis vectors that result simplify greatly the processes of
finding a magnetic structure, and can facilitate their correct description.

10 Further reading

Much inspiration, of varying levels, has been taken from a number of works
on magnetic structures and magnetic symmetry analysis. For a first step
into these subjects the References [1, 4, 5, 6, 7] are particular suitable. Ref-
erence [7] presents a clear introduction into the technical aspects of magnetic
neutron scattering.
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Abstract. Group-theory techniques can aid greatly the de-
termination of magnetic structures.The integration of their
calculations into new and existing refinement programs is an
ongoing development that will simplify and make more rig-
orous the analysis of experimental data. This paper presents
an overview of the practical application of symmetry analysis
to the determination of magnetic structures. Details are given
of the different programs that perform these calculations and
how refinements can be carried out using their results. Ex-
amples are presented that show how such analysis can be
important in the interpretation of magnetic diffraction data,
and to our reasoning of the causes for the observed ordering.

PACS: 75.10.-b; 75.25.+z

Despite immense technical progress since the first magnetic
neutron diffraction experiments of Shull and Smart [1], the
determination of magnetic structures remains a subject that
is typically limited by the data-analysis strategy: structures
are generally determined by intuition or simple trial and error
refinement. As a consequence, the literature is full of incor-
rect magnetic structures and incomplete refinements. While
group-theory techniques can be applied to limit the number
of trial structures, or to determine along which directions
the spin components can lie, their calculations when carried
out by hand are arduous. This has led to their being applied
only when a problem warrants their use or, more commonly,
when it is sufficiently close to an example already in the
literature. Recently, a number of computer programs have
been developed that allow the unspecialised user to perform
these calculations automatically. Their integration with com-
mon refinement codes allow for the first time the simple and
rigorous examination of which symmetry-allowed magnetic
structures are compatible with collected data.

In this article a brief overview is made of the practical ap-
plication of using group theory to aid the determination of

∗E-mail: a.s.wills@ill.fr

magnetic structures from both powder and single-crystal sam-
ples. Examples are given thatdemonstrate the importance of
symmetry information for the correct analysis of magnetic
diffraction data, and concomitantly to the understanding of
the physical reasons for the formation of a long-range mag-
netic order.

1 Representational analysis calculations

The calculations can be separated into two parts. The first is
a grouping according to symmetry of the possible magnetic
structures that are compatiblewith both the space group of the
crystal structure and the propagation vectork of the magnetic
ordering. The second part involves the application of Landau
theory as a tool to simplify which of these are possible as a re-
sult of a continuous second-order phase transition. While the
grouping and the labelling of the different magnetic structures
by their symmetry properties is completely general, the as-
sumptions made that involve the Landau theory are subject to
its limitations.

The application of group theory to the determination of
magnetic structures is termed representational analysis [2–6]
and is based on the calculation of the Fourier components of
an ordered magnetic structure that are compatible with the
symmetry of the crystal space group before the phase transi-
tion and the propagation vector.

The first step in the analysis is the identification of the
propagation vectork associated with the phase transition, and
which space-group symmetry operations leave it invariant.
These operations form the little group Gk. The symmetry
elements of Gk and the value ofk are then used to deter-
mine the different irreduciblerepresentations (IRs) of Gk. The
different basis vectors (Fourier components of the magnetic
structure), BVs, that are projected out from an irreducible rep-
resentation define a basis-vector space that may be termed
a ‘symmetry-allowed’ model. The different IRs define orth-
ogonal basis-vector spaces that can be used to conveniently
classify the different possible magnetic structures.
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2 Application of Landau theory

The Landau theory of a second-order phase transition re-
quires that the Hamiltonian of the system is invariant under
the symmetry operations of Gk. This leads to the requirement
that for a second-order phase transition an ordered structure
can be the result of only a single IR becoming critical. This
typically reduces the number of trial structures and the vari-
ables that each involve.

When the assumptions of Landau theory are not valid, for
instance when the Hamiltonian possesses odd-powered terms,
the mixing of components from different IRs becomes pos-
sible. Continuing with this logic, the observation of a mag-
netic structure that involves different IRs is suggestive of
either successive ordering transitions for each IR, or addi-
tional terms in the magnetic Hamiltonian that relax the single-
IR rule, e.g. crystal-field terms at sites with certain point
symmetries.

3 Programs that perform these calculations

While tabulated values of the IRs of the space groups have
existed for many years [7, 8], they are prone to inaccuracies1

and their laborious use incalculations carried out by hand
is perhaps the major reason for their restricted use. Prefer-
able to many are the programs that have been written that
calculate these IRs, or use files of tabulated values such as:
KAREP [10] (calculated), MODY [11] (unverified tabulated
values), BasiReps [12] (based on KAREP), and SARAh [13]
(with the choice of KAREP-based and computer-verified
tabulated values). MODY, BasiReps, and SARAh also use
these values to calculate directly the basis vectors asso-
ciated with the different IRs, and so allow the rapid and
simple calculation of the possible symmetry-allowed struc-
tures.

4 Refinement using the results of symmetry analysis

The simplest and most general mathematical description of
a magnetic structure is in terms of Fourier components: the
basis vectors that result from the group theory. The panoply
of different possible commensurate and modulated incom-
mensurate structures can be simply understood in terms of
the form of the basis vector(s) for a site and the value(s) of
k. To simplify the refinement process, SARAh and BasiReps
have been written to integrate with the standard refine-
ment codes FullProf 2000 [14] (BasiReps and SARAh)
and GSAS [15] (SARAh). The applicability of the tech-
nique is now limited principally by the choice of refinement
codes2.

The reduction in data due to the magnetic form factor
and the observation of only the component of the magneti-
sation perpendicular to thescattering vector result in insta-
bilities and limitations when using conventional least-squares

1 The exception to this is likely to be those presented in [9] as these have
been subject to computer verification.
2 Perhaps the most important restriction arises from the absence of a propa-
gation vector in GSAS – it is consequently limited to only simple commen-
surate structures.

refinements. These can be overcome by the reverse-Monte
Carlo-based algorithms whichallow the automatic explo-
ration of the degrees of freedom associated with a given
magnetic structure and the identification of additional min-
ima in the refinement [13]. In more complex cases the tech-
nique of simulated annealing can be employed: this uses
a decreasing criterion to allow the more controlled evo-
lution of the system that is required to bypass the false
minima commonly associated with larger numbers of vari-
ables.

5 Ongoing development of refinement codes

Due to the difficulties in magnetic structure refinement be-
ing greatest for data from powders, development of these new
magnetic structure refinement codes has concentrated on their
analysis. As part of a collaboration between the Institut Laue-
Langevin, the Commissariat à lÉnergie Atomique, and the
Laboratoire Ĺeon Brillouin we are at present working on the
extension of the FullProf package not only towards the refine-
ment of unpolarised and polarised neutron-diffraction data
collected from single crystals, but also towards data collected
by the technique of spherical neutronpolarimetry. After these
developments the data collected by any technique, from con-
ventional powder diffraction to even the most complex col-
lection techniques, will be refinable in terms of symmetry-
generated basis vectors.

6 Canted antiferromagnetism in M2[Ni(CN2)] (where
M = Mn and Fe)

The first example of the application of these techniques is
taken from the M2[NiCN2] (where M= Mn and Fe) molecu-
lar solids [16]. These binary metal–dicyanide molecular ma-
terials crystallise in the space group Pnnm. Below second-
order transitions atT ∼ 16 K for the Mn andT ∼ 19 K for
the Fe compounds, these display long-range magnetic order
with the propagation vectork = (0 0 0). Symmetry analysis of
the magnetic M atom at the 2a position indicates that there
are four symmetry-allowed models; these correspond to the
IRs Γ1, Γ3, Γ5, andΓ7 in the notation of Kovalev [8, 9] and
their basis vectors are given in Table 1. While data collected
using powder neutron diffraction can be well fitted by a sim-
ple model of antiparallel spins (M1= −M2) that were free
to rotate in theab plane, this spin structure is not allowed
by symmetry. Investigation of the symmetry-allowed models
found that the data could only be well fitted byΓ5.

IR BV M1 M2

Γ1 ψ1 (0 0 1) (0 01̄)
Γ3 ψ2 (1 0 0) (1 0 0)

ψ3 (0 1 0) (01̄ 0)
Γ5 ψ4 (1 0 0) (̄1 0 0)

ψ5 (0 1 0) (0 1 0)
Γ7 ψ6 (0 0 1) (0 0 1)

Table 1. Magnetic basis vectors, BVs, for the 2a site of the space group
Pnmm with the propagation vectork = (0 0 0). M1 and M2 are the atomic
positions (0 0 0) and (12

1
2

1
2)
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Inspection of the associated basis vectors (ψ4 andψ5)
shows that while the moments are antiferromagnetically
aligned alonga, an uncompensated magnetisation can exist
alongb. The presence of such a ferromagnetic spin canting
has been confirmed by dc susceptibility data.

7 Rare-earth nickel borocarbides

Very recently, symmetry analysis has provided important new
information about the variety of magnetic orderings that are
observed in the rare-earth nickel borocarbides RNi2B2C (R =
Gd–Lu, Y) [17]. In these materials Fermi surface nesting ef-
fects propagated via the RKKY interactions create a strong
tendency for these materials to order magnetically with the
propagation vectork = (0.55 0 0). Despite this, a large num-
ber of different magnetic structures are observed for the
series.

The key to understanding the magnetism of these materi-
als was the single-ion anisotropies of the rare earths. These
are typically well defined and possess a characteristic en-
ergy scale that is far greater than that of the exchange in-
teractions. Their effect is to force the magnetisation to point
along specific crystallographic directions. Symmetry analy-
sis of the different magnetic structures that are possible for
the propagation vectork = (0.55 0 0) in this system indicated
that when the single-ion effectswere incompatible with the
symmetry-allowed directions for this propagation vector, the
system orders according to another propagation vector that
does allow the single-ion effects of the rare earth in question
to be satisfied.

8 The jarosites

The jarosites (AFe3(SO4)2(OD)6, where A= Na+, K+, Rb+,
Ag+, ND+

4 , 1
2Pb+2), are the most studied examples of kagomé

antiferromagnets. They have been the object of much scrutiny
as the magnetic sublattice makes up a geometry of vertex-
sharing triangles. This results in their having an infinite num-
ber of classical ground states in the presence of only nearest-
neighbour antiferromagnetic exchange interactions. Further-
neighbour interactions can raise this degeneracy and cause
one particular ordered spin configuration to be favoured from

the degenerate manifold. Unfortunately, the experimental de-
termination of which occurs isstrongly hindered by an igno-
rance of the particular degeneracy-breaking interaction. Not
only did symmetry analysis provide a particularly effective
tool for the reduction in the number of trial structures, but it
also helped to understand them in terms of the different terms
in the exchange Hamiltonian [18].

9 Conclusion

The tools are now available that allow the unspecialised re-
searcher to use symmetry analysis to make simpler and more
rigorous the refinement of magnetic neutron diffraction data.
As demonstrated here, their application to even the simplest
structures is important, as physically unreasonable models
still often fit experimental data.
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Magnetic Refinements in GSAS
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GSAS magnetic options

• The approach of GSAS to magnetic structures is loosely 
based on Shubnikov groups. 

• However, for each space group, not all Shubnicov groups 
generated from it are possible.  The only possible ones are 
those corresponding to subgroups of index 2 of types I and
IIa.  In other words, the conventional unit cell must be in 
commonbetween the parent group and the subgroup.

• In GSAS there is a straight implementation of the OG 
formalism, where ‘primed’ operators (or lattices) correspond 
to ‘red’ operators.

• Alternatively, one can always generate an additional magnetic 
phase with appropriate constraints.

GSAS magnetic entries

• Phase: in the “phase” menu (keystrokes k-p-p), one has the 
option of selecting (m) whether the phase is nuclear, nuclear 
and magnetic or purely magnetic (a, b, c, respectively). 

• Form factor: in the form factor editing menu (k-p-f) there is 
an option (m) to edit magnetic form factors.  One can use the 
default values (warning!They are different for different 
oxidation states) or input user values (see ITC, volume C). 

• Atoms:  in the atom editing menu (k-l-a) there is an option (m)
to assign magnetic moments to individual atoms.  Within that 
menu, there is an option (s) to ‘prime’ the group generators.  
GSAS automatically determines if the magnetic point group 
of the site is admissible, and, if so, for which spin directions.
One can change colours with the c option.  Once out of the s
menu, one can change the spin components with the m option.
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CAF (A’) FM(c) FM(ab) AFM(A) AFM(G)

x in La2-2xSr1+2xMn2O7
Mn+4Mn+3

0.30 0.32 0.34 0.40 0.50 1.000.00
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Notes on the Layered Manganite example

• The manganite site is 4e [4mm].  Of the magnetic subgroups 
of [4mm], the only admissible one is 4m’m’.  Consequently, 
the only possible magnetic space groups are *I4/mm’m’
I4/m’m’m’, I P4/mm’m’ and IP4/m’m’m’.  Note that the first 
one is a ferromagnetic group.

• An immediate consequence of the site symmetry of the Mn
site is that the spin has to be directed along the 4-fold axis.

• There are therefore only 4 magnetic structures generated with 
the Shubnikov approach.  The layers are always FM, with the 
intra- and inter-bilayer coupling being FM or AFM.

• Note the significant number of magnetic structures which are 
observed, but cannot be generated with the Shubnikov
approach.
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Magnetic refinements - multi-phase approach

Should the Shubnikov approach be insufficient to describe the 
magnetic structure, one can resort to introducing a second purely
magnetic phase with appropriate constraints but lower symmetry  
This enables one to deal with any kind of commensurate 
structure, including the representation analysis.  Here are a few 
tips:

1. If the magnetic phase has the same conventional cell as the nuclear one, 
the lattice and phase fraction constraints are straightforward.

2. If the magnetic cell is larger than the nuclear one, one has to remember 
that the phase fraction is proportional to the number of unit cells in the 
sample.  So, if the the volume of the MP is doubled, its phase fraction 
must be halved.

3. One can also set constraints on the lattice when the two cells are different.  
However, remember that the constraints are on the reciprocal metric 
tensor, not on lattice parameters.  Consult a crystallography book to see 
how they are related for the various lattices.

Shubnikov Groups:
a GSAS application

Pnma
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Magnetic powder diffraction and instrumentation
Paolo G. Radaelli
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Spin Density

Unit-Cell Spin Density (localised and isotropic approx.):
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Lattice Spin Density (1-dimensional modulation):
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Magnetic Scattering of Neutrons
Neutrons are strongly scattered from magnetic moments.  
The scattering amplitude from an ion is of the order of 
γreµ, where:
γ = −1.91 Neutron magnetic moment 

in nuclear magnetons (spin + 
orbital).

re = 0.282 ·10-12 cm Electron classical radius (e2/mec2)
µ = ion magnetic moment in Bohr magnetons.

For comparison, typical nuclear scattering amplitudes for 
neutrons are of the order of 0.5-1.0 ·10-12 cm.
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Magnetic Scattering of Neutrons- II
Let’s recall the formula for the lattice spin density and its 
Fourier transform:
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The Fourier transform          is called magnetic structure 
factor. Unlike the nuclear structure factor, it is an axial 
vector quantity, and it has to be combined with the other 
vector quantity in the problem in order to obtain the 
cross section, which is a scalar.  The other vector 
quantities are the momentum transfer k (a conventional 
vector) and the neutron spin sn (an axial vector).

(k)M
~

The Fourier transform          is called magnetic structure 
factor. Unlike the nuclear structure factor, it is an axial 
vector quantity, and it has to be combined with the other 
vector quantity in the problem in order to obtain the 
cross section, which is a scalar.  The other vector 
quantities are the momentum transfer k (a conventional 
vector) and the neutron spin sn (an axial vector).

(k)M
~

The Magnetic Form Factor

From:  International Tables of Crystallography, Volume C, ed. by AJC Wilson, Kluwer Ac. Pub., 1998, p. 513
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Scattering of Neutrons from MS
It is useful to introduce the quantity Q(k), known as 
magnetic interaction vector, and defined as:

kkMkkQ ˆ)(
~ˆ)( ××=

Q(k) is the projection of the magnetic structure factor upon 
the plane perpendicular to the momentum transfer k.
Magnetic neutron scattering cross sections only contain 
Q(k).  In other words, scattering of neutrons through k is 
only determined by the components of the magnetic 
moments ⊥ to k. Note that Q(k) can be complex.

Magnetic Scattering Formulæ
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Polarised neutrons - polarisation analysis

Non-flip

Flip

Total

Unpolarised neutrons
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Formulæ Explained
Non-flip: In addition to the nuclear scattering, it contains 

the components of Q(k) parallel to the neutron 
spin and a magneto-structural interference term.

Flip: It contains the components of Q(k) perpendicular
to the neutron spin, plus an additional term which 
is present only if Q(k) is complex.

Total: It contains the nuclear term,  the module square of 
Q(k) and the two terms which are linear in sn.

Unpolarised: It contains only the  nuclear term and  the module 
square of Q(k), since the two terms which are 
linear in sn cancel upon averaging.

Neutron beam polarisation

As we have seen, the scattering cross section depends on the 
initial spin direction si.  Also, in general, the final direction of the 
neutron spin sf is not parallel to the initial one si. Therefore, the 
population of spins in a neutron beam  is generally altered by 
magnetic scattering.  One defines the neutron beam polarisation
as , where is the neutron spin direction and the 
average is taken over all the neutrons in the beam.  The 
transformation of the neutron polarisation upon scattering is 
given by:

nsP ˆ=

As we have seen, the scattering cross section depends on the 
initial spin direction si.  Also, in general, the final direction of the 
neutron spin sf is not parallel to the initial one si. Therefore, the 
population of spins in a neutron beam  is generally altered by 
magnetic scattering.  One defines the neutron beam polarisation
as , where is the neutron spin direction and the 
average is taken over all the neutrons in the beam.  The 
transformation of the neutron polarisation upon scattering is 
given by:

nsP ˆ= nŝ

Cif PPDP +=

Where     is a tensor describing the effects of rotation and 
depolarisation and      describes the creation of new polarisation.

D
CP

Where     is a tensor describing the effects of rotation and 
depolarisation and      describes the creation of new polarisation.

D
CP
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The simplest case-I
Scattering of unpolarised neutrons from a collinear unmodulated
structure.  Here, κ is a reciprocal lattice vector.
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The simplest case-II

It looks like all the information is there to solve the structure 
even with unpolarised neutrons and powder diffraction. All the 
magnetic moment magnitudes are contained in Q(κ) with the 
appropriate phase factors and signs.  Also, the information about 
the direction of the magnetic moments is there through the 
prefactor sin2(α).  So, why bother with polarised neutrons and 
single-crystal techniques?
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Magnetic Powder Diffraction
Averaging of the sin2(α) term over the (quasi)-degenerate reflections:

• For Uniaxial Groups (3-fold, 4-fold, 6-fold) we 
can only determine the angle φ:

ϕψϕψα 2222
2
12 coscossinsin1sin −−=

m
k c

φ
ψ m

k c

φ
ψ

• For Cubic Structures, the direction of the 
magnetic moments is undetermined:

3
2sin 2 =α

Magnetic Powder Diffractometers-I

• High-k range: For magnetic structure analysis, one 
rarely needs to go beyond sin(θ)/λ=0.5.  Wavelengths 
> 2 Å are ideal.

• Low-k range:   It is essential to have good coverage at 
low k, as many helimagnetic structures have very long 
periodicity.  k=0.5 Å-1 is the minimum acceptable to do 
any sensible work. k=0.1 Å-1 is ideal. 

• Resolution:  it is desirable especially in structure with 
low crystallographic symmetry, because it enables to 
reduce the accidental degeneracy.
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CW Powder Diffractometers

• Most magnetic structure problems are first tackled 
using high-intensity CW powder diffractometers (e.g., 
D1B).  The biggest advantages are the excellent 
coverage at low k,  the high flux (that can be further 
enhanced through focussing)  and the simplicity of the 
data structure.  Resolution is generally quite poor.

• The use of high-resolution machines (e.g., D2B) is 
becoming more common, especially when the magnetic 
moments are large, the structure has low symmetry and 
there is an interplay between magnetism and structural 
properties. 

The High-Intensity CW Powder 
diffractometer D1B at the ILL
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OSIRIS

GEM-OSIRIS Comparison
Magnetic Diffraction
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Disk Choppers

Detector

58Ni Guide
MonitorsGuide Carousel

m=0-3

Monitor

Nimonic Chopper

6500

9000

12000

35000

47500

50000

Collimator

Sample Tank

15000

Focussing snout

Moderator
Unpoisoned

Decoupled CH3

Vertical ballistic funnel
m=3

Monitors

Beam Stop

Details of the focussing sections

“weak” focussing26x13 mm2 12x6 mm2

m=2

26x13 mm2 12x6 mm2

m=2

10x5 mm2

m=3-4“strong” focussing

WISH Schematic drawing

GEM d=10 Å

WISH d=10 ÅGEM d=20 Å

WISH d=20 Å

Magnetic peak height WISH @50m vs. GEM @17m

Crossover at d=2 Å

Page 139 / 142



Means to obtain a polarised beam

• Scattering from a magnetic crystal 
(monochromatic): Cu2MnAl  (Heusler), (Co,Fe)

cancels out for spins antiparallel to the magnetic 
interaction vector  and |Q(k)|=F’(k)

• Magnetic multilayers (white beam)

• 3He polarising filters (white beam)
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Uses of the neutron polarisation
Technique Materials Method Applications Instruments

(examples)

Unpolarised
neutrons

Powders and
single crystals

Measure total
cross section for
unpolarised
neutrons

Survey.  Simple
collinear
structures

D1B, D20 (CWP)
OSIRIS, GEM(TOFP)
D10, D15 (CWSX)

Polarised
neutrons

Usu. single
crystals, typically
FM.

Set M, measure
with P parallel or
antiparallel to M,
to obtain
“Flipping ratios”

Form factors, spin
density
distributions.

D3

Uniaxial
polarimetry

Powders and
single crystals

Set Pi along any
direction and
measure the
projection of Pf

onto Pi.

Separate magnetic
from nuclear
scattering.  Some
non-collinear
structures

D7
TAS + polariser +
analyser.
OSIRIS (future)

Spherical
polarimetry.

Single crystals Set Pi along any
direction and
measure the full
Pf.

Complex non-
collinear AFM
strcutures.

TAS + polariser +
analyser
+Cryopad
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D3 (ILL)
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Uniaxial Polarisation Analysis

• One-detector setup

• Multidetector setup
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σi:  Nuclear spin-
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σm: Magnetic (electrons)
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D7 (ILL)

• Diffuse scattering

• Cold neutrons

• Supermirror polarisers

• 32 detectors

• 1-directional polarisation
analysis: Separation of 
coherent and incoherent 
scattering

• 3-directional polarisation 
analysis:Separation also of 
magnetic scattering

• Time-of-flight option
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