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14:00 (PGR)
14:20 (PGR)

15:10
15:40 (PGR)

16:10
16:20 (JRC)

17:10
17:20 (JRC)

18:10
19:00
20:30 (All)

22:00
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Programme
Thursday 12 December 2002

Welcome & Introduction

Magnetic SG Symmetry
Shubnikov Groups.

Coffee Break

Generating magnetic structures from SG
Defining a SG from a known magnetic structure.
Additional topics in Shubnikov groups.

Break

What is a Magnetic Structure?
Description of Magnetic Structures
Propagation Vectors

Break

Examples of Common Magnetic Structures
Additional topics

Close
Dinner

Problem-Solving Session with Tutors: Analysis and

Description of Magnetic Structures
Close



Programme (cont’ d)
Friday 13 December 2002

7:30 Breakfast

8:30 (ASW) Symmetry of Magnetic Structures
Representation Analysis

09:30 Break

09:40 (ASW)  Representation Analysis (con't)

10:30 Coffee Break

11:00 (ASW ) Introduction to Software for Symmetry Analysis:
SARAH, etc.

11:50 (All) Additional topics/discussion

12:15 Lunch

13:30 (All) Training Session on Software for Symmetry
Analysis

15:30 Coffee Break

15:50 (JRC) Unpolarised Neutron Scattering - Powder
Diffraction

16:40 Break

16:50 (PGR) Software for magnetic PD: GSAS
17:40 (JRC) Software for magnetic PD: FULLPROF
18:30 Close

19:00 Christmas Dinner

20:30 (Al Training Session with Tutors: Refinements of
Magnetic Structures

22:00 Close
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Programme (cont’ d)
Saturday 14 December 2002

7:30 Breakfast

08:30 (Tutors) Additional software topics (if required)

09:00 (All) Training Session with Tutors: Refinements of
Magnetic Structures (cont'd)

10:00 Coffee Break

10:30 PGR Powder Diffraction Instrumentation

11:10 Break

11:20 (JRC) Additional Topics: Polarised Neutrons, etc.

12:15 Lunch & Close
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Magnetic Symmetry - Shubnikov Groups
Paolo G. Radadlli
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Obijectives of this module

* To learn the relevance of time reversal for magnetic
structures.

« Tolearn how PG and SG operators act on spins.

» To learn how magnetic groups can be constructed
from subgroups of index 2.

e Tolearn how to find those on the International
Tables for PG and SG.

* To learn about magnetic lattices.

* To be able to construct invariant spin arrangements
for magnetic SG, with specific examples.

» To learn the relation between Shubnikov groups and
representations.

Reference W. Opechowski and R. Guccione, “Magnetic Symmetry”, in

Magnetism, Vol Il part A, ed. By G.T. Rado and H. Suhl. Academic Press
(New York and Londn), 1965, pp 105-165.
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Notation-1

Element of Space group-}: F=(Rlt(R)+t),
whereR s a proper or improper rotatiohis a primitive
translation and(R) is a non-primitive translation.

{R} is the point group associated withR}. If {( R|0)} is
a subgroup of Kk}, then {F} is calledsymmorphic.

Given a positiom on the lattice, the subgroup {r)} for
which Rt(R)+t) r = t'+ r is calledsite space group, and
its point group R(r)}.

We shall call A}={E, E’} the 2-elements group of the
timeidentity (E) andtimeinversion (E’). Because
crystal structures are statid;{® { A} is also a
symmetry group of the crystal.




Notation-2

However, if we add spins (i.e., magnetic moments) to
some of the atoms, time reversal willitch the direction
of the spins. SoR}®{ A} cannot be a symmetry group
of the magnetic structure, and the magnetic symmetry
group, M}, must be a subgroup off} ®{ A} . In
particular, (|E’) cannot belong to it.

* P

Forward time Backward time

Purpose of the study of magnetic symmetry is to generate
systematicallyall the magnetic groups associated with a
particular space group of the crystal structure.
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Caveat

Magnetic space groups, also knowrSasbnikov

groups, are perhaps the most elegant description of
magnetic structures. However, in the presence of
magnetic ordering, the crystallographic space group is
oftennot known a priori, because the symmetry subtly is
lowered by magnetic ordering itself. One has therefore
to lower the symmetry in a systematic way, which is the
purpose of representation theory. The study of
Shubnikov groups with therefore serve as an
introduction to the more general methods to be described
in the remainder of the workshop.




‘Coloured’ groups

We have just seen that the magnetic space grigllipust
be a subgroup off} ®{ A} , and cannot contain|E’).
However, it can contain elements of the foff(),
which will be calledorimed (F’). If it does not, it is called
atrivial (or colourless) group. Trivial groupgan describe
magnetic structures. Groups of the typ¢®{ A} are
calledgray or paramagnetic groups. All non-trivial
subgroups of £} ®{ A} are calledblack and white groups.

The original concepts and terminology were developed by Heesch (1930) and
later by Belov and by Zamorzaev (~1955, including a complete list of the
magnetic SG). The original aim was purely mathematical or crystallographic
(study of coloured patterns on lattices, wAtheing colour inversion). The
application to magnetism is due to Landau & Lifshitz (1958). These concept
can be extended toulticoloured SG, which are also of some interest for
magnetism. Aleksei Vasil'evich Shubnikov was the founder and first director
of IC-RAS.

Colour vs. Spin

The analogy between colour and spin can be made by replacing
the meaning of E’ frontime reversal to colour change.

However, colour and spin differ fundamentally in the way the
regularspace group operators act upon them. Colours are
scalars, whereas spins aexial vectors.

It is important to remember thah axial vector is left

invariant by centering. Thereforeproper rotations act on
spins in the same way as on nornpal &r) vectors, whereas for
mirror operations and centering there is an additionapin flip.

On top of thispriming any operator will entail and additional
spin flip.
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¥

\

+

m, 2,3, 4,6, 1 1
Unprimed | Flipss, Rotate 3, 5, | No effect No effect
Primed Flip s, Rotate g, 5, |Flip s.5,s, | Does not
F||p S, %, S, occur
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Constructive theorem

We will give here the ‘fundamental lemma’ to construct
magnetic groups. It will apply equally well to SG, PG or
lattices. Let {G} be a crystallographic groupM} a
derived magnetic group (subgroup GH®{A}) and
{G,,} the group of the elements o6} that are
unprimed in {M}. It can be easily shown that

{G}={ Gy} +p{Gy}
wherep does not belong to §,,}, which is therefore a
subgroup of index 2 in {G}.

This simply has to do with the fact that the product of 2 primed elements
must be unprimed.

Follows {M}= {( GyI|E)} +p{(GyIE)}
So, the problem of findingll magnetic groups arising
from a crystallographic groupgd} is reduced to that of
finding all subgroups of index 2 o).




Example: magnetic point groups

To apply this rule to magnetic point groups, one needs to
look no further that page 781 of the International Tables
(copied overleaf). Subgroups of index 2 are those that
have exactly half the number of elements of the original
group. Elements of the subgroup will lmgorimed, all

the remaining elements beipgmed.

Example 1: mmm

48

24 4

16 -

Order k of group

Fig. 10.3.2. Maximal subgroups and minimal supergroups of the three-dimensional crystallographic point groups. Solid lines indicate maximal
normal subgroups: double or triple solid lines mean that there are two or three maximal normal subgroups with the same symbol. Dashed lines
refer to sets of maximal conjugate subgroups. The group orders are given on the left. Full Hermann-Mauguin symbols are used.

781
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Example 2: 4/m m m

Admissible magnetic point groups

A point group is calle@dmissibleif all its operators leavat
least one spin component invariantAdmissible MPG are
marked with an asterisk in OG, Table I.

As we shall see,admissible point groups (AMPG) have two
very important applications.

* The site symmetry of a magnetic atanust be a AMPG.
» A Ferromagnetic MSG must have a AMPG as its MPG.

The second is mecessary but not sufficient condition for the

MSP to support FM. The other condition is that its lattice is a
trivial magnetic lattice (see below).
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TABLE I
List oF THE MAGNETIC PoINT GROUPS

*2/m
222

mm?2
mmm

*4

*4

*4/m
422
4mm
2m
4/mmm

H\

*7

Fap!
2'im

*2'2'2

*m'm2’
m'mm

&
Z
4'Im
422°

4'm'm

2'm

4/m'mm

3
*32
*3m’

I'm

%
w\

6 /m
622

6'm'm
6'm’2
6/m’'mm

m’3

4’32
£3m
m’'3m

2/m’

*m'm'2
*m'm’'m

4/m’

*42°%
*4m'm’

42m’

4’ lmm’'m

6/m’

*62'2

*6m'm’

6'm2’

6'/mm’'m

m3m

*N\\s\

P

mmm

4’ jm’

*12'm’

4 fm'm’'m *4mm’'m’ 4/m'm'm’

@\\S\

*6m'2’

6’ /m'm'm *6/mm’'m’ 6/m’m'm’

m’'3m

Examples of admissible PG

O O &

(any direction) 1

1*

42’m °
Spin along z

42'm 4'2m 4;

\

42m
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example

Things to remark about thd2m

-fold axes).

Spin must be parallel to the 4-fold axadvfays true except
4 must be black. In fact, for spins4 4

for 2

TABLE 1V

List or THE ApmissiBLE MacneTic Point Groues

Mris always black.

Magnetic point groups Admissible spin directions
n =3
1 1 Any direction
n =2
2 2im’ m'm2’ Perpendicular to the axis
m’ Any direction in the plane
=1
m Perpendicular to the plane
m'm'm Perpendicular to the unprimed plane
22°2 ) Along the unprimed axis
2 2im m'm'2 Along the axis
4 3 4im 422 Along the axis of higher order
Am'm’ 42'm’ Almam’m’ Along the axis of higher order
3 I 3Im® 3m . Along the axis of higher order
6 é 6&/m 63 Along the axis of higher erder
Gmt'm” &m'2’ b/mmm’ Along the axis of higher order

If a spin is perpendicular to a 2-fold axis, that amist be

red.

If a spin is in a plane, that planeist be red.
This is because the product of two primed 45-degree
rotations is an unprimed 90-degree rotation.

Note that the central 2-fold axis #f
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Magnetic Bravais Lattices

The constructive theorem we have used to generate the
magnetic point groups , based on the identification of
subgroups of index 2, can be applied to generate magnetic
lattices {T,} from Bravais lattices {}.

In general, a group of lattice translations generated by a set of
primitive vectorsa,, a,, a; has exactlyseven subgroups of index

2. However, they do not always generate independent MBL, as
some of them can be equivalent by interchange of the axes.
Also, we are only interested in MBL thagiong to the same
holoedry of the original BL.

In fact, as we shall see in the remainder, MSG either shasartiedattice
with the original SG (trivial ML) or the sanm®int group (and therefore,
necessarily, the same holoedry).
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2a, b, c a, 2b, c a, b, 2c

a, b+c, 2c 2a, b, a+c 2a, a+b, c 2a, a+b, a+c




P _Um.:u.v

Fic. 1. Magnetic lattices of the triclinic system.

x P R,.(P,) PR, R.(C,)

C,(C,) C.(F.)

Fic. 2. Magnetic lattices of the monoclinic system (the twofold axis has been chosen
as the y-axis).

i

* P R (P} P (R) R )

a+b,0-b

Fic. 4. Magnetic lattices of the tetragonal system.

Y

R

N.._.ei...:..":ﬂ_v

F1c. 5. Magnetic lattices of the trigonal and hexagonal systems.
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Fic. 3.

iyl

CoP.)

Magnetic lattices of the orthorhombic system.

Magnetic lattices of the cubic system.
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Magnetic Space Groups

Once again, the constructive theorem, based on the
identification of subgroups of index 2, can be applied to
generate magnetic latticeB,{} from space groupsH]}.

The method to generate all the MSG systematically is explained
in OG. We will limit ourselves to use the International Tables
volume A. In there, for each SG, there is a lishwhimal non-
isomor phic subgroups (Types |, lla and llb), andinimal

isomor phic subgroups of lowest index (Type lic). The index is
indicated in brackets (e.g., [2]).

Therefore, each subgroup listed as [2] will generate a non-
trivial magnetic space group. There are 1421 of them in
total, 1191 of which are non-trivial. All SG except F23 and
P2,3 generate at least 1 non-trivial MSG.

Rules to construct Magnetic Space Groups

1. Identify the subgroups of type |I. They share the same
lattice (trivial MBL) but have different PG, so they
correspond to all the subgroups of index [2] of the
associated PG (with multiplicity). For these, it is sufficient
to prime the generators that correspond to missing
operators.

2. ldentify all the other subgroups of index 2 (lla, Ilb and IIl,
no distinction). Then
» Identify the MBL based on the supercell, and write its

symbol.

* For the Belov symbol (right column in OG), one simply
need to complete the H-M symbol with that of the
subgroup.

* For the OG symbol, the modified operators with respect
to the original symbol will be primed (e.g. m->n=m’)
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TARLE III
List oF MAGNETIC Space GROUPS®

Triclinic system Pym Pyn Plyfm’
I Pcm C.m Pl tm'
#p| Py’ Pye Pu2yim P2i/m
|| Py 2yim’ P2je
* Py
Pal P : “C2fm
i
*p
* f
il Pt Py 2 ?w
, P - P » ON__.»S
m.Hl - Pee Cue *C2' .
Hun..u w-_. ﬁ.uuNh_a._ QwM“a
*Cm Cp2im Pcellm
Monoclinic system Co2im’ C2lc
2 *COm' Cp2im Pcdim
*P2 Cyem Cim Cp2tm' P2
Cpm Pem CpY'im’ P2,
“Py’ Camt Ce .
P2 P2 Cort’ Puc Paie
W@W M«M *Ce P
Pz P2 P
b 1 * ﬁ.n. * 3\ _:.(.\
P Cpt Pec Pulle F2le
2fm Py2fe Pjc
i 2 *Pim Pr2ic C2fe
Py P2, uuu.N..‘__n P2yfe
PYim
*2 m _:a‘ *¥P2.jc
*S- *S __‘3‘-
Coa ca Py2lm Py2{m Pe
P oa Py2im Py2fm P2ic
nm ” wnm Pc2im C.2im P2l
et e Pu2im  Pm Py2,jc P fc
P Py2m wunN_F. *C2e
*P2,im
* Py C¥ e
Pyum Pom PLiim C2ie

s Every page of Table I1I should be read first from the top to the bottom of the left-
hand double column, then from the top to the bottom of the middle double column,
and finslly from the top to the bottom of the right-hand double column.

TABLE III (continued)

Moenoclinic system

*Cle

2
Cplfe Pgfe
Crlie Pcyje

Orthorhombic system

222
P2
*PYY2
F222 P22
Pc222 222
Pe2n2 Fan
P22Y P22,
P22,
*p2'2'2,
P22
P22, P22,
P2, c.222,

Pp22'2, £.2,2,2
P22

*p22,2

*P2,2:2°
Py2,2,2 P.22,2
Pu222 P22

F2,2;2,

P12,
222,
*C2'2'2,
022
Cp222, Pc222,
ﬁuuuuwmnw_. Pc22,2,
Cp22°2] Fa2,242

222
*(2'22
222’
5,222 222
Cp222 Pc222
€222 1222
;22 C.222,
Cp2'22 P22
Cp22'2 P 222,
(o773 12,22,
F222
*EY2'2
Fg222 €222
Fe22'? €222,
nR3
*12°2°2
Ip222 P22
Ip2'22 P2,2,2
12,22,
127272,
1p2,2,2, Pi2,2,2,
Is2y212, P22,
mm2
Pmm2
*Pm'm2’
™ sa._»w
Pymm? BPoamm2
Pymml FP.mm2
Pemm? Comm?2
P ymm2 A.mm2
Prmm2 Fymm?

Pomm'Y Pane2,

P.om'm'2
Pypm'm'2

Pum'm'2
Pmec2,

*Pm'c2}
*Pme'2]
*Prn'e'2,
Pome2,
Pymel,
Peme2,
Pome'2,
Pum'c'2,

Pre2

*Pc'ed
*Pe'c’2
Pyyce2
Precl
Poyc'eY
Pmal
*Pm'a2’
*mgkwh
*Pm'a’2
Pymal
Pymal
Pyma2
Pom'a2
Pom'al
Pym'a’2
Pn'a’2

Peal,

x s
*Pc'al,
*Pea'd;

Pore2
Pona2
Abm2

Pymc2,
Pymed,
Cymcl,
Pymnl,
Pya,

Paec2
Catc2
Pync2

Pyna2
Pmal
Ama2
Pha2
Poeal,
Pmnl,
Pinc2
Aba2
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‘TABLE 111 (comtinued)

Orthorhombic system

Pea2,

*Pc'a’2,
Pycaly
Pucla'2,

Pne2

*Pr'cld’

*Pc’2

*Pr'c'2
Pynel
Punc'?

Prm2,

*Pm'nl;

*Prmn’ 2,

*Pm'a'2,
Pymn2,
Pym'n2}

Pha2

*Ph'a2’
Py q'2
Py ba2
Py ba?
P,ba’2
Pnal,
*Pr'aly
*Pra’2;
*Pr'a’2,

Pnnl
*Pn'n?’
*Pr'n'2

Pynn

Pycaz,
Poal,

P2
P.nn2

Pl
Pnal,

P.baZ
P.nal,
Pnl

F.dd2

Cmm2

“Crm'm2

*Cm'm'2
Cyerm?
Cpmm2
Cmml
Com'm2’
Coom'm'2
Cpm'm2’
Cpm'm'2
Con'm2’
Cm'm'2

Cmecl,y

*Cm'e2]

*Ome'2]

*Cm'e'2y
Cpme,
Cpm'c2,
Cpme'2)
Cpm'e'2,

Cee2

*Cc'c?'

*Oc'e'2
Cpeel
Cpc’c2
Cpc'e’2

Amm?2

* Am'm2’

*Amm'2

*Am'm'2
Agom
Apmm2
Apmm2

A mm’2’

Cmm?
Pomm?2
Tanm2
Come2y
Cuec2
muﬁahm
Pcbal
I.mal

I hal

Prme2,
Ppeal,

Pemn2,
Permaly

Prec?
Pcnc2
Pemm2

Agmml
P ymm2
I.mm2

Agmal

Apm'md’
Apmm'?
Apm'm'2
A2

Abm?

*4b'm2’

*4bm'2’

*A¥m'2
Ay bm2
Apbm2
Abm2
Agb'm'2
Apb'm2'
Apbm'?
Apb'm’2
Ap'm'2
Ama2

*dm'al

*Ama'2’

*Am'a'2
Apmal
Apm’a?

»mm.a«a,.m...

Apm'a’2

Aba2

*Ab a2

*Aba'2’

*Ab'a'2
Apba2
Apb'a?
Apba'?
Apb'a’?

Fmm2

*Pm'm2'
»3:.3..&

Ppmnl,
Pme2,
Panecl
I.ma2

Abm2
P Waﬁw
Bpmal
Aba2
..TEE&M—
Pyca2,
Paecl
Ibal

Pymal
Pyna2,
P2,
P g2

P ba2
Pyca,
Pgnal,
Pynel

TABLE III (continued)

Orthorhombic systemn

Fmm2

Femm2

F L.n.uuSN

Femm'?
Fom'm'2
F, .A.an___-!.M_-
Famm'?
F, ha.a.n

Fdd?

*Fd'd2'
*Fd d'2

Imm2

*Im'm2

Im'm'2
Ipmml
Tpmn'2’
Ipm'm'2

Iba2

a2’

“IYa'2
Ipbal
Ipba'y
Iph'a’2

Ima2

*Im'a2’
*I'ma'2’

*I'm'a’2
Tpmal
Tpmi'a2’
Ipma'2'
Ipm'a’2

ﬁ_kaaN
Acmm2
QL:.—&N—
QinhN
Acbm2
Acmal
Acha2

Pmml
Prmn2,
P2

Pec2
Pra2,
Prba2

Prmal
FPmal,
Prmel,
FPrne2

mmm
Pwmm
Po'mm
*Prt'm'm
Pm'm'm'
Fymmm Ponmm
Femmm Cammm
Prmmm Fimmm
Pyommm’ Pomma
Pom'vi’'m Pem
Pmm’ Comma
Prnn
Pr'nn
*Pr'n'n
\a\a-
FPponn Fddd
Pecm
Pc'em
Peem'
*Pe'c'm
*Pr'em’
Po'e'm’
Pogeom Pyem
Peocem Ceem
Pygcem’ Peea
Pyc'c'm P.omna

Py ban
Pyb'an
Puta'n

Prmma

Pw'ma
Pmm'a
Pmma’
*Pm'm'a
*Pmm'a’
*Prm'ma’
Pr'm'a
Pymma
Pyomma
P Amma
Pom'ma
Pyumma
Pym'ma’
Poom’'ma
Pymm'a
Pym'm'a
Pym'ma

Prng

Pn'ng
Prn'a
Prna’
*Pn'a'a
*Prn'q’
*Pr'ng’
?ha\ah

Phan
Pyring
Poann

Poynma
P.mma
Camem
Pybem
Pomimn
Pomng
B.hbam
Fohem
Porca
Comeca
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TABLE III (continued)

Orthorhombic system
Pmna

*Pm'na’
Pm'n'a’
Pymna Pymna
Pym'na Phen
Pymna' Panm

Pym'na’ P.nna

Peea

Pe'ea
Pet'a
Peca’
*Pl'd'a
*Pec'a’
*Pe'ca’
Pe'e'd’
Pyeea Pyeca
»Upzn.hh Pben
Pycca’ Pyeen

Pyc'ca Pna

Pbam

Pilam
Pham'

*Pha'm

*PY am’
Pta'm'
Pybam Pham
Py b'am Pyma
Pubam Poamm

Peen

Pden
Peen’

*Pe'e'n
*Plen’

Po'c'n’

FPhem

Pbem
Fbc'm
Phem’
*PHc'm
*Phe'm’
*Pbem’
Pb'e'm’
Pybem
Pobe'm
Pybem'
Pbc'm’

Prnm

Pr'nm
Pnnm’
*Pr'n'm
*Prn'm’

Prn'n'm’

Pmmn

Pm'mn
1 ’
*P'mi'n
* “ nﬂﬁw

Pm'm'n’
P,.mnmmn
P, on'mn
Pymm'n
Phen
Pb'en
Phe'n
*Pb'c'n
*Phe'n’
*Pb'cn’
;‘ﬂ\a\

Pbem
Pyma
Pobea
Pyben

Pommn
Pauma
Puen

Pbea

Pb'ea
*Ph'c'a
Py
Prnma
Pn'ma
Prm'a
Puma’
*Pr'm'a
*Pam'a
*Pr'ma’
Pr'm’a’

Cmem

Cm'em
Cme'm

*Cm'c'm

“Cmc'm’

*Cm'cm'
Cm'c'm’
Cpmem
Cpm'cm
Cpmc'm
Cpmem
Cem'c'm
Crme'm'
Cpm’em’

s ¥

Cptit ¢ 1

Cmea

Cm'ca
Cme'a
Cmea
*Cm'e'a
*Cme'a'

P A
Pobon
Peommn
Thaaa
Penma
Prunm
Pcben
Penna

TABLE III (continued)

Orthorhombic system

Cmca

*Cm'ca’
Cm'c'a’
Cpmca
Cpm’ca
C Nsh‘&
Cpmea’
Cpm'c’a

C N.%F.\a\

Cpm'cd’

Qmi\ma\

Cmmm

Cm'mm
Cmmm’
*Cm'm'm
*Crnm'm’

Cm'm'm’
Cyemmm
Cpmmm
Crmmm
Coem'm'm
Coomm'm’
Cpm'mm
Cpmmm’
Cpm'm'm
Cpmm'm’
Cpm'm'm’
Cn'mm
Cpn'm'm
Cem
Cc'em
Ceem'
*Cc'e'm
*Cec'm’

cd'c'm’

Pcbam
Pcceca
Pcnma
Pcbem
Peeen
Pcmna
Pcbca
Pcben

Cmmm
Pcmmm
I mmm
Cycem
Comem
Nvﬁ§§
Pemmn
Pcbam
Pcmna
WG&«S
Iomma
I.bam

Cpcem

Cpc'em
Cpeem’
Cpc'c'm
Cpec'm’

’

Cpc'c'm

Cmma

Cm'ma
Cmma’
*Cm'm'a
*Cmm'a'

Cm'm'a’
Cyomma
Cpmma
Cymma
Cyem'ma
Cyem'm’a
Cpm'ma
Cpmm'a
Cpmma’
Cymm’a

I

Cpn'm'a

Ceca

Cc'ca
Ceca’
*Cc'c’a
*Cec'a’
Cc'da
Cpcca
Cpc'ca
Cpeca’
Cpec'a’

Fmmm

Fm'mm
*Fm'm'm

Pceem
Pcmna
Pceen
Pcnnm
Pcnna
Pennn

Comma
Pecem
I.bam
C.mca
Cceca
Pecca
P, cmma
NUQ@QS
I.mma
I.bca

P, 0@& n
Pccca
Pcben
Penna

Fm'm'm’
Femmm

Fem'mm
Fommm'
Fem'm'm
Femm'm'

Fem'm'm’

Fddd

Fd'dd
*Fd'd'd
Fd'd'd’

Immm

Im'mm
*Im'm'm
Im'm'm’
Ipmmm
Ipm'mm
Ipm'm'm
Ipm'm'm’

Ibam

Ib'am
Ibam'
*Ib'a'm
*Iba'm’
v'a'm'
Ipbam
Ipb'am
Ipbam'
I Nw\hss .
I N%&nx‘

s 1t

Ipb'a'm

Ibea

IY'ca
*Ib'c'a

C 4mmm
C Amem
C Amma
C 4ccm
Cymca
C 4cca

Pymmm
Prmmn
Pinnm
Pnnn

Prccm
Pbem
Preen
Prbam
Nv~v§
Prban
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TABLE 111 {(continued)

Oythorhombic systemn
Ibea

We'd
Ipbea Pphea
I 1@___8 Preca
Imma
Im'ma
Tmma’

*Im'm'a

*Imom'a’
Im'm'a’
Ipmma Pymma
Ipm'm'a Pmna
Ipmm'a Ppma
H}w‘g‘ wg

Tetragonal system

4
*P4
P
P4 PA
Ppd Pcd
P 4
P4 Py
*P4,
P4,
ml.. Pcd,
P4y
P4
P, ‘“- P, __B,n
Prd, Peody
Py, 1A

PuAy Py

*Pa,
P4,
Ppd, Fedy
“I4
J oy
Ird P
Ipt' P4,
*I4,
1Ay
Hl- P 1H
Ipd, P,
3
*P
F¥
P,A Pa
P © Pcd
Pd 14
*13
by
Ipd PA
4fm
*PaAfm
PA'm
Pajm’
P jm
PoAim Pdfm
FPrdfm Podim
Pram IAm
P |m Pdyjm
Ppdim' Podin

*Phofm

Payim

P4yfm’

Paim’

Ppdim Pcdyim

Ppdyim’ Prdyfn
*PAln

Pd'{n

Pajn'

P4’ o

B Aln Pafn

PA In Py jn

*Pa,in

Pa “ in

Pa,n’'

Payin’

P, fn 14 fa
*I&m

I8 [m

K’

4 im'

Ipdim Pri(m
Ip4'tm Pslm
Ipd}m’ Piin
I 1‘__3\ Pidsin

!N&.»_‘ﬁ

Mifa
. fa
s’
422
P4a22
Eﬁ““-.
P42’

TABLE III (continued)

Tetragonal systemn P4,2.2 dmm
Pa22 Pamm
= P42
P42 P42 PA'm'm
P22 PA22 P Pd'mn’
Ppa22 P22 Prh22 Pch2,2 *Pdo'm’
P22 T Podia P22 Podmm -
P A2y P42 Pa,22 Ppdmm Podmm
FPpq4'22' Pcd2,2 —_— Pidmm TAmm
P42 P42 w.l“afw Pebacm
—= P4y Prckmm' Pdyme
P&2Y P4272 wsa.s T, e
*Pa2)2 Fpa,22 Pcas22 7 Potom
Pa2i2 P27 Pod2,2 Prdm'm I Aem
P22 PA22
P 422 PA22 P2, e
P42 P42, P4tm
e *Pd, 2,2 *E aa.
P &aNN T&hNHN Pdb'm
*P4,2' Py dbm PAbm
P42 1422 Poud't'm Panm
Ppd22 Pcd, 72 |I Py d'bom’ P4be
Ppd22 Pcd2,2 422 Podb'm! Panc
142’2’
P22 793 Phiem
P22’ Ipaz2 Pra22
*P4, 2! 1p4'22’ Pp4,22 Phyc'm
P42 IpA22 Pz sl
Ip4'22 Pra;2,2 *Pagc'm’
P4,22 Ppdscm FPedgme
rezz 422 Pediom’  Pcbe
“P4,2'2’ F%0% Panm
P4272 *74,2'2"
Pyd22 PAD2 2 Pdp'm
Ppé;22 P4, 22 Ip422 Pan Pdnm’
P22 14,22 Ipd}22’ P22 *Pldon'm’
P,AL2Y P42 Ipd,2'2 Pia2,2 Prdinm Lamd
Ppa22’ Pcd,2,2 Ipd;2°2 P22 P’ m’ T Aed
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TABLE III (continued)

TABLE U1 (comtinued}

Tetragonzl systemn

Pdcc

PA'e'e
Poe’
*Pac’e’
Ppdce
Ppd'ee’

Pdne

Pa'n'e
Pd'ne’
*Pin'e

Pdymc

Pdgm'c
Pdime’
*P4.m'c’
Ppd.me
Ppdime’

Pdbe

Pdb'c
PAbe’
*pay'c
Tamm
I m'm
1o mm’
*H#i ‘ih
Ipdmm
Tpld'n'm
Ip4 mam’
Ipdm'm’
idem

Hem

Prodee
Pcdne

Podaem
Perdnm

Pidmm
P nm
P h\«unxﬁ
P, ah:.n

I em’
Hc'm'
Ipdcm
Ipd'e'm
Wem'
Hac'm’

14,md

Ia/m'd
Id[md’
*am'd’

i4.ed

I4c'd
I4;cd’
*J4.¢'d’

42m

PA2m
PiYm
Pi'2m’

*¥PaY m’
Py Adm
Ppd2m
Prdom
P d2'm’
Ppd'2m’
P2
WMW.

P42
P42
*Pi2e
Prdlc
Ppd2¢’

Pa2.m

PA20m

Prdbm
Prdyem
Prdsbe
&u ._L.nn

PA2m
Prdm2
Idm2
PA2
Prdb2

14c2

P, QN..“N
wﬁNﬁ 2

PA 2

*PA2m’
P, A2,m BAdm
P g2 m’ PAd2c
Pl

Pa'2c

P3¢
*Pine

Pim2

Pi'm'2
Pa'm2

*Phm'2
P,dm2 PAm2
Prim2 Prd2m
Prdm2 142m
P aA'm'2 Pdc?
Ppd'm2’ Peldlm
Pac2

Pic2
Py
*PacY
Ppic2 Pcd2e
Ppd'c2’ Pl

Fapz

PYE2
PApY

*Pay'Y

P, A2 PAp2
P A2 Pan2
Pan2

Pi'n'2

Pd'n2

*Pdn'2

Prn2 1A

Tetragonal system

Idm2

I4'm'2

I4'm2’
*[im'2?’

Ipdm2 Paml
Ipd'm"2 Piin2

142

¥
ey
*Jac'Y
Ipde2 Prac?
Ipdc'?’ Pydb2
I8m
2'm
1A2m
Cre
Ipd2m Pyd2m
142 m PA2;m
I3’ P2
Ipd2'm’ Pl
azd
yd
13
*[42'd’

4fmmm

Pa)mmm

Pifm'mm
P4 fmm'm
P4’ fmmm’
P im'm'm
*Pafmm'm’

mﬁxhﬂaagw

Pajm'm'm’
PyAfmmm
Ppdfmmm
Pidimmm
P4 fmm'm
P A fmmm’
Podfmn'm
Ppd{m'mm
Ppd’ fmmm’
Ppd’ jm mm’
Prjmn’'m’

P4 imer

Pijm'ec
P4 ime'c
P& fmec’
PAjm'c'e
*PaIme'c’
P4 tmi'ce’
Pajm's'c
FPpdimece
Ppim'ec
Ppd’ fmec’
Ppa'im'cc’

Péjnbm

Pdin"bm
P2 b’ m
P4 jnbm’
P 't m
*Pd{nb m’
P4 jn'om’
Pajn'b'm'
Py Alnbm
PyA nb'm
Py A’ fnbm’
Py Aint m’

Pilnnc

P4in'ne

P d{mmm
PoA{mmm
1.4 {mmm
PAjmem
Pyfmme
PAfmee

. Pcdjrmm
Pambm
Pedinbm
FAfmem

Prdjmec
Pcafnce

Pcdfmne
Pedjmc

Pafnbm
Podyfnnm
P4ynbe
PAfnnc

P4 nn'c
P4 [nnc’
Pd in'n'c
*Pdfnn'c’
P4 fr'ne’

L

Pidfn'n'e

Pafmbm

Piim'bm
P4 [mb'm
P&’ by’
P4’ [m't"'m
*PA b’ m’
Pd’ ' b’
Pijm'b'm’
P4 fmbm
P4 jmb'm
P A [mbm'
P Almb'm

Pd{mne

Phjm'ne
PA'fmn’c
P& lmnc'
P4 fm'n'c
*Pdjmn'c’
P4 [’ ne’
Pdfm's'c’

Pafnmm

Pdin'mm
P4 frm'm
P4’ fnmm’
Pd in'm'm
*Pdfnm'm’
P4 In' mm’
Pafr'm'm’

Py dnmm

PAjmbm
P Ay fmm
P4, fmbe
Pdlmne

P4 nmm
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TABLE 1II (continued)

Tetragonal systern

Pdinmm

P lnm'm
Pod’ trmms’
P A inm'm'

Pdfnec

Pajn'ce
P4 nc'c
P4 jnee”
PA'fn'c'e
*Pajnc'c’
P4’ jrec’
Pifn'c'e’
Pa,{mme
Pyt me
Pdgfmm’c
PAimme’
Pilm'm'e
*Pdyfmm'c’
Paim'me’
Paofm'm'c’
Ppdyfmme
Ppd,jm'me
Ppdyfmm'c’
Ppdyim'me
Pd,fmem

Pdyim'cm
P4 imc'm
Pdyfmem’
Pdyfm'c’'m
*P4.fmc' m'
Paim'em’
Pa,im'c'm’
Ppd, fmem

Pglnem
PAyjnme
PAfnce

Py fmem
Pedfnem
Pcdyimnm
Pedyfnnm

Pod,imme

Ppdofm'em  Pedyfnme
Ppdyfmem’ Ped,tmbc
Ppdiim'em”  Pcd,fnbe

Pdyfnbe

Pd,fn"be
Pdgind’c
Pdoinbe’
Pdyin'b’c
*Payinb'e’
Paiinse’
Pd,fn's"c

Pdyfrmm

P4, in'nm
Paifnn'm
Payinnm’
P4 in'n"m
*Pd,fnn'm'
P4 in'nm’
Pdfn'n"m'
Pidyinnm 14, famd
Pidyinn'm’ 1.4, jacd

Pd,fmbe

Pa,[m'bc
PAImb’c
PAiImbc’
P4y im'be
*Pd,Imb'c
Pdyfm'bc’
Py m'b e

P4, mnm

Payim nm
Pdyimn'm
Pdimnm’
P4 jm'n'm

*Pd, ' m’
P4 im'nm’
Paim'n'm’

P4, tnme

P4yin'me
Péonm'c
Pditnme’
Palin'm’c
tPdyfam'c’
P4l fn'me’
Pdyfn'm'c

Pdynem

Phin'cm
Paginc'm
Paynem’
Pdin'c'm
*Pd,inc'm'
Pdiin'cm’
P4, in'c'm’

14 mimim

1a{m' mm
I8 fmm'm
14 fenem’
i im'm'm
*4fmm'm’
14t mm’
Tafm'm'm’
Tpd jmmm
Ipdim mm
Ipd' (i m
Tpd' {mmm’
Ipd'im'm'm
Ipdjmm'm’
Ipd' jm' vsnt’
Ipdim'm'm’

Prd{mmin
Prdtamm
Prdsfmnm
Py mmc
Pidyfnnm
Prdfmn:

P ahn ‘ﬁ nmc
Prdjnne

TABLE TII (continued)

Tetragonal system

Idfmem

I4fm'em
M'imd'm
4 fmem’
I fm'c'm
*FAimc'm
I4 jm’em’
Idfm''m’

. Ipdfmem
Ipdfm'em
Ipd fme'm
164 fmem’
Ipd' im'e"m
Ipdtme'm'
Ipd jm'cm’
IpAjm’c'm’

18, famd

14, la"md
A fam’d
4 lamd’
idyjia’'m’d
* 14, fam'd’
I ja"md’
I, ja'm'd’

1A, facd

Iy fa'ed
Hayjac’d
K facd’
HMila'cd
4, jac'd
I4)ja’cd’
M&u __.u.. n\_ m__-

Prdimec
Prdince
P, [mbe
Prd,fmem
P inbe
Prd fmbm
Prdyfnem
Prd{nbm

Trigonal system

3
*P3

FP.3

*p3,

Py,

*P3,

Py

*R3

Rp3

3
“P3

Py
Py

*R3

P32

*P312’
P32

P321

*P32'}
P,.321

P3,12

*P3,12
F S )

P3

P3,

B3,

P3

P32

F.321

F.3,12

P3,21

*p3,2']
P,3.21

P3.12

*P,12
Py3,12

P3;21]

*P3,2'1
P.3,21

R32
*R32'
Rg32

Im

Pimil

*Pim'l
Pp3ml
m»nu 3_‘ 1

P3lm
*P3lm’

Py3lm
P 3lm'

P3cl

*P3c’1

Pilc

*P31c

Rim

*R3m'

P.3;21

P32

P.3,21

P3ml
Picl

P3lm
P3le
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TABLE III {contirued)

Trigonal system

Rim

Rpim
Raim’ Ridc

Ric
*R3
Im
Plm

P3'1lm
P¥1m'
P
P 3lm P3lm
P 3lm’ PJ1e

Pl
FY¥1c
Py
*Pilc’
Piml
PY¥m]
Pim’]
*P3m' |-
P Aml P3ml
Pooinm'l PJAcl

Picl

Pl

P¥:]
*Piel

Rim

R¥m
Ri'm’
*Rlm'

Rpim

R Nw.an. R hwh

R3e
RY¢
Ry
*Ric'
Hexagonal systern

6
*P6

g\
Pyb Po

H- u...mn ._v nmw

ign

Po;

*P6g

Po,
*gu

TunOu .wunmv
P »amm Po,

Pu.6, P:6,
Py.6; Peby

.N.-nﬂ& .ﬁuﬂ

&/m

*Paim

P6' [m
P’
P6'}m’
Piblm
Pu6im

*Paim

P63im
Py oux m
P64fm’
622
Pe2

P6'22
Pe'22
*p62'’
P, 622
P.6'22

F6,22

P6,2°2
Pel22
*pg,2'2’

P6.22

P6,2°2
P52
*Pg22

P6,22

P62
P62y’
*P6,2'2
P,6,22
P,.6322

Pbfm
Pbylm

P622
P6,22

P.6,22
F6,22

TABLE I1I (continued)

Hexagonal system

P6,22

P62
P22
*p5,2'2’
Pu6,22
P21

P6,22

P6;22

P62’

*P6,2'2
bmm

Pomm
P6'm'm
P& mm’
*Pém'm’
Py bmm
P 6'm'm
P, an__g___

P, om'm’

Poee

Po'c’c
Po'ec”
*Pée'c’

Poyem

Péoc'm
Poem’
*Pg n.n..wa\

PoHyme

Péyn'c
r 4

Phync
*Phym’c’

F.6,22
P.6;22

P 6rm
P 6ycm
P bymc
P.6ec

6&m2Z
Pém2
P&'m2
P&'m2’
P2
P.6m2 Pom2
P6'm'2 P.6c2

Pc2

P&'e2
P&'¢Y
*.Tmﬁ___ N__
P62m
PE2Ym
P5'2m'
*P62'm’
P,.62m Pi2m
P,6'2m’ P2

P8e

P§'Y¢

Pg'2e’

*Pgye!
6/ mmm

Polmmm

Poim'mm
Pg' fmm'm
P&’ lmimm’
Po'fm'm'm
P8 i mm’
*P6fmm'm’
P6jm'm'm’
P60 fmmm P6{mmm
Pob' fmm'm  Pbytmem
P6 tmmm’ P.6ytmme
P 6jmm'm’  P.6mee

Péimee

Pé6/m'ee
P& me’e
P fmec’
P& jm'c’c
P& tm'cc
*Poime’c’
P6im'c'e’

Péy[mem

Pbgjm’em
P6yjme’m
P6itmem’
Fogim'c'm
P63im’em’
*P6afme'm’
Poyfm'e' m’

Poglmme

Péafm' me
Péafmm’e
Péafmmne”
Peyim'm'e
P6,fm' ' me’
*Poyfmm’e’
Payim'm'e

Cubic system

23
P23
Pg23 F,23
i
123
Ip23 P23
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TABLE III (continued)

Cubic system

P23

12,3

Is2,3
m3

Pm3

Pm'3
Prm3
Pn3
Pn'3
wﬁnu

Fm3

Fm'3
Fd3
Fd’3
Im3
Im'3
Ipm3
Ipm'3

Pa3

Pa"3
Ial
Ia"3
Ipal
432
P432

P42
Ppd32

Pp3

Fml

P43

Pim3
»ﬂhau

Pal

FA3R

P4,32

PR
Prd,32 F4.32

F432
F4'3Y

F4,32

Fa,37
1432

14’32
1p432 P32
Ipd'32/ Pp3,32

P4,32

r4;32
P4,32
P4;32’

14,32

4,32

1p4,32 Pra32

Ip4;32" Pid32
43im

Pd3m

wwhu 3-

Priim FA3m

Prd 3m’ F43c

Fi3m

F4'3m'

o

I 3m’
Ipdim
Ipd3m’

Pd3n

P43’

F33c

Fa'3c

3d

3
mim

Pmim
Pm'3m
Pri3m’
P’
Prm3m
Prm3m'

Prln

Pr'3n
Pnin’
FPr'3n’

Pmin

Pm'in
Pmin'
Pm'In’
Pn3m

Pn'im
Pn3m’

Pa'"3m’

Pid3m
Pidin

Fomim
Fomic

TABLE III (continued)

Cubic system
Pnaim

Penldm Fdim
Ppndm’ F.d3c

Fmim

Fm'3m
Fm3m’
Fm'3m’

Fmle

Fni' 3¢

Fmld'
Fm'3c'

Fdim

Fd'dm
Fdim’
Fd'sm'

Fd3e

Fd'c
Fdic’
Fd'3'

Im3m

Im'3m
Imim'
Im' 3’
Ipm3m
Ipm'3m
Tpmim’
Tpm'3m’

la3d

Ia"34
Ind3d’
Ia'3d’

Ppndm
Pmim
Pmmin
Pmin
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Rules to construct invariant spin arrangements

Define a magnetic space group generated by the SG of the
crystal structure.

|dentify the magnetic site, and define its magnetic point
symmetry. Agraphic representation of the MG is useful.
Check that the site MPG &lmissible for at least one spin
component. Otherwise, the MSG does not support any
magnetic structure on that site.

Pick one admissible component, and apply in turn all the
MSG operators on that component, propagating it to all
equivalent sites.
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Rules to determine the MSG from a given structure

Check that the magnetic structurées Shubnikov-compatible.
This is easily done by applying the operators ofctiystal
space groupK} upon /" (including lattice doublings)is
Shubnikov-compatible if and only if, the structure is either
invariant & 1) or reversedx-1) for each and eveffyin {F}.
Prime all the operators i} for which 7" is reversed, and
identify the new primitive translations. This completes the
process.




Shubnikov groups and representations

To make a link with the more powerful representation analysis,
we can simply think of how a magnetic structdifevhich is
invariant under a particular magnetic groupgf, will transform
under the ‘parent’ space group-¥ It is apparent thal will be
invariant & 1) under the operators which amgprimed in {F,,},
whereas all the spins will be switched«1) for the operators

that areprimed in {F,,}. In other words, the set of numbers 1 or
—1 is arepresentation of {F} onto the linear space generated by
I. We can easily prove that the reverse is also true.

We can conclude the Shubnikov groups e valent to 1-dimensional real
representations of {F}, with the invariant/"being their basis sets. In general,

if we relax the requirement for invariance of the crystal structure, there is no
reason to prefer these to all the (infinite) others, whence the need for extending
the analysis to thdull expansion in irreducible representations.
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CONTINUED No. 89 P422

Generators selected (1); ¢(1,0,0); £(0,1,0); 1(0,0,); 2 (3); (5

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
8 p 1 (Dxyz G yxz @ y.iz no conditions

(5) £.y.2 Myxz (87,52

Special:

4 o .2 10 £40 4x0 4.£0 no extra conditions
4 n .2 x0,4 %04 0x3 0,51 no extra conditions
4 m 2. bt 24 4xd bgd no extra conditions
4 1 2 x,00 £00 0,x0 0,50 no extra conditions
4 &k ..2 xx,t o 554 fxt x 23 no extra conditions
4 2 xx0 £%x0 £x0 x50 no extra conditions
4 | 2. 0,4,z 1,0,z 0,47 14,02 hkl . h+k=2n
2 h 4. 4z 44,8 no extra conditions
2 g 4. 0,0,z 00,2 no extra conditions
2 f 222, 4,04 0,44 hkl: h+k=2n
2 e 222. 40,0 0,40 hkl : h+k=2n
1 d 422 4,44 no extra conditions
1 ¢ 422 $.4,0 no extra conditions
I b 422 0,0} no extra conditions
1 a 422 0,0,0 no extra conditions
Symmetry of special projections
Along [001] pd4mm Along (100] p2mm Along [110] p2mm
a'=a b'=b a'=b b'=¢ a'=4i(-a+b) b'=c
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0

Maximal non-isomorphic subgroups
I [2]1P411(P4) 1:2;3;4
[2)P221(P222) 1;2;5;6
(2)P212(C222) 1;2;7;8
IIa none
b E::rwmﬁ.‘nNSW_N_OaNPA»‘nN»,u\nmStvaN_M?E:..ANNQ‘HNPTMNe.n\HNEAINS

Maximal isomorphic subgroups of lowest index
Ile [21P422(c’=2¢);12)C422 (a'=2a,b'=2b)(P422)
Minimal non-isomorphic supergroups
I [2]1P4/mmm;(21P4/mcc; [2]P4/nbm; [2]1P4/nnc;{(3]P432
I (211422

353

P422 (No 89)

M

o

" \I/ I
@)

N 4
X

40 [.2.] X, ¥, 0

Special position
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4

P42’ 2

¢

4

¢

J

o=

*
=0

'

ﬁ.

\ 4

Special position: 40 [.2.] X, %2, 0
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16

Pnma 2h
No. 62 NUN_\: N_\s N_\D
PRL
1
Foon H
'
; y
Mv? -— ° —_—
2m_1m
&
y
I It
S
T t t
s
. ° —
Zulm

Origin at T on 12,1
Asymmetric unit  0<x<4; 0<y<i; 0<z<1
Symmetry operations

(131 (2) 2(0,0,3) 1,0,z
¢y 1 0,00 6) a x,y,%

(3) 2(0,4,0) 0,y,0
N m x4z

288

g

mmm

@ 2(4,0,
(8) n(0,4,

Orthorhombic

Patterson symmetry Pmmm

F—f——— =

=

A

e

x, 4,4
Ly

CONTINUED No. 62 Pnma

Generators selected (1); ¢(1,0,0); 1(0,1,0); ¢(0,0,1); (2); (3 (5)

Positions

M X Coordinates
Wyckoff letter,
Site symmetry

Reflection conditions

General:

Okl : k+1=2n
hkQ: h=2n
h00: h=2n
0k0: k=2n
00l: ! =2n

(2) 2+4,5,2+4 (I %,
i x,

2 (A x+hy+rir+d
(6) x+4,y,2+ (@) t.z

y+
y+ (8) T+4,y+4,z+4

Special: as above, plus

4 ¢ .m. xidz Frhized LA x+bd,2+d

4 b 1 0,0,4 40,0 0,4+ 41,0

4 a 1 0,00 10,4 0,40 444

no extra conditions

hkl . h+1,k=2n

hkl - h+1 k=2n
Symmetry of special projections

Along {001] p2gm Along (100] ¢2mm Along [010] p2gg

a'=4ia b'=b a'=b b'=¢ a'=¢ b'=a
Origin at 0,0,z Origin at x,i,1 Origin at 0,y,0

Maximal non-isomorphic subgroups

I [21P2,2,2,
[21P112,/a(P2)/c)
[21P12)/m 1(P2,/m)
[21P2;/n11(P2)/c)
[2]Pam2,(Pmn2,)
[21Pn2,a(Pra2;)
[21P2ima(Pmc2,)

IIa none

b none
Maximal isomorphic subgroups of Jowest index
e [3]Pnma(a’=3a);[3]Pnma(b’=3b);[3]Pnma(c’=3c)

Minimal non-isomorphic supergroups
I none

I RIAmma(Cmcm);[21Bbmm(Cmcm); [2]Cemb(Cmea); 2 mma; 21Pnmm(2a’= a)(Pmmn);
[2]Pcma(2b'=b)(Pbam);[2)Pbma(2c'= ¢)(Pbcm)
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Pnma (Pbnm) ? 1
%4 s 4 S 9
N ri ri C 11
I_ I é I ]I
| | & C 4
| |
: § : C © s, © 0 s, ®
| | y
| | ® ®
1 A 1
J; y J, ——=0 O=——
a :
Azc=c> S, =0 0= g o=
Special position: 4bg] ]0,0, ¥2 — o
y=0 y= "2
Pn'ma’ (Pb'n'nm) o o
C SX o O SX @]
e S
4 C O O
‘_I ; ]
‘—[ g j ° s, o o s, o
y : I y ° o
A ; ;
@] Sz o O Sz (@]
Special position: 4b] ]0,0, Y2
y=0 y= "%
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Pnma(Pbn'm)

I
% TP §
: C
S ' i
1 | &
T D
| |
o] o} ol G ® ® 4
R vl
| v ®
e} I O I O
. . ——=0O
a
cm=c> S, =OC
Special position: 4bg] ]0,0, ¥2 —
y=0
Pn'ma’ (Pb’ n'm) ? 1
A
‘¢S 19
B e e A )
¢ Fy @ s, ® &

I
™
@

—O=—

@

G0 s, =0 ¢

Special position: 4b] ]0,0, Y2
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Pnma’ (Pb'nm’)

I )i
|:X
T o> 11 5
e A &
o O O ¢ ]I T/r
o] o} ol Ay ® Sy ® © Sy
R e
a
Czc=c> S, =0O=0) S,
Special position: 4bg] ]0,0, ¥2 o o
y=0 y= "2
Pnma’ (Pb’'nm) o o

Special position: 4b] ]0,0, Y2

y=0 y= V2
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Pnm'a (Pbnm')

) N
DN

A ¢

|
__T____f__
~ | -
S RN R
I

A ¢
-«

Special position: 4bg] ]0,0, ¥2
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Magnetic Structure Determination.
What can we learn from a magnetic
structure refined from neutron powder
diffraction?

(Tutorial, overview, ... )

Juan Rodriguez-Carvajal
Laboratoire Léon Brillouin (CEA-CNRS)
DRECAM-CEA/Saclay, France
&

Service de Physique Statistique,

Magnétisme et Supraconductivite
DRFMC-CEA/Grenoble, France

December 2002 Workshop on Magnetic Structures (Abingdon ) %

Content:

- What’s and why magnetic structures

* Formalism to describe magnetic structures
 The Rietveld method

* Magnetic neutron scattering

» Magnetic structure determination:

Indexing: SuperCell

Symmetry Analysis: Baslreps

Simulated Annealing: FullProf
« Examples

« SIMBO and ENERMAG: programs to
analyze exchange interactions.

— R
December 2002 Workshop on Magnetic Structures (Abingdon ) ’Lj%
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Ions with intrinsic magnetic moments

Atoms/ions with unpaired electrons

Intra-atomic electron correlation
Hund’s rule: maximum S

—

m = g; J (rare earths)

Ni2* m = g¢ S (transition metals)

December 2002 Workshop on Magnetic Structures (Abingdon ) %

What is a magnetic structure? (1)

Paramagnetic state:
Snapshot of magnetic moment configuration

- 8 e ¢ B
fa:_,i*,o’
<Si>:O f\qf‘t\\
$ o "o "o ¢

— R
December 2002 Workshop on Magnetic Structures (Abingdon ) ’L%
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What is a magnetic structure? (2)

Ordered state: Anti-ferromagnetic
Small fluctuations (spin waves) of the static configuration

E;‘j:_J,-j Sl.°Sj K‘\ \‘X K.\ \.x “\
=, \T\ "o e

(S,) =0 W % . .
Magnetic structure;\‘x K.\ \.x K.\ \‘x

Quasi-static configuration of magnetic moments

December 2002 Workshop on Magnetic Structures (Abingdon ) %

Magnetic structures for what?

 Fundamental properties of condensed matter. Exchange
interactions related to the electronic structure.

* The first step for determining the exchange interactions
by inelastic neutron scattering

* Permanent magnet industry. Chemical substitutions
controlling single ion anisotropy, strength of effective
interactions, canting angles, etc: NdFeB materials,
SmCos, hexaferrites, spinel ferrites.

* Spin electronics, thin films and mutilayers

December 2002 Workshop on Magnetic Structures (Abingdon )
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Formalism to describe
magnetic structures

December 2002 Workshop on Magnetic Structures (Abingdon ) %

Geometric relation between magnetic moments of
crystallographically equivalent atoms

b

@ @ i
R ;,==a +3b+5a +yb

@ @ @ o -
December 2002 Workshop on Magnetic Structures (Abingdon ) ‘&%
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Magnetic structures
Magnetic moment of each atom: Fourier series

m, = %Sm exp{—2rikR,}

%

Necessary condition for real m;; = S-lg = Skj

Position vector of atom *;” in the unit cell “/”

R, =R, +r,=la+lb+lc+xa+yb+zc

December 2002 Workshop on Magnetic Structures (Abingdon ) %

Examples of Fourier coefficients
for simple magnetic structures
The simplest case:
Single propagation vector
k =(0,0,0)

m, = %“Skj exp{—27zile} =8y

* The magnetic structure may be described within the
crystallographic unit cell

* Magnetic symmetry: conventional crystallography plus
time reversal operator: crystallographic magnetic groups

— R
December 2002 Workshop on Magnetic Structures (Abingdon ) ’L%

Page 40/ 142




Examples of Fourier coefficients
for simple magnetic structures
Single propagation vector
k=12 H

B : B n(l)
m, = ZSW exp}—2mikR, } = Sy (-1)
K
REAL Fourier coefficients = magnetic moments

The magnetic symmetry may also be described using
crystallographic magnetic space groups

December 2002 Workshop on Magnetic Structures (Abingdon ) %

b b=b_
a a=—a

W W e WwTaw e

o ow w R W
L WACU W W ) W R W

m

e w Mw W

k=(1/2, 1/2) k= (0, 0)

— R
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Fourier coefficients of sinusoidal structures
Kk interior of the Brillouin zone (pair Kk, -K)
Real S;, or imaginary component in the
same direction as the real one

m, =S,; ep(—27kR, )+S,; exp(27ikR, )
1 .
Skj = Emjujexp(—Zm%)

m, =mu; cos 277(kR, + ¢ )
December 2002 Workshop on Magnetic Structures (Abingdon ) _,_[ 3% f\;

Sinusoidal magnetic structure

8l
$

O «—— 0 O
® «—O

> 0> 00— O0—

4
® ® @
A A

v
® ®

<0 @ O O0—
«—0 <© > O
— O 0O « 0O ©

; 3
FHS
!

, !

+—0 «
+«—O

k= (k,, k)

— R
December 2002 Workshop on Magnetic Structures (Abingdon ) ’L%
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Fourier coefficients of helical structures

Real component of S, perpendicular to

k interior of the Brillouin zone

the imaginary component

1 . .
S, = E[mujuj +lmvjvj] exp(—2rig,; )

m, =mu, cos 2r(KR, +%)+mej sin27t(kR, +%)

December 2002 Workshop on Magnetic Structures (Abingdon ) %

The Rietveld Method

— R
December 2002 Workshop on Magnetic Structures (Abingdon ) ’L%
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A powder diffraction pattern can be recorded in numerical
form for a discrete set of scattering angles, times of flight or

energies. We will refer to this scattering variable as : 7.

The experimental powder diffraction pattern is usually
given as two or three arrays :

{T; » Vi Ji }izl,...,n

The profile can be modelled using the calculated counts: ) .;
at the ith step by summing the contribution from
neighbouring Bragg reflections plus the background.

December 2002 Workshop on Magnetic Structures (Abingdon ) %

Powder diffraction profile:
sca@ttering variable T: 20, TOF, Energy

ﬁ

Bragg position 7}

Position “1”: T;

— R
December 2002 Workshop on Magnetic Structures (Abingdon ) ’Lj%
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The profile of powder
diffraction patterns

The model to calculate a powder diffraction pattern is:

Vei = ZIhQ(T; —1,)+b,
h

o O()dx = 1 Profile function characterized by its
o (x ) X = full width at half maximum (FWHM=H)
and shape parameters (1, m, ...)

Q(x) =g(x)® f(x) =instrumental ® intrinsic profile

December 2002 Workshop on Magnetic Structures (Abingdon ) %

The protile of powder
diffraction patterns

V=2 LT -T,)+b,
h

] _ ] ,B Contains structural information:
h  “h S

atom positions, magnetic moments, etc

Q _ Q ( X ,6 ) Contains micro-structural information:
o hi> /7~ m inst. resolution, defects, crystallite size, ...

bi — bi ( ﬂb ) Background: noise, diffuse scattering, ...

— R
December 2002 Workshop on Magnetic Structures (Abingdon ) ’L%
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The Rietveld Method consist of refining a crystal
(and/or magnetic) structure by minimising the
weighted squared difference between the
observed and the calculated pattern against the
parameter vector: S

Zz = iwj {yi _yci(ﬁ)}z

2
O i is the variance of the "observation" Vi

3 T
December 2002 Workshop on Magnetic Structures (Abingdon ) %

Magnetic neutron scattering

— R
December 2002 Workshop on Magnetic Structures (Abingdon ) ’Lj%
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Diffraction pattern of incommensurate magnetic structures

Portion of reciprocal space

O O @ @ Magnetic reflections

O. Q. O. :

O Nuclear reflections
[ @ o
h = H+k

O. O@ O .\
@ @ o

O O O Magnetic reflections: indexed by

® ® ® a set of propagation vectors {k}

H 1is areciprocal vector of the crystallographic structure
k 1s one of the propagation vectors of the magnetic structure

( k 1s reduced to the Brillouin zone)

December 2002 Workshop on Magnetic Structures (Abingdon )

Setting up of magnetic ordering in a Tb-Pd-Sn compound

W'inPLI]TH [Laboratoire Leon Brillouin [CEA-CHRS]]
File Plot Options Points Selection  # space  Calculations PRF options  Test  Estenal application:  Help

= E 8 RIQ¢|RE e opdu]==(t|4|X|Z 8] PFP| B

Tb2Pd20.58n0.95 / G41- LLB

Tnfensiy {a.1.)

[15:20 [NUM g [ [v= - | [—
December 2002 Workshop on Magnetic Structures (Abingdon ) ’b%
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Magnetic structure of DyMnGe,

Conical structure with two propagation vectors

k=(0,0,0)

= k==(0,0,8)=(0,0, 0.165)

B 11 14 17 20 23 26 29

Nuclear contribution in blue

December 2002 Workshop on Magnetic Structures (Abingdon ) %

Magnetic scattering of neutrons

K =21/A wy

LSRN N N ‘
‘ . u R Ry Kp=21/\ ug

L NN R Y
wou oy Qkp-k

Dipolar interaction (u, , m): vector scattering amplitude

aM(Q)%wf(Q){m—Q(g; )}

— R
December 2002 Workshop on Magnetic Structures (Abingdon ) ’Lj%
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Magnetic scattering of neutrons

Q (mQ)
0

}= p/(Q)m,
p=0.2696 10-12 cm
f(Q) = jpm (r) exp(iQr)d’r

Only the perpendicular
component of m to Q=2nh
contributes to scattering

" (Q)=—r7f(Q){m—

December 2002 Workshop on Magnetic Structures (Abingdon ) %

Magnetic Bragg scattering

Intensity (non-polarised neutrons)

[h :NhN;_I_MJ_h °Mj_h

Magnetic interaction vector

M,, =exM(h)xe=M(h)—e (e-M(h))

h

h — H + k < Scattering vector € = Z

—p
December 2002 Workshop on Magnetic Structures (Abingdon ) ’L%

Page 49/ 142




The magnetic structure factor:

=P 0T 38, exprlHekst, r o]

@ S = Y. CLSE! (Js)
nA

pZOf TZC;;ZSM 7s) exp{Zm[hr —O ]}

December 2002 Workshop on Magnetic Structures (Abingdon ) %

Magnetic structure
determination

December 2002 Workshop on Magnetic Structures (Abingdon )
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EW’inPLDTH [LLB Saclay - LCSIM Rennes] |_[O] =]
Fil=  Plat  Options Paints Selection ¥ space  Calculations  Rietveld plot options Text  Esternal application:  Help
== 8| BQle|B]e|e=|=qolmX]s|Z[¢]|8] P|rP|
LaMnO;: 50K and 150 K
810 é é
- ——  LannS0k dat ]
‘;‘ 720 F ——  LannlS50k.dat
g C ]
- o 3
% 630 : ]
‘E 540 g E
o450 .
360 ; é
270 ; 3
180 ;
a0 :
0
10 30 50 F0 an 110 130 150
28 (%)
|05-07-2001 | 3:47 |NUM | [¥=11.56597 |v= 757.78
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[ winPLOTR [LLB Saclay - LCSIM Rennes] M=l E3

Fil=  Plot  Options Pointz Selection = space  Calculations  Rietveld plot options Text  Extemal application:  Help

== 2| &l olE]e]e]==]rdo/m X4 (2] ] 8] fi| PolrP| B

LaMnQO; : magnetic scattering

wo —m—m |
5 ™ Difference: 50K -150K
£ i ]
§ [ | Magnetic reflections ]
- - ]
S a0 [ . .
: ; Thermal expansion ]
200 F / ]
200 :
10 30 50 70 30 110 130 150
28 (%)
|05-07-2001 | 3:50 |NUM | [%= 10256474 | = 443.02

~k
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Steps for Magnetic structure determination
from Neutron Powder Diffraction

Peak positions of Propagation vector || Integrated intensities
magnetic reflections Space Group
Cell parameters Atom positions Coefficients of the

atomic components

of basis functions

December 2002 Workshop on Magnetic Structures (Abingdon ) %

The Program SuperCell
(distributed within WinPLOTR)

Program: SuperCell (J.Rodriguez-Carvajal, LLB-December-1998)

* This program can be used to index superstructure reflections from
a powder diffraction pattern.

* The first approach consist in searching the best "magnetic unit cell"
compatible with a set of observed SUPERSTRUCTURE lines in the
powder diffraction pattern.

« [f the first approach fails to give a suitable solution, the superstructure

may be incommensurate and a direct search for the propagation
vector and one of its harmonics have to be used.

December 2002 Workshop on Magnetic Structures (Abingdon ) J;%
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EW’inPLDTH [LLB Saclay - LCSIM Rennes]

File  Plat  Options Paints Selection ¥ space  Calculations  Rietveld plot options Text  Esternal application:  Help

I[=] E3

== 2| A ¢lE]ee=|=rqo|w |42 t]8] PP B

LaMnO;: Extraction of magnetic integrated intensities

790

700

610

520

430

340

Intensily (a.41.)

250

160

Main magnetic reflections

70

—_

24 33 42 51 60 £9 78 87 96 105

b Ji B2 |

Propagation vector k=(0,0,0) = magnetic cell=crystal cell

T
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WinPLOTR

UltraE dit6.2

Edit
i Baslreps

Generate Representations  Generate Bazie Functions

Baslreps Program

Basis Function of Irreducible Representations

of the

Propagation Vector Group

Beta Version (May 2000)

=
oy,
Telnet
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Baslreps provides the basis functions (normal modes) of
the irreducible representations
of the wave-vector group G,

m, = ZSkjs exp{—2mikR, }

Z S, (]S)

Basis Functions (constant vectors): S ( ] S)
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EDIT - [D:%\_ShortRietveld\E xampleziLaMnD3_excercizes\lamn.bsr]

File Edt Achon: Ophon:  Window  Help ;lilil
oea g M o alQl s ol ble(w]
==== ;I

=> Atomic components of the BASIS FUNCTIONS using PROJECTION OPERATORS:
Calculation for SITE number: 1
(Only non-null functions are written)

++++++++ -+
= Basis functions of Representation Irep( 1) contained 3 times in GAMMA
++H+H+H

SYMM X,V,Z -x+1,-y,z+1/2 -x+1/2,y+1/2 ,-z+1/x-1/2,-y+1/2,-2
Atoms: Mn 1 Mn 2 Mn 3 Mn 4
1:Re {( 2.00 0.00 0.00) (-2.00 0.00 0.00) (-2.00 0.00 0.00) ( 2.00 0.00 0.00)
2:Re { 0.00 2.00 0.00) ( 0.00-2.00 0.00) ( 0.00 2.00 0.00) ( 0.00-2.00 0.00)
3:Re ( 0.00 0.00 2.00) ( 0.00 0.00 2.00) ( 0.00 0.00-2.00) ( 0.00 0.00-2.00)

+++++++
=> Basis functions of Representation Irep( 3) contained 3 times in GAMMA
+++++++

SYMM x,vy.2 -x+1,-vy,2+1/2 -x+1/2,y+1/2 ,-241/x-1/2,-y+1/2,-2
Atoms: Mn 1 Mn 2 Mn 3 Mn 4 |
1:Re ( 2.00 0.00 0.00) (-2.00 0.00 0.00) ( 2.00 0.00 0.00) (-2.00 0.00 0.00)

2:Re ( 0.00 2.00 0.00) ( O0.00-2.00 0.00) ( 0.00-2.00 0.00) ( 0.00 2.00 0.00)

3:Re ( 0.00 0.00 2.00) ( 0.00 0.00 2.00) ¢ 0.00 0.00 2.00) ( 0.00 0.00 2.00)

KN
i e e ] W 8 = T O =
|

| Line=302 | Col= Alt=0,0:1 | Size=350 | Files=4 | ‘windows=4 |OVR |[RAW |05:05




= KEDIT - [D:\_ShonRietveld\E xamplesiLaMn03_excercisesilamn.fp]

CJ File Edit aActons Options *window Help _Iﬁllﬂ

MEEINEIRS =l glal =52 o] slee]
====> ﬂ
* %k %k M f Fil k* * % _ _ _

op of File k=(0,0,0), v=1, n=1,2,3
Representation: 1 for gite: 1 /1:1, S:1,j21,2,3,4
Number of basis functions: 3
X Y z for site: 1

- l'.".In_l 0.5000 0.0000 0.0000 : (x,v,Z)

=> Mn 2 0.5000 0.0000 0.5000 : (-x,-y,z+1/2) + ( 1 0 0)

- Mn_3 0.0000 0.5000 O0.5000 : (-x+1/2,y+1/2,-z+1/72) + ( O O

-> Mn 4 0.0000 0.5000 0.0000 : (x+1/2,-y+1/2,-z) + (-1 0 0)
SYMM X,V,Z

BasR 2 0 0 0 2 0 0 o 2 « Format for FullProf
BASI o0 0 0 0 0 0 g 0 0

SYMM -x+1,-y,z+1/2 )
BASR -2 0 0 0 -2 0 o0 0 2 Theconstant“2” may be substituted by “1”
BASI 0 0 0 ©0 0 0 O 0 O

SYMM -x+1/2,y+1/2,-z+1/2 kV .
BASR -2 0 O 0 2 0 0 0 -2

BASI 0 0 0 0O 0 0O o 0 0 (]S)
SYMM x-1/2,-y+1/2,-z l’lﬂ

BASR 2 0 0 0-2 0 0 0 -2
BASI 0 0o 0 o 0 0 o 0 0

K
.ilallilll !l!l Klkl Elglil ﬂl@l EIEI

| Line=0 | Col=1 | Al=000 | Size=65 | Files=4 | ‘windows=4 OWR R | 05:58
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Example of magnetic structure in terms of basis
functions of the irreducible representations of the
propagation vector group (1)

Z n/I ]S)

For LaMnQO; this sum 1s reduced to three terms for each
representation to be tested. Example, for representation v=1,
dropping the superfluous indices k, s, 4 :

Y. CS,(J)

n=1,2,3
S, =C'S,(1)+GC,S; (1)+CS5 (1)
S, =C'S;(2)+C;S,(2)+C3S5(2)

............. _.‘7'_
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Example of magnetic structure in terms of basis
functions of the irreducible representations of the
propagation vector group (2)

> CS, (J

n=1,2,3
1,o,o)+c1(010)+c1 (0,0,1)= .C3)
(- cf, -C3,C)
(~cl.ch—=cl)
)

(cl.-¢y.-C

-1,0,0)+C(0,1,0)+C!(0,0,-1
1oo)+cl(0 ~1,0)+C}(0,0,~1

(€,
~1,0,0)+C1(0,-1,0)+C! (0,0,1)
)
)
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Magnetic structure
determination in complex
systems: Simulating Annealing

3 T
December 2002 Workshop on Magnetic Structures (Abingdon ) %

Direct space methods:

*Look directly for coefficients of the expansion:
Sis = 2. CiSi Us)
nA
or components of S, and phases, explaining the

experimental data

Minimize a reliability factor with respect to the
“configuration vector”

w:‘ G,6.G, G, C;,...Cm>
N
2 2
R,(0)=c3. |67 (n,)-G", (n,.o)
obs
r=lI
~k
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S1

Behavior of parameters in

mulated Annealing runs

1.00
0.80 [~ -
0
N
T 060 PP ML S -
g
3 —©S— Ph_Mn2a1
2! 40 bl N —H—Ph_Mn2a2 | |
g o —&— Ph_Mn2a3
=5 —=&— Ph_Mn2a4
0.20 [ Op R SR TN ———————————————— -
0.00 ' ' ' '
0 5 10 15 20 25
1/T -
T
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Interpretation of the magnetic
structure as the ground state
(first ordered state) of a classical
spin system

Classical magnetic energy: E = -Z< J;S; S,

gy i =i
First ordered state corresponds to the lowest

eigenvalue of the Fourier matrix of the exchange
Interactions:

E/(K) = -2, J,(R).exp{-2ni K R}
December 2002 Workshop on Magnetic Structures (Abingdon ) %

Crystal structure of R,BaNiO; (R: Pr, Nd, Tb, Dy...)

NiO,

—p
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Neutron powder diffraction pattern of Dy,BaNiO; at 1.5K
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Space group: Immm
————— Lhe magnetic structure
Dy BaNiO_ of all members of the
. family R,BaNi1O;s has
the propagation vector
. k=(1/2,0,1/2)

B

S = N W A U1 &N O X
T T T T T T T T

Magnetic moment (p_/atom)

. ] *Ni ions are in a single Bravais
wp 1 sublattice at (000)(2a) site.

1 *The rare earth site (4))
generates two sublattices

1 1:(1/2,0, z) and 2: (-1/2, 0, -z)
in a primitive unit cell

8 (degrees)

70

Temperature (K)

— R
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R,BaNiO.: 1 Ni and 2 R ions in the primitive cell
Exchange Fourier matrix 3 x 3, k=(X, Y, 7)

J11(K) =2J, cos 27X

Jo(K) =), (K)" = J,(1+ exp{2mX}) + 2]; cos zY exp{m(X+Z)}

J13(K) =J5(K)" =1, (1+exp{2mX}) exp{2mZ}+2]; cosmk exp{m(X+Z)}
J5(K) = J55(K) = 2], cos2zX

J3(K) = J5,(K)" = 4J coszX cosxY exp{mZ} + J exp{27iZ}

If we neglect R-R interactions (J,=J=J,=0) the eigenvalues are:
}\‘l(k):()a
Ay 3(K)= 2], cos 272X + (]2cos’2zX + 4 J 2 {1+cos?2Y})!2

The energy is independent of Z, so no 3D order is possible with
1sotropic exchange neglecting R-R interactions.
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Phase diagram for the topology
of MFePO;
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The program SIMBO

» Geometrical analysis of the exchange paths for
ionic structures (input: cell parameters, space group,
atom positions in the asymmetric unit, magnetic
moments)

« Automatic generation of the formal expression of
the Fourier matrix of the exchange integrals
 Qutput file for ENERMAG

0 0 J2(1+62/ri(Y)) 0 Jlezm(Z) J}eZ;r[(XJrZ) J1627ri(X+Y) J}ezm()’)
0 0 0 J,(1+e7) J, J, J, J,
Jz (1 +e—2m'(Y)) 0 0 0 Jlezm(Z) J}ezm’()mZ) J]ezm(,\') J3
() = 0 J,(1+e™M) 0 0 J, J, Jemm Jem
J e J, J e J, 0 J,(1+&>) 0 0
J}e-zm()(+2) J] J3e-2m'(x+2) JI J4(1+e-zm()()) 0 0 0
Je 2 J, Je o Je 0 0 0 J, 1+
Je J, J, J e 0 0 J, 1+ 0
T
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The program ENERMAG
(k) = -2 Jy(Ry).exp{-2mi K R, }

The program handles the diagonalization of the Fourier matrix
solving the parametric equation:

&k, J) v(k, J)=A(k, J) v(k, J)

* For a given set J ={J;}, and no degeneracy, the lowest
eigenvalue A (K, J) occurs for a particular k,,.

* The corresponding eigenvector v, (K,, J) (that may be complex
for incommensurate structures), describes the spin configuration
of the first ordered state

— R
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The compounds of formula
MFePO; can be modelled with _
: J,=-6.7

four exchange interactions:

20

* J, corresponds to the exchange between
M?* and Fe’* nearest neighbours.

* J, corresponds to the exchange
between two M?* cations (double

oxygen bridge). J 1

» J; corresponds to the exchange between
next nearest neighbours M?* and Fe**

cations (single oxygen bridge). FM'FFe GM'GFe

* J, exchange between nearest 220
neighbours Fe** cations (single
oxygen bridge), taken here as J,=-1 -20 J3 20
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J,=-15

20

FyFre Gy-Gpe

-20
-20 J, 20
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Conclusions

* Magnetic Powder diffraction is the primary technique for
determining magnetic structures.

* Sometimes diffraction alone is not sufficient to determine
without ambiguities a unique solution, even using single
crystals.

e The Rietveld method extended for incommensurate

structures has powered the powder method, providing
not only the average structure but also the correlation
lengths along different crystallographic directions.

* The analysis of exchange paths and the use of classical
models for studying the magnetic ordering gives
a first estimation of the relative exchange interactions.

3 T
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THE PHASE PROBLEM OF MAGNETIC STRUCTURES WITH
NON SYMMETRY-RELATED PROPAGATION VECTORS

Juan Rodriguez-Carvajal

Laboratoire Léon Brillouin, C.E.A./C.N.R.S., F-91191-Gil-sur-Yvelte CEDEX, France
ABSTRACT

In these notes the limitations of neutron diffraction for determining the true
magnetic structure of some compounds are discussed. The analytical expres-
sions linking the measurable quantities to the model of a magnetic structure
do not contain a crucial parameter: the phase factor between two Fourier co-
efficients not related by symmetry. The impossibility to obtain this parame-
ter by conventional methods precludes the access to the true spin arrangement
in the solid. The problem is first formulated analytically and illustrated by
some simple examples, secondly we shall present some real examples concerning
incommensurate-to-commensurate magnetic phase transitions and, finally, some
conclusions are stated

1. Introduction

It is frequent the discovery of magnetic compounds that exhibit more than one prop-
agation vector. The typical case is the so called multi-k structures, observed in some
intermetallic compounds of high crystallographic symmetry . Multi-k structures refers
to a magnetic structure in which more than one arm of the star of k participates into
the actual spin arrangement * That is, the transition chanel, in terms of the Izyumov’s
school 2, has more than one propagation vector. Symmetry relations between the Fourier
coeflicients of the magnetic structure, when all the propagation vectors belong to a single
star, can be obtained by group theory using the geometrical method of Bertaut ® or the
algebraic straightforward expressions that have been given by Izyumov and collaborators
2. The practical determination of the transition chanel could be difficult because the mag-
netic phase transition, and the concommitant domain formation, produces satellites (in a
single crystal diffraction pattern) which are not distinguishable (in usual conditions) from
those of a true multi-k structure. External fields have to be applied to decide what is the
actual situation. More unusual is the case showing two propagation vectors not belonging
to the same star. However, a well known case is particularly common: the conical struc-
tures. Nagamiya ? has given the conditions for two independent propagation vectors to
describe constant moment (CM) magnetic structures. Nagamiya treated combinations of
propagation vectors of the form k; = 1/2H (or k; = 1/4H |, k; = 3q) and k; = q at the
interior ol the Brillouin Zone (ky € IBZ), so that the relative orientalion of the Fourier
coefficients is fixed and the relative phase is irrelevant. In this paper we shall formulate
the problem in its full generality in relation with the practical structure determination.
For that a summary of the most important scattering formulas is first given.

2. Neutron Scattering Cross Sections and Magnetic Structure Factor
For polarized neutrons the total scattered intensity and the final polarisation of scat-

tered neutrons for the scattering vector h is given by the Blume’s equations ®>. The
scattered intensity is:

In = NN+ Np{P -M7 4+ Ni{P - Min}+ Moy MY, +:P-{Mip, x M7+ (1)

*In this paper we use the terms spin and magnetic moment indistinctly. The term spin arrangement is
also used as synonymous of magnetic structure
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The equation defining the scattered polarisation is:

P.L = PNhNﬁ + NhMih + NﬁMJ_h + P x {MJ_hN;; — Mthh} + MLh{P . Mjh}
+ MU AP My} = P{Mp, - M7} +i{Myy, x M, } (2)

Where P and P are the incident and scattered neutron polarisation, Ny, is the nuclear
structure factor and My is the magnetic interaction vector defined as:

M.y, = e x (M(h) x e) = M(h) — (e - M(h))e (3)

M(h) is the magnetic structure factor, and e is the unit vector along the scattering
vector h. The scattering vector is h=H+k where H is a reciprocal lattice vector of the
crystal structure and k the propagation vector corresponding to the current magnetic
reflection. For a pure magnetic reflection N = 0

The magnetic structures that we are considering have a distribution of magnetic mo-
ments that can be expanded as a Fourier series:

; = Z Skj exp{—Qﬂle} (4)
ky

The sum is extended to all propagation vectors that could belong to different stars.
The Fourier coefficients Sg; are, in general, complex vectors. The magnetic structure
factor can be written as:

M(H + k) = p° f(H + K)Sy; exp{2ri(H + k)r; } 5)

i=1

The sum is over all the magnetic atoms in the crystallographic cell. The constant
p(= rey/2) is 0.2695 and allows the conversion of the Fourier components of magnetic
moments, given in Bohr magnetons (up) to scattering lengths units of 10~ Zem, f; (H+k)
is the magnetlc form factor and r; is the vector position of atom j. In the above expression
the atoms have been considered at rest. If thermal motion is considered and if symmetry
relations are established [or coupling the different Fourier components, we obtain the
general expression of the magnetic structure factor:

= pZ 0, f;(h)T;(zs0) ZMJsSk]T]s exp{2me[(H 4+ k){5 [ thor; — ]} (6)

The sum over j concerns the atoms of the magnetic asymmetric unit for the wavevector
k (the Fourier component with index k contributes only to the k-satellite). So that j labels
different sites. The anisotropic temperature factor, 7}, is not generally necessary to be
used in magnetic refinements(7;s = 1). The sum over s concerns the different symmetry
operators of the crystal space group that belong to the wave vector group. The matrix
M;, transform the components of the Fourier term Sg; = Syj; of the starting atom j1 to
that numbered as js in the orbit of j. The phase factor ¥x;s has two components:

Yrjs = Pij + Pkjs (7)
®y; is a phase factor which is not determined by symmetry. It is a refinable parameter

and it is significant only for an independent set of magnetic atoms (one orbit) which
respect to another one. ¢y s 1s a phase factor determined by symmetry. The Fourier
component k of the magnetic moment of atom j1, Sy;, is transformed to

Skjs = M;:Sy; exp{—27idk; s} (8)
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The matrices M;, and phases ¢x;, can be deduced from the atomic basis functions,
obtained by applying projection operator formulas, corresponding to the active represen-
tation(s) participating in the definition of the actual magnetic structure. The sign of ¢y
changes for -

In the genelal case Sg; 1s a complex vector with six components. These six components
per magnetic orbit constitute the parameters that have to be refined from the diffraction
data. Symmetry reduces the number of free parameters per orbit to be refined. An alter-
native expression of the magnetic structure factor can be written as a function of mizing
coefficients (parameters to be refined) and the atomic components of the basis functions
of the relevant representation(s) . In the case of a commensurate magnetic structure one
can calculate the magnetic structure factor in the magnetic unit cell. In such a case S;
are real vectors corresponding to the magnetic moment of the atom j, the matrices M;;
are real and all phases verify ¢x;s = 0. The crystallographic magnetic groups theory can

be fully applied in such a case 6.

If the magnetic structure represents an helical order the Fourier coefficients are of the
[orm:

1 : ;
Sk; = z[muu; + imy;v;] exp{—2mi¢y; } )
2

where u; and v; are orthogonal unit vectors. If m;; = mq; = mg the magnetic structure
for the sublattice j corresponds to a classical helix (or spiral) of cylindrical envelope. All
J atoms have a magnetic moment equal to mg. If my; # mg; the helix has an elliptical
envelope and the moments have values between min(my;, ms;) and max(mq;, my;). If
mz; = 0 the magnetic structure corresponds to a modulated sinusoid of amplitude m;.

3. The phase between independent k-vectors

When more than two independent propagation vectors appears in the diffraction pat-
tern, the analysis ol the dala is unable to give a unique answer to the problem ol the
magnetic structure. In general is not possible to discriminate between the presence of
two magnetic phases co-existing in the crystal and a coherent superposition of these two
magnetic structures. We shall be concerned only with the latter picture. Even from this
hypothesis it is not possible to get uniqueness. This can be seen adding a phase factor,
depending only on k, to the Fourier series equation (4):

my; = Z Sx; exp{—27i(kR; + W)} (10)
ky

The magnetic structure factor [equation (5)] transforms to:

Tie

M(H + k) = pexp{2miWx} > f;(H + k)Sy; exp{27i(H + k)r;} (11)

i=1

The phase Wy appears in the expresion of the magnetic structure factor as a multi-
plicative phase factor that does not change the intensity of equation (1) or the scattered
polarisation of (2) for a pure magnetic reflection. The phases Wy are not accesible experi-
mentally, so the real magnetic structure cannotl be obtained [rom diffraction measurements
alone.

The most simple case in which the phase plays an important role is the sinusoidally
modulated structure in a simple Bravais lattice (a single magnetic atom per primitive
cell) when the propagation vector takes special values. The Fourier coefficient and the
corresponding magnetic moment at cell [ are:

1
Sk = 5ol exp{—2mt Uy} m; = m,u cos 2r(kR; + Uy)
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The phase Wy plays no role when k € [ BZ and has no rational components. A change in
the phase has the same effect as a change of the origin in the whole crystal. All magnetic
moments between —m,u and m,u are realized somewhere in the lattice. However, if
k = 1/4H and Uy, = 1/8 the magnetic structure is a CM-structure with the sequence
{++— —+ + — —...}. This structure is indistinguishable of the sinusoidally modulated
structure obtained with an arbitrary value of Wy. If all the components of k are rational
the selection of the phase can have important consequences for the spin arrangement. This
is the simplest case in which the physical picture depends on the election of a parameter
(Uy) that 1s not accessible by diffraction methods. Physical considerations lead us to prefer
one model among several other. For instance, CM-structures are normally expected at
vey low temperatures when magnetic atoms have an intrinsic magnetic moment. This
condition reduces the number of ways to combine non symmetry-related propagation
vectors to several specific cases that have been discussed by Nagamiya *. Let us discuss
some unusual simple cases that will be illustrated with real examples.

4. Fluctuating magnetic structures

The magnetic structures with more than one pair (k,-k) of propagation vectors not
satisfying the Nagamiya’s conditions are, as is the sinusoidally modulated magnetic struc-
ture, general non-constant moment structures. We shall call these spin configurations:

fluctuating structures |
Fluctuating Structures with irrelevant phase-factors

This case corresponds to the combination of k = 1/2H and q € IBZ vectors. To
simplify the notation we shall treat only one of the atoms of a particular Wyckoff site
and we drop the reference index. The propagation vector q describes a helical configura-
tion, and k corresponds to a uniaxial antiferromagnetic configuration, so that the Fourier
coefficients of the atom are:

1
Sy = S [u+iv]exp{—27iVy} Sk = mzn

where, as above, u and v are orthogonal unit vectors defining the plane of the spiral of
axis w = u X v, and n is a unit vector defining the axis ol the spin configuration related
to propagation vector k = 1/2H. The director cosines of n with respect to the axes
(u,v,w) are (ny,nz,ny). The magnetic moment distribution of a coherent superposition

of the two types of Fourier coefficients is given by the following formula (notice that
(I)l = 27‘&'(qu + \Ilq) and Z/L = HR[)Z

m; = mycos2x(qR; + Ug)u + mysin 27 (qR; + Vg )v + myexp{—miHR;}n
= mqcos ®;u + mqsin @;v + mz(—l)lhn
= (mycos P, + (—1)lh'm2n1)u + (mysin ¢, + (—l)lhmgng)v + (—l)lh'm2n3w(12)
The modulus of the magnetic moment can be calculated by taking the square of
equation (12):
m? = m?+m2+ 2mymy(—1)""(ny cos ®; + ny sin &;)
= m? 4+ m2 4 2mymy(—1)" cos ay (13)

If n is parallel to w the moment is constant and we obtain an antiferromagnetic con-
ical structure (if H= 0, we obtain the classical ferromagnetic conical structure). For the

TThe term fluctuating has no dynamie content in the present context
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general orientation of n (non vanishing components in the u-v plane) the modulus of
this distribution is not constant. The amplitude varies between the two extreme values

\/m% + m2 4+ 2mymgy sin  and \/m% + m2 — 2mymy sin @, being 0 the angle of n with w.
A real system in which this behaviour seems to take place is the compound CsMnF, 7
Another interesting system is TbMngGeg ® ¥ The second wave vector, in this case, is k = 0
and the associated magnetic moment lies within the u-v plane defining the spiral plane
of the first propagation vector. This gives rise to a distorted spiral structure.

In all these cases, the selection of the phase factor Wy is completely irrelevant. That is,
the physical picture obtained after using the equation (10) is not changed by varying the
phase factor.

Fluctuating Structures Approaching CM-structures

We shall now consider the case of two pairs of propagation vectors (k,-k) and (q,-q)
verifying k,q € I BZ. Such a magnetic structure has as Fourier coefficients:

1 . 1, - .
Sk = §(Rk + iIy) Sq = §(Rq + i1y) exp{—iV}

Using the notation ®y; = 2rkR; the magnetic moment distribution is given by:

= Ry cos @y + I sin Py + Rq cos(Pgy + V) + I sin( P + V) (14)

This moment distribution is generally a non-CM structure and the change of the phase
factor ¥ can modify the physical picture if both vectors k and q have rational components.
This last case is interesting when the components are simple integer fractions because one
can treat the problem using the magnetic cell and search for a magnetic space group that
fix automatically the phase. The finding of such a commensurate magnetic structure does
not eliminate the problem of uniqueness of the magnetic moment distribution compatible
with the experimental results. However, the possibility to have a simple spin arrangement
with magnetic moments of atoms approachmg the expected intrinsic moment is more sat-
isfying form the physical point of view.

It a CM-structure can be found refining the magnetic structure using the magnetic
cell, a particular set of equations (14) can be established for atoms inside the magnetic
cell and the phase factor W can be obtained solving these equations. Of course, to get a
set of compatible equations the vectors R and I cannot be arbitrary. An example can be
readily shown if we consider only real Fourier coefficients in equation (14). We can write
for the a-component:

o o
_y mi’ — Ry cos @y

Ry cos(Pyy + V) =mf — Ry cosbyy = ¥ =cos T
q

— By

The above equations must be verified for the set of points [ inside the magnetic cell
and for all components simultaneously. This indicates that only very special relation-
ships between Fourier coefficients must be verified to have a single ¥ to connect the two
descriptions.

An interesting example is the magnetic ordering of ThGes . This compound crys-
tallizes in the space group Cmem, (a = 4.07,b = 20.8,¢ = 3.92 A), with Th-atoms in
positions (4¢) £ (0,y,1/4). Below the Néel temperature (I = 40K) the magnetic order
is characterized by two independent propagations vectors k = (£,,0,0) and q = (¢,,0, ¢-)
with k, =~ ¢ ~ % and ¢. ~ L. Below T), = 24K the propagalion veclors lock-in

3
to commensurate VEthPS Both vectors verify k,q € IBZ with a two-arm star for k

9

tSee also the article: Magnetic Spiral Structures in the Hexagonal RMngGes Compounds, by P.
Schobinger-Papamantellos, J. Rodriguez-Carvajal, G. André and K.H.J. Buschow, in these proceedings
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(Gx = C2em) and a four-arm star for q (G4 = Ce¢). The refinement of the magnetic
structure at low temperature in the magnetic unit cell using powder diffraction data
provides a quasi-collinear structure with two types of Th-atoms having similar moments
(m(Tby) =9.2u5,m(Thy) = 8.8up). The refinement using real Fourier coefficients for all
propagation vectors (including the second pair of the star of q) gave similar agreement. A
systematic search of the phase factors using a computer program 19 allows the finding of
a consistent set of phases that produces fluctuations of m(7b) between 9.4up and 7.0up.
The spin arrangement is similar to that observed in the magnetic cell refinement. For the
incommensurate phase we suppose that the spin arrangement does not change dramati-
cally, so that the phases found for the lock-in phase are still valid.

Symmetry analysis can be applied to each wave vector separately. There is no interfer-
ence terms between reflections belonging to different sets of satellites, so that we can
proceed as if two magnetic different phases co-exist and only at the end of the analysis
we can think in the coherent superposition of both phases. The computer program '° we
have writlen can be used as a general {ool [or searching phase [aclors belween Fourier
coeflicients belonging to non-symmetry related wave vectors giving the lowest fluctuation
between m,,;, and mq,qz.

5. Conclusions

The physical origin of the stabilization of two propagation vectors belonging to differ-
ent stars is not yet clear in the absence of external fields. In Bravais lattices we have to
think in the action of higher order terms (biquadratic) in the spin hamiltonian to stabilize
two propagation vectors. In complex crystal structures the nature of the ground state is
not known in the general case and, probably, it is not necessary to invoke higher order
terms to stabilize two non-related propagatlon vectors. Only the case of conical structures
(k =0 and q € I BZ) has been studied with some detail '* for the spinel lattice. We can
conclude that only a physical model based in the microscopic spin-spin interactions is able
to fix complelely the phases appearing in the Fourier expansion ol the magnetic moment
distribution in the solid. Experimentally, other techmques (like Mossbauer spectroscopy,
neutron or X-ray topography, p-SR, etc...) may help, in some cases, to distinguish between
several models. Unfortunately there is no general method to overcome this phase problem.
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MAGNETIC STRUCTURE DETERMINATION FROM POWDER
DIFFRACTION USING THE PROGRAM FullProf
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In this paper the techniques for magnetic structure determination from neutron powder diffraction
(NPD) data as implemented in the program FullProf are reviewed. In the general case the magnetic
moment of an atom in the crystal is given as a Fourier series. The Fourier coefficients are complex
vectors constituting the “unknowns” to be determined. These vectors define the magnetic structure
and they correspond to the “atom positions” of an unknown crystal structure. The use of group
theoretical methods for the symmetry analysis is needed to find the smallest set of free parameters. In
general the Fourier coefficients are linear combinations of the basis functions of the irreducible
representations of the wave vector group. The coefficients of the linear combinations can be
determined by the simulated annealing (SA) technique comparing the calculated versus the observed
magnetic intensities. The SA method has been improved and extended to the case of incommensurate
magnetic structures within FullProf.

1 Introduction

In the last years the Rietveld Method (RM) has allowed great progress in the analysis
of powder diffraction data. The RM is not designed for structure determination, it is just a
least squares optimisation of an initial model of the crystal and magnetic structure
supposed to describe approximately the experimental powder diffraction pattern. It is
important to start with a “good” initial model in order to succeed the refinement
procedure. In this paper we shall be concerned with the problem of getting the initial
model of a magnetic structure in order to refine it from powder diffraction data. We shall
describe the basis of the technique and the way the magnetic structure determination is
implemented in the program FullProf.

2 The formalism of propagation vectors for describing magnetic structures.

The reader interested in the basis of the elastic magnetic scattering in relation with
magnetic structures may consult the references [1, 2]. Here we will follow the reference
[3] but using a different convention for the sign of phases and a somewhat different
notation. The intensity of a Bragg reflection (we neglect here the geometrical factors) for
non polarised neutrons is given by:

* %

I, =N,N,+M , -M,, (1)
where N, is the nuclear structure factor and the magnetic interaction vector M, is
defined as:

M, =ex(M(h)xe)=M(h)-e(e-M(h)) @)
M(h) is the magnetic structure factor, and e is the unit vector along the scattering vector
h=H+k, where H is a reciprocal lattice vector of the crystal structure and k the
propagation vector corresponding to the current magnetic reflection. The magnetic

structures that we are considering have a distribution of magnetic moments that can be
expanded as a Fourier series:
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m, = {Zk}:Skj exp{— 27zikR,} 3)

The sum is extended to all propagation vectors that could belong to different stars.
The Fourier coefficients Sy; are, in general, complex vectors. The magnetic structure
factor corresponding to such a magnetic structure can be written as:

M(h) _ pZ':: 0,7, (h)T;szjSSkjexp{ZﬁiI:(H+k){S|t}S r, —l//ij:| } @)

The sum over j concerns the atoms of the magnetic asymmetric unit for the wave
vector k. We are concerned only with magnetic atoms within the crystallographic unit
cell, so that j label different sites: fi(h) is the magnetic form factor and r; is the vector
position of atom j. The constant p = r. y/2 = 0.2695 allows the conversion of the Fourier
components of magnetic moments, given in Bohr magnetons to scattering lengths units of
10" cm. The sum over s concerns the different symmetry operators of the crystal space
group that belong to the wave vector group Gy (subgroup of the crystallographic space
group formed by the operators leaving invariant the propagation vector). The matrix Mj,
transform the components of the Fourier term Sy; of the starting atom j to that numbered
as js in the orbit of j. The phase factor v, has two components:

Vi = @y + 4, ©)
® 4 is a phase factor that is not determined by symmetry. It is a free parameter and it
is significant only for an independent set of magnetic atoms (one orbit) which respect to

another one. ¢y is a phase factor determined by symmetry. The Fourier component Sy; of
the representative starting atom j is transformed to
Sy =M S, exp{— 2r i¢kjs} (6)

The matrices M, and phases ¢, can be deduced from the atomic basis functions,
obtained by applying projection operator formulas, corresponding to the active
representation(s) participating in the definition of the actual magnetic structure. The sign
of ¢, changes for -k. In the general case Sy, is a complex vector with six components.
These six components per magnetic orbit constitute the parameters that have to be refined
from the diffraction data. Symmetry reduces the number of free parameters to be refined.
In some cases, transformations like expression (6) cannot be obtained from the basis
functions of the irreducible representations of the propagation vector group; for those
cases an alternative expression of the magnetic structure factor can be written as a
function of "mixing coefficients" (parameters to be refined) and the atomic components of
the basis functions of the relevant representation [4]. The expression of the Fourier
coefficients in terms of the atomic components of the basis functions is given as:

Sys = 2 C;/mi :;Z (JS) (7
mA
The formula of the magnetic structure factor is then transformed to:
M(h)=pY 0./, (W) T XC,, DS (Js)exp {2ai[hr, —dy ] | ®)
Jj=1 mA s

In the above expressions, v labels the active irreducible representation, I'y, of the of
the propagation vector group Gy, A labels the component corresponding to the dimension
of the representation I',, m is an index running between one and the number of times the

representation I’y is contained in the global magnetic representation I'y;. Finally SE i’ ( js)
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are constant vectors obtained by the application of the projection operator formula to unit
vectors along the directions of the unit cell basis. An addition sum over v is sometimes
necessary when more than one irreducible representation is involved in the magnetic
phase transition. See reference [4] for details.

If the magnetic structure has several propagation vectors k, it is not possible in
general to determine unambiguously the spin configuration, because the phase between
the different Fourier components cannot be determined. Fortunately, nature often selects
simple solutions and many magnetic structures have a single propagation vector, or
display some symmetry constraints that reduce the complexity of the periodic magnetic
structure given by Eq.3. Solving a magnetic structure consist of finding a set of
propagation vectors indexing the whole set of magnetic reflections and a set of “mixing
coefficients” (or, equivalently, the components of the Fourier coefficients and phases)
providing a good agreement between the intensities of the observed and calculated (using
the above expressions) magnetic reflections. In some cases the search for a good starting
model may be formulated in terms of other set of parameters. For instance, in cases of
conical/helical structures involving magnetic atoms with a common cone-axis, the
magnetic structure factor can be written in terms of the module of the magnetic moments,
the angle between the moments and the cone-axis, and phases between the different
atoms. This description in real space gives a more intuitive picture of the magnetic
structure.

3 The search for the propagation vector and symmetry analysis.

The first problem to be solved before attempting the resolution of the magnetic structure
is the determination of the propagation vector(s), i.e. its “periodicity”. To find Kk is
necessary to index the magnetic reflections appearing below the ordering temperature.
With a single crystal the task is somewhat easy, but is tedious for a powder because only
the module of reciprocal vectors is available. We have developed a method for searching
the propagation vector of a commensurate or incommensurate structure implemented in
the program SuperCell [5]. Once an approximate propagation vector is obtained the
symmetry analysis according to references [4] can be started. The program Baslreps may

be used for obtaining the vectors Sl; /{’ ( Js ) in Eq.7 for each crystallographic site occupied

by magnetic atoms.

To solve the magnetic structure, the integrated intensities of the magnetic reflections
may be obtained using the method of “profile matching”, simultaneously with the
Rietveld method, implemented in the program FullProf[3, 5]. This mixed procedure has
to be used with caution: no structural parameter of the known phase must be refined. This
is the usual case of neutron diffraction patterns of magnetically ordered compounds,
where the nuclear reflections coexist with the magnetic reflections. For illustration
purposes we show in Fig.1 the plot of the observed versus calculated pattern of a portion
of the simulated diffraction pattern of DyMnsGe, at low temperature after performing the
extraction procedure. The magnetic structure has two propagation vectors k;=(0,0,0) and
k,=(0,0,5), with & =0.165 with respect to the reciprocal lattice of the crystallographic unit
cell. All satellite reflections are indexed with h=H=K,. There are also contributions to the
same positions of the nuclear reflections, h=H (k;=0), accounting for a ferromagnetic
component. The spin arrangement corresponds to a double cone magnetic structure.
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Figure 1. Profile matching refinement of the DyMnsGe, neutron diffraction pattern at low temperature. The
profile of the calculated nuclear contribution (upper reflection marks) is also displayed as a thick continuous
line. The second set of reflection markers corresponds to the magnetic peaks. Markers at the same positions as
the nuclear (first set) reflections correspond to k;=(0,0,0), the extra markers are the position of the satellites
corresponding to k,=(0,0,5).

4 The resolution of magnetic structures from powder data: the simulated
annealing method

We shall describe the Simulated Annealing (SA) technique to solve the magnetic structure
using clusters of overlapped reflections as single observations. The merging of clusters is
automatically performed using the option “profile matching” of the program FullProf[5].
The SA method described below is also valid for the analysis of single crystal data where,
except for domains, there is no reflection overlap.

The SA algorithm is a general-purpose optimisation technique for large combinatorial
problems introduced in 1983 by Kirpatrick, Gelatt and Vecchi [6]. The function, E(®) to
be optimised with respect to the configuration described by the vector state  is called the
“cost” function. In the context of magnetic structures the configuration  is the list of all
the components of the Fourier coefficients of magnetic atoms existing in the chemical unit
cell and this list is obtained from the independent parameters B that are those really
participating in the annealing procedure. The most general case of parameters constituting
the vector B corresponds to the set of mixing coefficients of the linear combination given
by Eq.8, but, as stated above, another set of parameters in real space (moment amplitudes,
angles, ...) may also be used. First we select an initial configuration, @4, then each step
of SA method consists of a slight change of the old configuration to a new one, ®ey. If
A=E(®ew)-E(®o1q) < 0 the new configuration serves as old configuration for the next step.
If A is positive, m,., is accepted as current configuration only with certain probability that
depends on the so-called “temperature”, T, parameter and A. The probability, given by the
Boltzman factor exp(-A/T), that a worse configuration is accepted is slowly decreased on
“cooling”.



Page 82 /142

For magnetic structure determination, the cost function can be chosen as the
conventional crystallographic R-factor, or some function related to it. In the new version
of FullProf 5] the following expression is used:

E[o(B)]= R[0(B)] = ¢ X, [Tans(k)- SZigpleatc()[0(B)]
The sum over £ is extended for all the “observations” (clusters of overlapped reflections),
and that over j(k) for all the reflections contributing to the observation k. The constant
factor c is given by: 1/c=I1 =Zilps(k). S is a scale factor.

To start solving a

magnetic structure with the

SA method one has to

100 . . . . . create the intensity file
where the indices of each
reflection and its intensity
R-Factor in DyMneGe6 are  written. This is
performed  automatically
within FullProf by using
profile matching modes
and the option that outputs
the overlapped reflection
!||Iill|||||n......'........., ......... . clusters in a file that can be
0 10 20 30 40 50 60 70 used as input for the SA

Sequence Order method. The usual PCR

Figure 2. Evolution of the cost function for accepted configuration in file [5] of FullProf is then

the resolution of the magnetic structure of DyMnsGes by simulated .

! X . used for controlling the
annealing as a function of the sequential order of temperatures. For a .

single temperature on can see the dispersion of the R-factor, algorithm. A pseudo-code

corresponding to the different configurations, that is reducing as describing the SA

temperature decreases. procedure was given in
reference [3]. The SA
parameters are those defining the limits of loops in the algorithm described in [3]: T _ini =
initial temperature, N = maximum number of temperatures, NcycIM = number of
Montecarlo cycles per temperature, Accept=Minimum percentage of accepted
configurations; and the “cooling” schedule 7(t+1)=qT(t) (¢<1, g = 0.9). The user may
select either a fixed step for each variable (that are defined within a simulation box of
hard or periodic limits) or a variable step (Corana’s algorithm) that is dynamically
adapted in order to have an adequate rate of accepted configurations for each temperature
[71.

The starting point may be an arbitrary configuration or a given one. At variance with
least-squares optimisation methods, the SA algorithm never diverges. Always the
algorithm proceeds roughly in two steps. The first step, at high temperatures, the
algorithm is searching for the “basin of attraction” of the minimum in the configuration
space, this part constitutes the “magnetic structure determination”. Once the region is
attained, a more or less sharp drop in the average “energy” (R-factor) occurs. Then, the
second step starts when the average R-factor is low enough, the algorithm enters in its
phase of “refinement”, where the good configuration has already been found, and
performs a progressive improvement of the solution. This is clearly seen in the behaviour
of the cost function versus the ordinal number of the temperature parameter in Fig.2,
illustrating the case of DyMn¢Geg. In figure 3 it is shown the behavior of the amplitude of
the magnetic moments of Dy and Mn atoms. The plot shows that there are a large
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dispersion at the stage of “magnetic structure solution” (starting phase of the algorithm)
and a progress toward definite values within the “refinement” region.

For a given set of constraints the final average R—factor should be reasonably good
(below 20%) except for contradictory or false constraints. False minima are encountered

when the number of free
parameters is of the same
order of magnitude than
the number of

10 . ' ' ' ' ' ' observations and/or the
o | observations are of bad
= - .

28 : . quality  (very  weak
E : !iI|l!IiI!i“iE!I"""'"l"""""" """ magnetic reflections and

6| L 1 .

o : arge errors associated to

= H o

© P ' Amplitude of the magnetic them). Ambiguities can

E 4. moments of Dy and Mn atoms be easily discovered.

2 :;;;;*kf.‘i!'ii | When the intensity data

= 2 l}'ﬁ IHI IR do not depend on a
IRt parameter, this shows an
L anomalous behaviour: in

0 10 20 30 4gequ5e(:1ce sol':,derm a plot similar to that of
Fig. 3, large oscillations
persist even at low
temperature.

In conclusion, we
have shown that the SA algorithm can be used for the magnetic structure determination
even in the case of complex incommensurate magnetic structures. The method is
straightforward and is fully implemented in the program FullProf that is publicly

available [5].

Figure 3. Evolution of the magnetic moment of Dy and Mn versus the
number of sequential temperature. Similar plots can be observed for
other magnetic parameters (cone angles and magnetic phase angles).
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1 Introduction

The determination of magnetic structures is a special area of condensed mat-
ter research. While being fundamental to the understanding of electronic
structures and properties, it remains a subject that is treated with difficulty
and is full of incorrect solutions. This article is based around two goals:

e The explanation of the different possible types of magnetic structure.

e The demonstration of how symmetry leads to their proper description,
and can aid their solution.

In content, the first part of this article is based on the practicalities of
what an experimenter should know in order to understand and describe a
magnetic structure. In the second part, symmetry arguments will be shown
to reduce the otherwise arduous task of determining a magnetic structure,
to the investigation of a handful of possible structures.

*email: a.s.willsQucl.ac.uk
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Figure 1: Some different types of magnetic structures.
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2 Basic crystallography

2.1 Nuclear crystal structures

A nuclear crystal structure can be described in terms of lattice translations of
a unit cell. If the unit cell contains only one atom it is said to be a primitive
cell; if it contains several atoms it is said to be a non-primitive lattice. The
atomic positions of an arbitrary atom in the [th unit cell is given by

Ry =t+1; (1)
where
t = nja+ nab + nzc (2)
and
r; =xa+yb+ zc (3)

Here a, b, ¢ are unit vectors of the nuclear cell defined according to the
International Tables; nq, ny, ng are integers and x, y, z have values that are
less than unity.

2.2 Reciprocal lattice

In crystallography a useful and much used construction is the ‘reciprocal
lattice’- this can be defined as:

2

a*=—"bAc (4)
Vo
2

b'="cha (5)
Yo
2

"= "anb (6)
Vo

Where vy is the volume of the unit cell, vy = a- (b x ¢). A reciprocal lattice
vector 7 connects the origin to a given node in reciprocal space

T = ha" + kb" + Ic* (7)

when h, k, and [ are integer numbers.
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3 Propagation vector and its star

3.1 Description of moments

Before we detail what a magnetic structure is, we must begin with a descrip-
tion of the magnetic moment itself. There are of course a variety of ways
and coordinate systems that can be used to describe a magnetic moment,
e.g. Cartesian, polar or crystallographic coordinates. While it is of course
preferable to describe the particular properties of the final structure in the
most useful system (e.g. a rotation of a moment away from an axis is best
described in terms of an angle), in the general case it is easiest to describe
a moment in terms of projections along the crystallographic axes. Rather
than say that a moment is of unit length and makes an angle of 0 ° with
the c-axis, we will simply say that the projection of the moments along the
crystallographic axes can be described by a ‘basis vector’ ¥ which has com-
ponents along these axes. In this case, the basis vector is ¥ = (001). In fact,
when the basis vector is real, it simply corresponds to the projection of the
moment along the different crystallographic axes, and so :

j (8)
Often, however, the projections of the moment are described not just by one
basis vector, but by the summation of several (see Section 5) :

;=) Cup, (9)

In this work we will use v, to represent the v components of W¥; for a
given propagation vector k. The values of ¥; will be taken as being those
of atom j in the zeroth unit cell (i.e. the crystallographic cell) .

3.2 Formalism of a propagation vector k

Magnetic structures can be described by the periodic repetition of a magnetic
unit cell, just as crystal structures are described by translation of a nuclear
unit cell. For convenience, rather than building a complete magnetic unit
cell (which could contain thousands of magnetic atoms) we use a description
based on the nuclear unit cell and a ‘propagation vector’, k, that describes
the relation between moment orientations of equivalent magnetic atoms in
different nuclear unit cells. This provides a simple and a general formalism
for the description of a magnetic structure.
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We illustrate this for the moment distribution m; associated with the
atom j of a magnetic structure. This can be Fourier expanded, whatever the
nature of the ordering, according to:

m; = Z ‘Z[J;-‘G_Q’”k't (10)

k
That the summation is made over several wave vectors that are confined to
the first Brillouin zone of the Bravais lattice of the nuclear cell is explained
in detail in Section 3.4. If only one wave vector is involved, this simplifies to:

m; = \If;(e_Qﬂ-ikt (11)

This equation describes the translation properties in real space of the
basis vector ¥;, which at present we can think of as the projections of the
magnetic moment along the a, b, ¢ crystallographic axes with relation to
the atomic site in the zeroth (nuclear) cell. At another atomic site (of the
same type) in the crystal that is related by a lattice translation vector t, the
projections of the moment on the 3 crystallographic axes are related to those
in the nuclear cell by Equation 11. An example of this is shown in Figure 2.
Here the magnetic unit cell is 2 times larger along the c-axis than the nuclear
unit cell and the propagation vector is k:OO%. The moment in the zeroth
cell is described by the basis vector ¥;=(0 1 0), that is to say the moment is
pointing along the b-axis. When we move to the cell above (i.e. to a site that
is related by the translation vector! t=(0 0 1) the moment is rotated by 180 °
and now points along the (0 -1 0) direction. As we move up the structure we
find that the moment turns by 180 ° for each nuclear cell translation until
at t=(0 0 2) it is the same as in the zeroth cell. In this way, if we know the
basis vector that describes the moment orientation in the zeroth cell and the
propagation vector, we can use Equation 11 to calculate the basis vector and
moment orientation, of any equivalent atom in the crystal structure.

3.3 Stability of magnetic structures

When the sample is cooled and condenses into a state with magnetic order,
the magnetic structure that results must leave the Hamiltonian invariant to
lattice translations, i.e. the magnetic Hamiltonian of different unit cells must
be the same. The minimisation in the magnetic energy of the system results
in three possible situations:

!'Remember that a lattice translation vector in real space is given the symbol t, while
one in reciprocal space has the symbol 7.
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:O:(> v exp[-2mik-t]= (0 1 0) exp[-27i(0 0 15)-(0 0 4)] = (0 1 0)

<E:O:“ w exp[-2miket]= (0 1 0) exp[-2mi(0 0 %4)-(0 0 3)]= (0 1 0)

:Q:(>  exp[-2mik-t]= (0 1 0) exp[-27i(0 0 %)-(0 0 2)]= (0 1 0)

<E:Q:" v exp[-2nik-t]= (0 1 0) exp[-27i(0 0 1)-(0 0 1)]= (0 —1 0)
1
b
a

:Q:(> v exp[-2mik-t]= (0 1 0) exp[-2mi(0 0 %)-(0 0 0)]= (0 1 0)

Figure 2: Description of translational properties with the propagation vector
k. In this example the basis vector for the moment in the zeroth cell is ¥
=(010), k:OO% and each plane corresponds to a lattice translation of t=001

e one k vector is more favourable than the others and the system chooses
a ground state configuration that is described by:

mj — ‘Il;(e—%rik-t (12)

This is the most common situation and most of this work will be de-
voted to single k structures.

e several k vectors of the star are involved. The ground state is then

described by:

m] — Z \Ilye—%rikt (13)
k

This is termed a ‘multi-k’ configuration.

e One k vector and its harmonics are involved, e.g. 15‘ The ground state
is then described by:

m; = Z \Il;‘eﬁmk't (14)

harmonics of k
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If the transition involves several arms of the star of propagation vector k
and their harmonic terms, we have the possibility of crossed harmonics
that are sometimes referred to as intermodulations.

3.4 Star of the propagation vector -k

We will now consider the effects of the space group, Gy, of our crystal struc-
ture on the propagation vector k. For ease we will separate each symmetry
element g = {h, 7T} into rotation and translation parts, these are h and T
respectively. The action of the rotation part A on the reciprocal vector Kk,
results either in leaving k unchanged, or the generation of an unequivalent
wave vector k' :

K =kh (15)

where,

k=k or k'#k (16)

In the general case, a number of distinct propagation vectors will result
from the operations of the rotational elements of the space group Gy on the
propagation vector k. The symmetry elements of Gy may then be classed into
cosets, where the first coset Gy is made up of elements that do not change
the vector k, the second coset (given the symbol g,) transform it into the
unequivalent vector ks, and so on. If g;, represents the elements of the coset
L, we can write this relation as

kL = kgL (17)

In this way, we find that the rotation elements of the space group G
gives rise to a set of unequivalent wave vectors. These we describe as being
the ‘star’ of the propagation vector k;[1] each wave vector is an ‘arm’ of the
star (and example of a star is given in Figure 3). The number of arms, Iy,
that make up a star is of course equal to the number of cosets and cannot
exceed the number of elements in Gy.

If Crystal Electric Field (CEF) or higher-order exchange interactions (e.g.
quadrupolar-type) are appropriate, several arms of a star can be involved in
the structure, it is then said to be a ‘multi-k’ structure (this notion will be
expanded upon in Section 4). More often, the magnetic structure is the result
of only the first k vector. For this reason, we will now focus on the rotation
elements that leave k invariant.
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Figure 3: The star of the propagation vector k=(z 0 0) in the tetragonal
space group [4/mmm (point group D;). The arms of the star are: k;=(z 0
0), ko=(0 -z 0), kg=(-x 0 0) and ky=(0 z 0)

3.5 The little group of the propagation vector -k

The symmetry elements of Gy that leave the k vector invariant are of par-
ticular importance in the determination of a magnetic structure. For this
reason the elements of the first coset are given a special name- they make up
the ‘little group’” Gy, and it is on these that all the Group Theory arguments
that follow in Sections 7 and 8 are based. The little group will be discussed
in greater detail in Section 8.

4 Multi-domain and multi-k structures

While the majority of magnetic structures that we come across involve only a
single propagation vector k, it is useful to see how the different types of prop-
agation vectors can take part in a magnetic structure. Experimentally, these
situations are revealed by the appearance of more than a single reflection
around a reciprocal lattice point.

4.1 Multi-domain structures

The first magnetic neutron diffraction pattern collected was that of MnO,
published by Shull and Smart[2]. The period of the magnetic unit cell was
found to be doubled along each of the cubic axes of the FCC structure , and
so its volume is 8 times that of the crystallographic cell.

We now know that the structure in fact involves domains that order
according to the 4 different arms of the propagation vector. The four k
vectors involved are:

111
kl_(§’§’§>k2_<
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Figure 4: a) The magnetic motif of MnO made up of ferromagnetic planes
of moments that are coupled antiferromagnetically. b) The star of k in
reciprocal space is made up of the four propagation vectors related by the
rotation elements of the space group Gy: k; = (%, %, %) ko = (%, %, %) Jky =
(%, z, %) and ky = (%, % %) Domains are found that correspond to each of
these k-vectors.

As there are domains that order according to vector ki, others to ks,..., ky,
this is termed a ‘multi-domain’ structure.

Experimentally, different k domains will lead to different magnetic re-
flections, just as in multi-k structures. In fact, the diffraction patterns of
multiple domain and multi-k structures are identical and it is impossible
to distinguish them without the application of an external constraint that
breaks the symmetry on a macroscopic scale, and favours the population of
one k domain over another.

4.2 k and -k structures

Structures that involve contributions from the two arms k and -k do not fall
simply into the class of multi-k structures because, as we will show in Section
5, the requirement of a contribution from the -k arm can simply be the result
of the form of the basis vectors, or the value of k. Typically, the contribution
of these two components gives rise to modulated magnetic structures, e.g.
sine and ellipse structures.
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4.3 Multi -k structures

As we have already seen, multi-k structures can involve different arms of
the star of the propagation vector k. This is a situation favoured by higher
terms in the exchange Hamiltonian of the magnetic system. Also possible
are structures that involve an ‘accidental’ degeneracy between the stars of
unrelated propagation vectors. A magnetic transition that involves several
stars does not necessarily follow the Landau theory for a second-order tran-
sition (Sections 7.3 and 7.2), but if suitable degeneracies occur the resulting
structure may still order under a single Irreducible Representation.

4.4 Structures that involve the harmonics of k

Addition of components of the harmonics of k to a structure will lead to a
squaring up of the modulation, that is to say the magnitudes of the moments
on the atoms becomes equal. This situation can be driven by CEF effects
that disfavour any reduction in the amplitude of magnetic moment, or an
instability of the modulated structure because of the large entropy associated
with it. This is exemplified by a sine structure, where decreasing temperature
leads to the structure becoming unstable and may lead to a squaring up of
the modulation of the moments. Examples of this are the metals Er and Tm
(see Figure 5) where third, fifth and higher order harmonics progressively
appear with decreasing temperature.[3]

5 Translation properties of magnetic struc-
tures

Now that we will return to the situations that involve only a single propaga-
tion vector k, and perhaps its inverse -k. We have already shown how basis
vectors and propagation vectors can be used in the description of magnetic
structures. In this Section we will examine the different types of magnetic
structures demonstrated in Figure 1. In the general case, the k vector may
refer to any point within or on the surface of the first Brillouin zone. This
gives rise to two general classes of magnetic structures:

o Commensurate- the magnetic cell that is a simple multiple of the nu-
clear cell. It is in this group that are found the majority of known
magnetic structures: simple ferromagnets, antiferromagnets and ferri-
magnets.

10
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Figure 5: The magnetic structures of the heavy rare earth metals.

o Incommensurate- there is no simple relation between the structural and
magnetic cells.

It is important to note that these classifications describe only the prop-
agation vector; the magnetic structure itself is the result of the propagation
vector k and the basis vector W;. It is the combination of both of these that
gives rise to the different possible structures|1, 4, 5, 6].

5.1 Simple structures and Sine structures

As we have seen, the translation properties of a magnetic structure may be
described by:

m; = Wke 2kt (19)
Let us now expand the exponential:

m; = Wk [cos(—2mk - t) + isin(—27k - t)] (20)

and consider various possibilities for the basis vector ¥; and the propagation
vector k.

11



Page 97 / 142

5.1.1 VU is real and the sine component is null

The simplest situation occurs when \Il;‘ is a real basis vector. The condition
that m; is real requires that the sine component is zero- this occurs only for
certain values of k. Equation 20 then reduces to

m; = Re(¥Xcos(—27k - t)) (21)

As the sine component is null, the cosine component is necessarily of maximal
magnitude and so translation to another unit cell results only in some rotation
of the moment, and does not change its magnitude. This is the situation in
many simple ferromagnetic, ferrimagnetic, and antiferromagnetic structures
(examples are given in Figure la-f).)

5.1.2 VU is real and the sine component is non-zero

If the basis vector is real and the sine component is non-zero, Equation 20
leads to a magnetic moment that is complex- an impossible situation as the
magnetic moment is a real entity. We are therefore left with the problem of
how to relate our complex basis vector to the projections of a real moment.
This in fact turns out to be very simple: the moment here cannot be described
by a single propagation vector, but rather is described by contributions from 2
propagation vectors. The second propagation vector that is required in order
to describe the magnetic moment distribution is the propagation vector -k.

The atomic vector for an atom in the nth cell related to that in the zeroth
cell by translation t is then given by:[4]
m; = ‘Ilj 6—2m'k-t + ‘I,j—k€2m‘k't’ (22)
Where [4],

Tk =k (23)

Insertion of this relation into Equation 22 and expansion of the exponential
leads to

m; = 2Re(@?)cos(—27rk t) + QIm(\II;‘)sin(—QWk -t) (24)

As we are considering real basis vectors, the imaginary component in Equa-
tion 24 is zero and this reduces to

m; = 2Re(¥¥)cos(—27k - t) (25)

We therefore see that if the propagation vector k leads a non-zero sine com-
ponent in Equation 20, the magnetic structure involves both the wave vectors

12
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k and -k. A non-zero sine component requires also that the magnitude of
the moment changes with translation through the crystal. The resulting
structure has a sine modulation and an example is shown in Figure 1h.

5.2 Helical structures
5.2.1 VU is complex and Re(¥)=Im(V)
A complex basis vector associated with the vector k requires also a contri-
bution from the -k. Therefore, we begin again from Equation 24:
m; = 2Re(\Il;‘)cos(—27rk t) + ZIm(\I’;‘)sin(—Qﬂk -t) (26)
If the real and imaginary components of ¥ are equal we find that this
simplifies to:
m; = 2Re(\Il;‘) [cos(—27k - t) + sin(—27k - t)] (27)

As the sine and cosine components define the points on a circle, the resulting
structure is said to be a ‘circular helix’, i.e. one in which the magnitude of
the moment is constant, but its orientation changes (Figure 1i).

5.2.2 VU is complex and Re(V)#AIm(V)

As the real and imaginary components are of different size, the equation

m; = 2Re(¥¥)cos(—27k - t) + 2Im(¥¥)sin(—27k - t) (28)

describes an ellipse rather than a circle. The resulting structure is referred
to as an ‘elliptical helix’ (Figure 1j).

5.3 Summary of structures and basis vectors

In this Section we have shown that the class of a magnetic structure is the
result of both the propagation vector and the form of the basis vectors in-
volved. Sine structures and simple structures arise from real basis vectors,
while helices involve complex basis vectors. The key equations are

m; = lI,;(e—Qﬂ'ik-t (29)
and
m; = 2Re(¥¥)cos(—27k - t) + 2Im(¥¥)sin(—27k - t) (30)
13
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The calculation of these basis vectors will be detailed later in the section on
Group Theory calculations (Section 8).

6 Location of magnetic reflections

6.1 k=0 ferromagnetic (ferri- antiferromagnetic)

As the magnetic and crystallographic unit cells are of the same size, the
magnetic reflections occur at the nodes of the nuclear reciprocal lattice and
their intensities therefore add to those of the nuclear reflections. Assuming
an unpolarised incident beam, the magnetic cross section[7, 8] is then given
in barns by:

(@) -yhu@ria-r) 1)

Where 7 is a reciprocal space vector as defined by Equation 7 and M | (Q)
is the magnetic interaction vector (the component of the magnetic structure
factor perpendicular to the scattering vector Q, in units of 10712 cm):

M, (Q) = 0.2695 107" Fy;. (Q), (32)

where F )/, (Q) has units of Bohr magnetons.

6.2 k+#0 antiferromagnetic- commensurate

The example shown in Figure 6b is of the propagation vector k:(%OO). As
the magnetic unit cell is 2 times larger in the a direction than the nuclear
cell, the reflections will occur at half-integer positions (2ki).

6.3 k+#0 antiferromagnetic- incommensurate

We know that due to the form of Equation 11, contributions from the basis
vectors of both k and -k are required. Reflections will therefore be at posi-
tions associated with both of these propagation vectors, and pairs of Bragg
reflections will surround each reciprocal lattice point. As demonstrated in
Figure 6¢, magnetic reflections will be observed at:

1. For k

Q = 7 + k : reflection 7 or (hkl)*™

14



Page 100 / 142

2. For -k

Q = 7 — k : reflection 7~ or (hkl)~

6.4 Multi-k

Figure 6d demonstrates the diffraction pattern of a structure described by
two incommensurate propagation vectors. We see that there is a pair of
reflections for each propagation vector about the reciprocal lattice points.
This magnetic pattern is exactly the same as that from a structure with two
equally populated k domains and only the application of a suitable external
constraint can allow the distinction of these situations.

6.5 Harmonics of k

Contributions from the harmonics of k lead to the occurrence of reflections
at positions that correspond to fractions of k. The example given in Figure
6 is of an incommensurate propagation vector and its harmonic %k.

7 Symmetry in magnetic structures

7.1 The little group Gi and its irreducible representa-
tions

As we have already stated, the little group Gy that is made up of all the sym-
metry elements that leave k invariant, is a central concept in the symmetry
analysis of magnetic structures. For a magnetic structure to be possible,
it must be compatible with all of the symmetry operations of Gy simul-
taneously. The set of matrices that describes how the moments transform
under all of the operations of Gy makes up a ‘representation’. It is useful to
separate these representations into orthogonal Irreducible Representations|9]
(IRs), just as we separate the vibrations of a molecule into normal modes.

7.2 Landau Theory and its application to magnetic
phase transitions and structures

The power and utility of Group Theory calculations with regards to the
determination of magnetic structures comes from the Landau theory of a
second-order phase transition. In the simplest of terms, this states that a

15
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Figure 6: Cross-sections and graphs in reciprocal space for a variety of mag-
netic structure classes
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second-order transition can involve the build up of magnetic fluctuations that
have the symmetry of only one Irreducible Representation (in this case an
Irreducible Representation describes the symmetry properties of a magnetic
moment under all the symmetry operations of the little group Gy)[4, 6, 9].
Because of this, the resulting magnetic structure can be described by the basis
vectors associated with only that Irreducible Representation and the basis
vectors associated with the Irreducible Representations not involved in the
transition are necessarily zero. This greatly limits the number of possible
magnetic models and the number of parameters that are involved in their
refinement

Even in the cases where the transition is not second-order, nature is often
kind to us and the structures that result are often the same as would be
predicted for a second-order transition.The calculations detailed in Section
8 therefore continue to constitute a useful step in the determination, and
description, of a magnetic structure.

7.3 Application to structures with several magnetic
sites

If the unit cell of interest has several magnetic sites we have to consider how
they will behave. If there are two types of site, A and B, there are 3 limiting
cases and we will consider each separately|[4]:

e The two intra-site interactions are dominant: I4 > Igp > Isp.
Here the coupling between the sites is small and so the sites behave
independently. Each will therefore have its own ordering transition and
no relation between the different Irreducible Representations involved
is necessary.

e The inter-site interactions are dominant: I4p > 14 > Ip.
The strong coupling between the sites leads to a single critical tempera-
ture. The basis vectors that are associated with both sites must belong
to the same Irreducible Representation. This places a great restriction
on the number of possible structures.

e One intra-site interaction is dominant: I4 > Isg > Ip.
Upon cooling 2 distinct phase transitions will occur. The first involves
the moments on the A sites. The inter-site coupling will lead to this
structure polarising the B moments. These will then display the same
magnetic structure as the A atoms. At a lower temperature, the B
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moments will undergo a symmetry-breaking transition and order coop-
eratively. The strong coupling between the A and B sites requires that
these two orderings involve the same Irreducible Representation.

As an example, let us consider a system where there are 4 possible Irre-
ducible Representations:

e Site A: 1F1 + OFQ + 1F3 + 1F4

e Site B: 1F1+1F2+0F3+0F4

We know that only non-zero Irreducible Representations (labelled I') can be
responsible for a magnetic structure. We see immediately that not all the
Irreducible Representations occur on the two sites, i.e. on site A, I'y is not
involved. If site A orders separately, the resulting structure will correspond
to either that of I'y, I's or I'y, that is to say there are 3 possible magnetic
‘models’. Similarly site B could order according to I'y or I's. If there is no
coupling between the sites and each orders separately, there are no symmetry
restrictions on the possible Irreducible Representations involved. The sites
can therefore order according to any of their allowed Irreducible Represen-
tations. However, if the situation is such that both order together, the two
sites must order under the same Irreducible Representation, and only the
Irreducible Representation I'; can lead to a magnetic structure. The deter-
mination of the magnetic structure is therefore greatly simplified, as it can
only involve the basis vectors associated with I';.

8 Representational Analysis

8.1 Group Theory and magnetic structures

In non-primitive cells we must also determine the relation between the dif-
ferent magnetic moments in the cell. This relation can be very difficult to
derive and is often found by comparison with known magnetic structures, or
by trial and error. Group Theory arguments allow us to calculate symmetry-
allowed relations between the moments and to greatly simplify this process.
The results of these calculations are precisely the basis vectors, that we have
been using to describe the magnetic structures.

The technique that will be presented in this work involving the appli-
cation of Group Theory to magnetic structures is termed Representational
Analysis[10, 1, 11]. The only pieces of information that are required for these
calculations are the propagation vector k, the crystallographic space group
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and the atomic coordinates of the magnetic atoms before the magnetic phase
transition. Rather than simply detailing the calculations involved, their ap-
plication to an example problem will be used.

Figure 7: The kagomé lattice.

8.2 Computer programs

A number of computer programs exist that perform the calculations that
make up magnetic symmetry analysis. Irreducible Representations can be
calculated using KAREP[12], MODY[13], BASIREPS[14], and SARAR[15].
Basis vectors for the symmetry-allowed magnetic structures can be calculated
using MODY, BASIREPS, or SARAA. All the Group Theory calculations
and refinements presented here have been made using the program SARAA.

8.3 Example: of AgFe;(SO,),(OH)s with k = 003

The jarosites are described in the space group R3m (point group D3, ) and
their crystal structure is displayed in Figure 8. All the calculations that
follow will refer to the hexagonal non-primative setting of this space group,
the symmetry elements of which are given in Table 1. As the cell is hexagonal
there are three kagomé layers in the crystal structure and these have the
stacking sequence ...ABC... The magnetic Fe?>" ions make up a 2-dimensional
geometry called a kagomé lattice (Figure 7). In the mineral argento-jarosite,
AgFe;3(SO,4)2(OH)g, the exchange is antiferromagnetic and magnetic ordering
with a propagation vector k = 003 (with respect to the hexagonal axes) has
been found at low temperature.[16, 17, 18] In this section we will calculate
the symmetry-allowed magnetic structures using Representational Analysis.
These calculations are also detailed in Ref. [17].
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Element number

IT notation

Jones symbol

Rotation matrix

gl

g2

g3

g4

g5

g6

g7

g8

g9

g10

gll

gl2

{11000}

{31000}

{31000}

{21000}

{21000}

{21000}

{11000}

(31000}

(31000}

{m]000}

{m]000}

{m]000}

T,Y, %

§>x—y,2

y?'x?z

=YY,z

—T,Yy—x,z

Rl
<
N

y,y—x,é

r—vY,x,z

<
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I
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r,r—yY,z
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o
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O HRHO O R PR OO OOHOHFH,F PP OHFOOH,FOOHFROORE OORKEORRORO
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Table 1: Symmetry elements of the space group R3m. The notations used
are of the International Tables, where the elements are separated into rota-
tion and translation components, and the Jones faithful representations of
the rotation parts. The latter corresponds to the vector formed from the
operation of the rotation part of the %ement on (x,y, z).
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Figure 8: The jarosite crystal structure in the space group R3m .

8.4 The group Gy and its Irreducible Representations

As we have already explained in Section 3.4, for a given propagation vector
k, some of the operators of the space group Gg, g = {h|7}, leave it invari-
ant while others transform it into an equivalent vector that differs by some
arbitrary translation of the reciprocal lattice, 7, according to:

kh=k+T (33)

This set of elements makes up the so-called little group, Gy, which is a
subgroup of Gg. The Irreducible Representations of this little group are given
by the symbol I',,, where v is the label of the irreducible representation, and
the matrix that corresponds to the symmetry element g is labelled by d¥(g)

Looking at the example of AgFe;(SO4)2(OH)g with k = 003, we find that
the little group contains all of the 12 symmetry operators of the space group
R3m. The Irreducible Representations of these are given in Tables 2 and 3.
One sees immediately that the second-order representations I's and I'g have
the same elements for symmetry operations 1-6 and are related by a factor
of (-1) for the operations 7-12.

These Irreducible Representations may be verified against tabulated val-
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| g1 | g2 |3 |g4]g5|g6|a7|e8]g9]gl0]gll|gl2
Ly 1) 1)1t 1 1t 1] 1] 1] 1| 1] 1
To| 1| 1| 1) 1| 1| 1[-1|-1[-1| -1} -1| -1
Ty | 1| 1| 1|-1|-1|-1| 1| 1 1| -1} -1| -1
Ty 1| 1| 1)-1]-1|-1]-1|-1|-1| 1| 1| 1

Table 2: First-order Irreducible Representations for the group D3, for the
vector k= OO%.

gl g2 g3 g4 gb g6
r. T 1 0 e 0 e 0 01 0 €2 0 €
=6 0 1 0 ¢ 0 ¢ 10 e 0 e 0

g7 g8 29 g10 gll g12
r —1 0 —€ 0 —e? 0 0 -1 0 —¢ 0 —e
° 0 —1 0 —e 0 — | =1 0| — 0] —€ 0
r 1 0 e 0 e 0 01 0 € 0 €
6 01 0 € 0 € 10 e 0 e 0

Table 3: Second-order Irreducible Representations for the group D3, for the
vector k= 002. e=exp(-&) .

ues of the projective (or ‘loaded’) representations, dE", given in works such as
Bradley and Cracknell[9] and Kovalev[19]. The tabulated representations are
given for the various point group symmetries and can be converted into the
Irreducible Representations of the little group Gy of the propagation vector
k by multiplicating them with a phase factor:

dv — dlzzr . 8727Tk-‘7'

(34)

Where T represents the translation part of the symmetry operator to which
d, is associated.

8.5 Effect of symmetry element on a moment bearing
atom

The effect of a symmetry element is two-fold: it will act to change the position
of an atom, and reorientate the magnetic moment, e.g. atom 1 moves to the
position of atom 2, and its moment is reversed. The combination of these
two results are described by the magnetic representation, I'. We will examine
these two effects separately:
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8.5.1 Effect of symmetry element on atom positions: the permu-
tation representation

A symmetry operator g = {h|T} acts on both the position r; of the atom
and on the components a of the axial vector that describes the moment.
The operation that sends r; in the zeroth cell to r; in the pth cell can be
symbolically stated as

9(50) — (iay) (35)

In other terms, the effect of a symmetry operation ¢ is to permute the
column matrix of atom labels, P:

gP)—P (36)

This operation is governed by a permutation representation, I',¢,r,, which has
matrices of order N 4, where N4 is the number of equivalent positions of the
crystallographic site. It is important to note that when a symmetry operation
results in an atomic position that is outside the zeroth cell, a phase factor
must be included that relates the generated position to that in the zeroth
cell. This phase is simply given by:

§ = —2rk - T (37)

Where T is the translation vector, that relates the original and generated
atoms.

As an example, from Table 4 we see that the permutation equation for
the atoms of the three Bravais sublattices under the g={3" | 0 0 0} operation
is:

2 - exp(6,) 1
3 - exp(bh) = Tperm | 2 (38)
1-exp(6,) 3

Where the atomic positions follow the labelling: 1=(3 1 1),2=(3 0 3)
3=(0 4§ 1). For the operation g={3 | 000}, 6, = 6, = 6. = 0 for k= 003.

The permutation representation is therefore given by

010
[{3" 1000} 00 1 (39)
100
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The character of this representation, Xperm, for each symmetry operator
is then simply the sum of the phases 6(g) for the atoms that are transformed
into an equivalent atom under a symmetry operation, and so for both the
propagation vectors, X]gg;l,?‘)‘)} = 0.

8.5.2 Effect of symmetry element on moment vectors: the axial
vector representation

The second effect of this symmetry operation is to transform the spin com-
ponents with index «, (o = z,y, z) of the reference spin j into the index o’
of the atom at 7;.[10, 1, 11] These transformations are described by the axial
vector representation, ‘7, the character of which is given by

Xp = Y Rydet(h), (40)
a=b

Where R" refers to a specific element a,b of the rotation matrix h, and det(h)
represents the determinant of the rotation matrix R" .and has the value of
+1 for a proper and -1 for an improper rotation. This is exemplified for the
3% rotation, where the operation of h(3*) on the moment vector M=(m, m,
m,) gives:

010 My
R(BY)M =det(h) | 1 1 0 m, (41)
0 01 m,
—m,
=1 My — My, (42)
m

As 3% is a proper rotation, det(37) = 1 and the character of V for h(3%) is
therefore Xi”;:O.

8.6 Magnetic representation

As we have already stated, the magnetic representation, I', describes both the
result of the symmetry operation on the atomic positions, and on the axial
vectors that describe the magnetic moments. As these effects are indepen-
dent, the magnetic representation is given by their direct product[10, 11, 1]:

I =V X Tperm (43)

Or, in terms of the matrices for the representations themselves
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Atoms Axial vector components
g = {th} 1 2 3 Xperm My m, my | Xy
{t Joo0o0}|1 2 3 3 m, m, m, | 3
{3t |]000}|2 3 1 0 -m, m,-m, m, | 0
{37 |000}|3 1 2 0 | -m,+m, -m, m, 0
{2 ]000}|-1 -3 -2| -1 m, m, -m, | -1
{2 |000}|-3 -2 -1| -1 m,-1m, -m,, -m, | -1
{2 ]000}|-2 -1 -3| -1 -m,, -m,+m, -m, | -1
{1 |000}|-1 -2 -3| -3 m, m, m, | -3
{3t 1000}|-2 -3 -1| O -m, m,-m, m, | 0
{3 1000}[-3 -1 -2 0 |-m,+m, -m, m, 0
{m 000} 1 3 2 1 m, m, -m, | -1
{m |000}|3 2 1 1 m, -1, -m,, -m, | -1
{m ]000}|2 1 3 1 -m, -m,+m, -m, | -1

Table 4: The permutation of B*" atoms (at position 9d) and the transfor-
mation of the axial components of the moment under the different symmetry
operators of the R3m space group (point group D3;) for k = 003. The
characters of the representations I',,., and V are given.

V F erm
Diyr,) = Diny x Dyl (44)

The characters of these representations are related according to:
XT = Xy X Xperm (45)

8.7 Reduction of the Representation I'

The magnetic representation for a particular site can be decomposed into
contributions from the Irreducible Representations of the little group:

r=> nr, (46)

where n,, is the number of times the irreducible representation I', appears in
the magnetic representation I'. n, is given by:

T I ) (a7)

Here, xr is the character of the magnetic space group and xr; is the complex
conjugate of the character of the irreducible representation with index v.

n, =
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8.8 Calculation of the basis vectors W

The basis vectors, 1, that transform according to the u dimensional irre-
ducible representation ') are projected out of the representation matrix
D, using a series of test functions ¢”, where ¢' = (100), ¢* = (010), and
P = (001). This is carried out by the projection operator formula:

Pt = > DiNg)bigi e T det (h) R, (48)
9€Gx
The summation is over the symmetry elements of the little group Gy. ¥ is
a spin component that we represent by a column matrix 4(r). 9; 4 is unity if
the atoms ¢ and gi are equivalent positions of the crystallographic site that are
related by a primitive lattice translation, i.e. they are of the same sublattice
of the Wyckoff site. Equation 48 is applied sequentially to each element A
of the matrix D,, for each equivalent position ¢ of the crystallographic site.
The row of the matrices D, is fixed during the examination of a given IR.
In our calculations the p elements are those that correspond to the first
row of the matrix of D,. As for each element, labelled A = 1..., three com-
ponents 3 are projected out, there are in total 3u projected components. Of
these, the number of non-zero unique projected components for a represen-
tation is of course the same as calculated using Equation (47).

8.9 Refinement of basis vectors mixing coefficients

Any linear combination of basis vectors within one representation is neces-
sarily a symmetry-allowed basis vector. The atomic moment on a particular
atom,m;, is therefore most generally given by the sum of the basis vectors
for a particular irreducible representation:

m; =3 Cuip,, (49)

where C, is the mixing coefficient of the basis vector v. In refining the orien-
tation of an atomic moment, we are in effect refining the mixing coefficients
C, of the basis vectors within the irreducible representation being examined.
The number of variables in our refinement is simply the number of unique
basis vectors that transform according to a given representation, i.e. n,pu.

8.10 Refinement of complex basis vectors

The refinement of the mixing coefficients that relate complex basis vectors
will be dealt with in detail, to demonstrate how an ordered array of magnetic
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moments, which are necessarily real entities, can be described by complex
basis vectors.

8.11 Decomposition of the magnetic representation and
the basis vectors of AgFe;(S0,4)2(OH)g

In the hexagonal setting the magnetic Fe3" ions are found on the 9d sites.
For these sites the decomposition of the magnetic representation according
to Equation 47 is:

r=0r + 218" + ory” + 10¢ + 318 + ory (50)

The Landau theory of a second-order phase transition, requires that only
one representation is involved, and so for this k there are only three possible
magnetic structures. These correspond to representations I's, I'y and I's.

The basis vectors for these representations calculated according to Equa-
tion 48 are given in Table 5. The atomic sites are labelled following the
convention given in Section 8.5.1. The basis vectors have varied forms and
we will now explain in detail the types of magnetic structures that they
correspond to.

IR | b-v Atom 1 Atom 2 Atom 3
m, m, m, m, m, m, m, m, m,
Ty [ | I -1 0 1 2 0 -2 1 0
v | 0 0 1 0 0 1 0 0 1
T, | s | L 1 0 1 0 0 0 1 0
Ts |4 | 1 0 0 1 0 DY TR 0
s |0 1 0 |48 L4 0 A48 0 0
e | 0 0 1 0 0 L= g 0 i+
vr | 01 0 |- L 0 o 0
vs | 10 0 0 L 0 L8 L 0
Yo | O 0 1| 0 0 L] 0 0 1+%i

Table 5: The basis vectors of the Irreducible Group Representations of the
space group R3m (point group D3,) appearing in the magnetic representation
with k = OO%

Representations I'; and 'y are one dimensional. They therefore corre-
spond to simple magnetic structures in which the atomic moments are orien-
tated along particular crystallographic axes. It is noteworthy that both 1),
and 15 correspond to 120° spin structures, with the total spin on any given
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triangle plaquette being ,;S;=0. While, the two spin structures are in fact
related by a global rotation of spins, the two representations differ in that I'y
allows the introduction of an out-of-plane component, which corresponds to
5. The combination of the 2 basis functions 1 and ), creates a so-called
‘umbrella structure’ (of the type shown in Figure 1f) in which the degree of
out-of-plane canting is a refinement variable.

Representation I'5 is two dimensional and is repeated 3 times. It therefore
corresponds to a 6 basis vector magnetic structure. As the general solution
involves any linear combination of these 6 basis vectors we can not ascribe to
this representation a simple structure. We do note however, that there are
relations between the basis vectors and these will simplify the refinement of
the mixing coeflicients: Y=g, Yi=1); and Pi=-1),.

For pedagogical reasons we will ignore these relations and continue as if
I's involved six untelated complex basis vectors. In this case, as the atomic
spins are real entities, it is necessary to introduce the corresponding basis
vectors of the propagation vector -k in order to make the summation of the
two components real (Section 5). A description of the translation properties
of this structures begins as normal from:

mj — ‘I"J 6727rik-t + ‘Ilj—ke%rikt, (51)

However, as for k = OO% the vectors k and -k are equivalent, we have —k =k
and so

6727rik-t — e??‘rik~t (52)

and

m; = (¥ + W K)erikt (53)

A further simplification arises from the fact that the addition of the -k
contribution corresponds to the addition of the conjugate of the basis vector
of k, i.e.

ok =gk (54)

We therefore obtain
m; = 2Re(¥¥) [cos(2rk - t,,) + isin(27k - t)] (55)

For both k = 00% the sine component vanishes under the centring transla-
tions of the non-primitive cell, or integer translations of the crystallographic
cell, and so Equation 55 reduces to
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m; = 2Re(\11;‘)cos(27rk -t) (56)

As in general, the basis vectors associated with I's that are to be tested
against the magnetic structure are complex, when considering the transla-
tional properties of the magnetic moments it is sufficient just to add their
complex conjugate in order to arrive at real values for the atomic moments.
In these two cases this leads to Equation 56. The astute reader will have
noted that while this procedure began with six basis vectors, it finished with
only three: we have apparently halved the dimensionality of the basis vector
space. In order to determine the remaining three basis vectors we must look
at the imaginary part of 1 in Equation 53. This is done by first multiplying
the basis vector 1 by the imaginary number i. Equation 53 would then read

m; = ((W¥ + i k)it (57)

and Equation 56 would become

m; = 2Im(¥¥)cos(2rk - t) (58)

As the basis vectors on I's are themselves related by complex conjugation,
we do not need in fact need to resort to this addition of the components
associated with -k. Instead, we can simply equate the mixing coeffients of
the conjugate pairs, i.e., C(¢})=C(1ps) ,etc..

There is an alternative way of dealing with complex basis vectors. Instead
of combinining the complex basis vectors with their conjugates as described
above, we can use the properties of irreducible representations. In some
cases’ unitary rotations can be applied to the Irredicible Representations
that make them real. These two techniques are equivalent.

8.12 Refinement of the magnetic structure of

AgFeg(SO4)2(OD)6

The collected neutron diffraction data were found to be compatible only with
a magnetic structure described by the representation I'y. Figure 9 displays
the value of x? as a function of the mixing coefficients C'(¢,) and C(1,);
the only refinement variable in the least-squares matrix was the magnitude
of the magnetic moment. In all cases the sum of the mixing coefficients was
adjusted to be unity, and a trivial factor was then used to separately scale the
magnitudes of moments described. The best value of x? corresponds to the

2this criteria for this transformation is that the Coirreducible Representation (CIR)
derived from the Irreducible Representation is real
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Figure 9: x? as a function of the basis vector coefficients C'(1);) and C'(1),)
during the refinement of the magnetic structure of AgFe3(SO4)o(OD)g at
1.5K.

coefficients C'(¢,)=0.99 (5) and C(v,)=0.01 (5), that is to say the refined
structure is coplanar and the contribution from out-of-plane canting is zero
within the error of these data. The final refined profile is presented in Figure
10 and the final magnetic structure in Figure 11.

8.13 Discussion of the magnetic structure of
AgFeg(SO4)2(OD)6

The magnetic structure that is refined is a triangular structure, that is to
say the neighbouring moments are related by 120°. This is what we would
naively expect for a triangular array of antiferromagnetically coupled spins.
The Group Theory arguments we have used indicate that only particular ori-
entations are possible for this configuration. As we will show in the practicals
that accompany this course, the out-of-plane component that is only allowed
in I'y is important at higher temperatures and leads to the formation of an
umbrella structure.

9 Summary of course

As stated in the introduction, this course was intended to explain how to
describe a magnetic structure in terms of a propagation vector and some
of its associated basis vectors. The examples given show how the different
possible types of magnetic structure lead directly from this description. The
second part of this text has been devoted to magnetic symmetry analysis-
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Figure 10: Experimental and calculated diffraction patterns for
AgFe3(S04)2(0OD)s at 1.5K. Magnetic and crystallographic reflections are
indicated by the upper and lower tick marks respectively.

Figure 11: Magnetic structure of AgFe3(SO4)2(OD)g .
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Representational Analysis. The Group Theory calculations that this involves
are tedious, but now computer programs exist that perform these calculations
in seconds. The basis vectors that result simplify greatly the processes of
finding a magnetic structure, and can facilitate their correct description.

10 Further reading

Much inspiration, of varying levels, has been taken from a number of works
on magnetic structures and magnetic symmetry analysis. For a first step
into these subjects the References [1, 4, 5, 6, 7] are particular suitable. Ref-
erence [7] presents a clear introduction into the technical aspects of magnetic
neutron scattering.
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Abstract. Group-theory techniques can aid greatly the deimagnetic structures from both powder and single-crystal sam-
termination of magnetic structureShe integration of their ples. Examples are given thég¢monstrate the importance of
calculations into new and existing refinement programs is anymmetry information for the eecect analysis of magnetic
ongoing development that will simplify and make more rig-diffraction data, and concomitantly to the understanding of
orous the analysis of experimental data. This paper presertse physical reasons for the formation of a long-range mag-
an overview of the practicajpglication of symmetry analysis netic order.

to the determination of magnetic structures. Details are given

of the different programs that perform these calculations and

how refinements can be carried out using their results. Ext Representational analysis calculations

amples are presented that show how such analysis can be

important in the interpretatioof magnetic diffraction data,

and to our reasoning of the causes for the observed orderin he calculations can be separated into two parts. The first is

' grouping according to symmetry of the possible magnetic
structures that are compatibigth both the space group of the
PACS:75.10.-b; 75.25.+2 crystal structure and the propagation vedtof the magnetic
ordering. The second part involves the application of Landau
theory as a tool to simplify which of these are possible as a re-

Despite immense technical progress since the first magneti¢llt of a continuous second-order phase transition. While the
neutron diffraction experiments of Shull and Smart [1], thedrouping and the labelling of the different magnetic structures
determination of magnetic strucis remains a subject that PY their symmetry properties is completely general, the as-
is typically limited by the data-analysis strategy: structure$umptions made that involve the Landau theory are subject to
are generally determined by intuitior simple trial and error  its limitations. o
refinement. As a consequenceg fiterature is full of incor- The application of group they to the determination of
rect magnetic structures and incomplete refinements. Whilgagnetic structures is termed repentational analysis [2—6]
group-theory techniques can be applied to limit the numbeand is based on the calculation of the Fourier components of
of trial structures, or to determine along which directionsan ordered magnetic structureathare compatible with the
the spin components can lie, thealculations when carried symmetry of the crystal space group before the phase transi-
out by hand are arduous. This has led to their being appliegon and the propagation vector.
only when a problem warranthdir use or, more commonly,  The first step in the anadjs is the identification of the
when it is sufficiently close to an example already in thepropagation vectdk associated with the phase transition, and
literature. Recently, a number of computer programs havghich space-group symmetry operations leave it invariant.
been developed that allow the unspecialised user to perforfhese operations form the little group..GThe symmetry
these calculations automatically. Thimtegration with com-  glements of G and the value ok are then used to deter-
mon refinement codes allow for the first time the simple angnine the different irreducibleepresentations (IRs) ofiGThe
rigorous examination of which symmetry-allowed magneticgitferent basis vectors (Fourier components of the magnetic
structures are compible with collected data. _ structure), BVs, that are pmgjted out from an irreducible rep-
_Inthis article a brief overview is made of the practical ap-resentation define a basis-vector space that may be termed
plication of using group they to aid the determination of 5 ‘symmetry-allowed’ model. The different IRs define orth-
- ogonal basis-vector spaces that can be used to conveniently
*E-mail: a.s.wills@ill.fr classify the different possible magnetic structures.
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2 Application of Landau theory refinements. These can be overcome by the reverse-Monte
Carlo-based algorithms whichllow the automatic explo-

The Landau theory of a second-order phase transition reation of the degrees of freedom associated with a given

quires that the Hamiltonian of the system is invariant undemagnetic structure and theedtification of additional min-

the symmetry operations ofiGThis leads to the requirement ima in the refinement [13]. In more complex cases the tech-

that for a second-order phase transition an ordered structuréque of simulated annealing can be employed: this uses

can be the result of only argjle IR becoming critical. This a decreasing criterion to allow the more controlled evo-

typically reduces the number of trial structures and the varilution of the system that is required to bypass the false

ables that each involve. minima commonly associated with larger numbers of vari-

When the assumptions of Landau theory are not valid, foables.

instance when the Hamiltonian possesses odd-powered terms,

the mixing of components from different IRs becomes pos-

sible. Continuing with this logi, the observation of a mag- 5 Ongoing development of refinement codes

netic structure that involves different IRs is suggestive of

either successive ordering transitions for each IR, or addbue to the difficulties in magriie structure refinement be-

tional terms in the magnetic Hamiltonian that relax the singleing greatest for data from powders, development of these new

IR rule, e.g. crystal-field terms at sites with certain pointmagnetic structure refinement codes has concentrated on their

symmetries. analysis. As part of a colteration between the Institut Laue-
Langevin, the Commissariat &hergie Atomique, and the
Laboratoire leon Brillouin we are at present working on the

3 Programs that perform these calculations extension of the FullProf package not only towards the refine-
ment of unpolarised and polargeneutron-diffraction data

While tabulated values of the IRs of the space groups haveollected from single crystals, but also towards data collected

existed for many years [7, 8], they are prone to inaccuraciedy the technique of spherical neutrpolarimetry. After these

and their laborious use inalculations carried out by hand developments the data collected by any technique, from con-

is perhaps the major reason for their restricted use. Prefeventional powder diffraction to even the most complex col-

able to many are the programs that have been written thégction techniques, will be refinable in terms of symmetry-

calculate these IRs, or use files of tabulated values such agenerated basis vectors.

KAREP [10] (calculated), MODY [11] (unverified tabulated

values), BasiReps [12] (based on KAREP), and SARES]

(with the choice of KAREP-based and computer-verifieds Canted antiferromagnetismin Mz[Ni(CNz)] (where

tabulated values). MODY, BasiReps, and SARAIso use M = Mn and Fe)

these values to calculate directly the basis vectors asso- o . ]

ciated with the different IRs, @hso allow the rapid and The first example of the application of these techniques is

simple calculation of the possésymmetry-allowed struc- taken from the M[NiCN.] (where M= Mn and Fe) molecu-
tures. lar solids [16]. These binary mat-dicyanide molecular ma-

terials crystallise in the space grouprfn. Below second-
order transitions afl ~ 16 K for the Mn andT ~ 19K for

4 Refinement using the results of symmetry analysis th_e Fe compounc_is, these display long-range magne;ic order
with the propagation vectér= (0 0 0). Symmetry analysis of

The simplest and most general mathematical description §f€ magnetic M atom at theaposition indicates that there

a magnetic structure is in terms of Fourier components: th@"® four symmetry-allowed models; these correspond to the

basis vectors that result from the group theory. The panoplRS /1 3, I, and[7 in the notation of Kovalev [8, 9] and

of different possible commengate and modulated incom- N€ir basis vectors are given in Table 1. While data collected

mensurate structures can be simply understood in terms Uf'ng powder neutron diffraction can be well fitted by a sim-

the form of the basis vector(s) for a site and the value(s) of'€ model of antiparallel spins (M& —M2) that were free

k. To simplify the refinement process, SARANd BasiReps to rotate in theab plane., this spin structure is not allowed

have been written to integrate with the standard refinely Symmetry. Investigation ohe symmetry-allowed models

ment codes FullProf 2000 [14] (BasiReps and SARA found that the data could only be well fitted by.

and GSAS [15] (SARA). The applicability of the tech-

nique is now limited principally by the choice of refinement

codes. IR BV M1 M2
The reduction in data due to the magnetic form factor

and the observation of only the component of the magnetir; Y1 (001) (0 07)

sation perpendicular to thecattering vector result in insta- I3 V2 (100 (100)

bilities and limitations when using conventional least-squares V3 (010 (010
s 2 (100 (@00

P . ¥s  (010) (010
The exception to this is likely to be those presented in [9] as these havey, Ve (001) (001)

been subject to computer verification.
2 perhaps the most important restriction arises from the absence of a prop@able 1. Magnetic basis vectors, BVs, for the ite of the space group
gation vector in GSAS — it is consequently limited to only simple commen-Pnmm with the propagation vectdt = (000). M1 and M2 are the atomic
surate structures. positions (000) andy 3 3)

MS ID: APA1159
12 March 2002 10:30 CET
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Inspection of the associated basis vectgrsdnds) the degenerate manifold. Unfartately, the experimental de-
shows that while the oments are antiferromagnetically termination of which occurs istrongly hindered by an igno-
aligned alonga, an uncompensated magnetisation can existance of the particular degeneracy-breaking interaction. Not
alongb. The presence of such a ferromagnetic spin cantingnly did symmetry analysis provide a particularly effective
has been confirmed by dc susceptibility data. tool for the reduction in the number of trial structures, but it

also helped to understand them in terms of the different terms
in the exchange Hamiltonian [18].
7 Rare-earth nickel borocarbides

Very recently, symmetry analysis has provided important ney® Conclusion

information about the variety of magnetic orderings that are

observed in the rare-earth nickel borocarbides BMC (R =  The tools are now available that allow the unspecialised re-
Gd—Lu, Y) [17]. In these materials Fermi surface nesting efsearcher to use symmetry analysis to make simpler and more
fects propagated via the RKKY interactions create a stronggorous the refinement of magnetic neutron diffraction data.
tendency for these materials to order magnetically with théds demonstrated here, their application to even the simplest
propagation vectdk = (0.55 0 0. Despite this, a large num- structures is important, as physically unreasonable models

Please quote city/town instead of country.
Any update?

ber of different magnetic structures are observed for thstil
series.

The key to understanding the magnetism of these materi-
als was the single-ion anisotropies of the rare earths. These

| often fit experimental data.

are typically well defined and possess a characteristic efReferences

ergy scale that is far greater than that of the exchange in-
teractions. Their effect is to force the magnetisation to point 1
along specific crystallographidréctions. Symmetry analy-

the propagation vectdr= (0.55 0 0 in this system indicated

that when the single-ion effectgere incompatible with the
symmetry-allowed directions for this propagation vector, the

to be satisfied.

9.

10.

8 The jarosites

11.

The jarosites (AFgSOy),(0D)g, Where A= Nat, K*, Rb",
Ag™, NDj, %Pb+2), are the most studied examples of kagom
antiferromagnets. They have been the object of much scrutiny

1

as the magnetic sublattice makes up a geometry of vertext4.
sharing triangles. This results in their having an infinite num-15.

ber of classical ground states in the presence of only neares}-6
neighbour antiferromagnetic exchange interactions. Further
neighbour interactions can raise this degeneracy and cause
one particular ordered spin configuration to be favoured fromis

ki

2
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Magnetic Refinements in GSAS
Paolo G. Radadlli

Page 123/ 142



GSAS magnetic options

The approach of GSAS to magnetic structures is loosely
based on Shubnikov groups.

However, for each space group, not all Shubnicov groups
generated from it are possible. The only possible ones are
those corresponding to subgroups of index 2 of types | and
lla. In other words, theonventional unit cell must be in
commonbetween the parent group and the subgroup.

In GSAS there is a straight implementation of the OG
formalism, where ‘primed’ operators (or lattices) correspond
to ‘red’ operators.

Alternatively, one can always generate an additional magnetic
phase with appropriate constraints.
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GSAS magnetic entries

Phase in the “phase” menu (keystrokiegp), one has the
option of selectingn) whether the phase is nuclear, nuclear
and magnetic or purely magnetig I ¢, respectively).

Form factor: in the form factor editing menu-§f) there is

an option fl) to edit magnetic form factors. One can use the
default values (warningfhey are different for different
oxidation states) or input user values (see ITC, volume C).
Atoms: in the atom editing men#-Ka) there is an optiormy

to assign magnetic moments to individual atoms. Within that
menu, there is an optios) (o ‘prime’ the group generators.
GSAS automatically determines if the magnetic point group
of the site is admissible, and, if so, for which spin directions.
One can change colours with theption. Once out of the
menu, one can change the spin components witih dption.
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Notes on the Layered Manganite example

The manganite site is 4e [4mm]. Of the magnetic subgroups
of [4Amm], the only admissible one is 4m’'m’. Consequently,
the only possible magnetic space groups l@enm’'m’
14/m’m'm’, | A/mm’m’ and L4/m’m'm’. Note that the first

one is a ferromagnetic group.

An immediate consequence of the site symmetry of the Mn
site is that the spihasto be directed along the 4-fold axis.
There are therefore only 4 magnetic structures generated with
the Shubnikov approach. The layers @rgays FM, with the
intra- and inter-bilayer coupling being FM or AFM.

Note the significant number of magnetic structures which are
observed, but cannot be generated with the Shubnikov
approach.




Magnetic refinements - multi-phase approach

Should the Shubnikov approach be insufficient to describe the
magnetic structure, one can resort to introducing a squuoety
magnetic phase with appropriate constis but lower symmetry
This enables one to deal with any kind of commensurate
structure, including the representation analysis. Here are a few
tips:

1. If the magnetic phase has the same conventional cell as the nuclear one,
the lattice and phase fraction constraints are straightforward.

2. If the magnetic cell ikarger than the nuclear one, one has to remember
that the phase fraction jgoportional to the number of unit cells in the
sample. So, if the the volume of the MP is doubled, its phase fraction
must be halved.

3. One can also set constraints on the lattice when the two cells are different.
However, remember that the constraints are on the reciprocal metric
tensornot on lattice parameters. Consult a crystallography book to see
how they are related for the various lattices.

Shubnikov Groups:
a GSAS application
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Magnetic powder diffraction and instrumentation
Paolo G. Radadlli
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Spin Density

Unit-Cell Spin Density (localised and isotropic approx.):

natoms _~ natoms i
M (r) = Zrﬁi'uiGqu_riD M, (k)= D mmu; f (ke ™"
j=1 =1

L attice Spin Density (ssmple trand ational symmetry):

M(r) =S M, (r-r,) M(k)= 0l —k) Do (k)™

L attice Spin Density (1-dimensional modulation):

M(H:ZF’(rn )M ,(r-r,) M(K)= Zd(K_lT_k)nefns(z| m‘hj),uj (g™

| =—c0,+00

where P(x)=Y ae* hasaperiodicity of 1.

Magnetic Scattering of Neutrons

Neutrons are strongly scattered from magnetic moments.
The scattering amplitude from anion isof the order of

Yr i, where:

y =-1.91 Neutron magnetic moment
IN nuclear magnetons (pin +
orbital).

r,= 0.282 10> cm Electron classcal radius (e?/m?)
L = ion magnetic moment in Bohr magnetons

For compari on, typical nuclear scattering amplitudes for
neutrons are of the order of 0.5-1.0 -10-*2 cm.
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Magnetic Scattering of Neutrons- |

Let’ srecall the formulafor the lattice spin density and its
Fourier transform:

natoms

M(f):ZMu(r—rn) M(k):Za‘(K_k) ijujfj(k)e—ixmj

The Fourier transform M (k) i s called magnetic structure
factor. Unlikethe nuclear sructure factor, it isan axia
vector quantity, and it has to be combined with the other
vector quantity inthe problem in order to obtain the
cross section, whichisascalar. The other vector
guantities are the momentum transfer k (a conventional
vector) and the neutron spin s, (an axial vector).

The Magnetic Form Factor

Ua
1.00

<qu (r)e" dr3q> L

over asingleatom
ks

0.40 = . o
In the i sotropic case: \\M\\

)= £00=1u0k) (1~ 24 ) 1.0 |

f(k)=

0.60 -

1.5

A AT
Fig. 6.1.2.2. Comparison of 34, 44, 4f, and 5f form factors. The 3.
form factor is for Co, and the 4d for Rh, both calculated fron
wavefunctions given by Clementi & Roetti (1974). The 4f forn
factor is for Gd** calculated by Freeman & Desclaux (1972) anc
the 5f is that for U** given by Desclaux & Freeman (1978).

From: International Tables of Crystdlography, Volume C, ed. by AJC Wilson, Kluwer Ac. Pub., 1998, p. 513
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Scattering of Neutrons from MS

It isuseful to introduce the quantity Q(k), known as
magnetic i nteraction vector, and defined as:

Q(k) =k xM (k) xk

Q(k) isthe projection of the magnetic sructure factor upon
the plane perpendicular to the momentum transfer K.
Magnetic neutron scattering cross sectionsonly contain
Q(Kk). Inother words, scattering of neutronsthroughk is
only determined by the components of the magnetic
moments [J to k. Note that Q(k) can be complex.

Magnetic Scattering Formulae

Polarised neutrons - polarisation analys s

Non-flip (d”(k)j”:(yref{én k) +FK)? +3, T ()F (k) + ok )F ()}

dQ

Aip (92 (k)f = O {8, <@l g, %@ (<] +18, tok) xQ(k)}

dQ

Totd  [3209) =(rF{Ql) + F) +5 o WF () a)F () +iol) <al]

Unpolarised neutrons

(920 =br{etr+F]

dQ
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Formulae Explained

Non-flip: In addition to the nuclear scattering, it contains
the components of Q(k) paralel to the neutron
spin and a magneto-structural interference term.

Flip: It contains the components of Q(K) perpendicular
to the neutron spin, plus an additional term which
Is present only if Q(k) is complex.

Total: It contains the nuclear term, the module square of
Q(k) and the two terms which arelinear in s,

Unpolarised: It containsonly the nuclear term and the module
square of Q(k), since the two terms which are
linear in s, cancel upon averaging.

Neutron beam polarisation

Aswe have seen, the scattering cross section dependson the
initial indirections. Also, in general, the final direction of the
neutron Pin s is not parallel to theinitial one s. Therefore, the
population of spinsinaneutron beam isgenerally atered by
magnetic scattering. One defines the neutron beam polarisation
as P=(5,) ,where S, isthe neutron spin direction and the
average istaken over al the neutronsinthe beam. The
transformation of the neutron polarisation upon scattering is
given by:

P, =DP +P,

Where D is atensor describi ng the effects of rotation and
depolarisation and P, describesthe creation of new polarisation.
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The smplest case-|

Scattering of unpolarised neutrons from a collinear unmodul ated
dructure. Here, K isareciprocal lattice vector.

For collinear structures (all moments // m)

2
natoms

Q)" =dn’(a) > 4 f (k)e™"

where a isthe angle between k and m

200 =t o o]

dQ

The smplest case-l|

It looks like all the information is there to solve the structure
even with unpolarised neutrons and powder diffraction. All the
magnetic moment magnitudes are contained in Q(K) with the
appropriate phase factors and signs. Also, the information about
the direction of the magnetic momentsis there through the
prefactor sin?(a). So, why bother with polarised neutrons and
single-crystal techniques?
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Magnetic Powder Diffraction

Averaging of the an?(a) term over the (quasi)-degenerate reflections,

» For Uniaxial Groups (3-fold, 4-fold, 6-fold) we
can only determine the angle ¢

sn?a =1-1sin’ydn’g —cos’ycos’g

k

e

 For Cubic Structures, the direction of the
magnetic momentsis undetermi ned:

Magnetic Powder Diffractometers-|

» High-krange: For magnetic structure analysis, one
rarely needs to go beyond sin(6)/A=0.5. Wavelengths
>2 A areidedl.

* Low-krange: Itisessentia to have good coverage at
low k, as many helimagnetic structures have very long
periodicity. k=0.5 A-1isthe minimum acceptable to do
any sensible work. k=0.1 A-lis idesl.

» Resolution: it isdesirable especidly in structure with
low crystallographic symmetry, because it enables to
reduce the accidental degeneracy.
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CW Powder Diffractometers

» Most magnetic structure problems are first tackled
using high-intensity CW powder diffractometers (e.g.,
D1B). The biggest advantages are the excellent
coverage at low k, the high flux (that can be further
enhanced through focussing) and the ssmplicity of the
data structure. Resolution is generally quite poor.

* The use of high-resolution machines (e.g., D2B) is
becoming more common, especially when the magnetic
moments are large, the structure has low symmetry and
thereis an interplay between magnetism and structural
properties.
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The High-Intensity CW Powder
diffractometer D1B at the ILL

Graphite filter

Vonitor

o
o
.
7

Multidetector

I(meas) / 108 (monitor cou
@

15 20
20 (deg)

Figure 2: Low-angle part of diffraction pattern for Ho, ¥ Niy!1B,C at
3 K with marked nuclear (N) and magnetic (T;, T3, T3) reflections
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y=0.7
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The total monitor
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Moderator

WISH Schematic drawing

Unpoisoned
Decoupled CH,

Disk Choppers

Nimonic Chopper

58Ni Guide m=0-3

Sample Tank

Collimator

Guide Carousel  Monitors

(L

Vertical ballistic funnel

Detector

m= .
3 Focussing snout
Monitors
Details of the focussing sections

m=2 .
47500 26x13 mm?. 12x6 mm? weak” focussmg

m=2 =S4 ”» .
26X13 7 ToX6 M m__“ strong” focussing

10x5 mm?

Magnetic peak height WISH @50m vs. GEM @17m
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Means to obtain a polarised beam

 Scattering from a magnetic crysal
(monochromatic): Cu,MnAl (Heuder), (Co,Fe)

1)) =t +

dQ

F (k) + 23, k) (k)]

cancelsout for spins antiparallel to the magnetic
interaction vector and |Q(k) FF (k)

* Magnetic multilayers (white beam)

* 3He polarigng filters (white beam)

Uses of the neutron polarisation

Technique Materials Method Applications Instruments
(examples)
Unpolarised Powders and Mesasure total Survey. Simple gé?é|DsZ(()3(EC|\X\(/%FP)
neutrons singlecrystals Cross se_ctl onfor |collinear D10, D15 (CWSX)
unpolarised structures
neutrons
Polarised Usu. single Set M, measure | Form factors, spin | D3
neutrons crystals, typically |with P parallel or | density
FM. antiparallel to M, | distributions.
to obtain
“Flipping ratios’
Uniaxial Powders and Set P; dongany | Separate magnetic | D7
polarimetry single crystals direction and from nuclear TAS + polariser +
measure the scattering. Some | analyser.
projection of P; non-collinear OSIRIS (future)
onto P;. structures
Spherical Single crystals Set P, alongany | Complex non- TAS + polariser +
polarimetry. direction and collinear AFM analyser
measure thefull | strcutures. +Cryopad
Ps.
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ORI COREOREN O

ro 1t 2Pysin® p+y’sin® p
1-2Pysin® p+y?sin® p

L y=(rmk)/Fk)

Magnetic amplitude (10-3u5)

sin @7, I:E\-ll

Figure 2: The magnetic amplitude per V3* jon induced in V03 by 46T at
180 K.The paints dencted by @ are for reflections with L even and thase
marked  ore for £ odd.The full curve is the ¥2* 3d form foctor normaksed

Figure 3: The section, parallel to (01.0) passing through the arigin, of the
maximum entropy reconstruction of the difference between the observed
magnetisation distribution and that due to spherically symmetric V3* ions,
The @ marks the position of the V3* jon, the I that of the 02 ion in the
plane of the section and the O that of the O which &5 0.1 A below & The
contours are logarithmically spaced with o foctor of two between successive
levels. The highest contour is ot 0.33+ 109 g A3,

Uniaxial Polarisation Analysis

* One-detector s=stup

Non spin-flip

Spin-flip

Rlk

1
Uc +§Ui

2
§Ji +0m

POk

1 1
013030,

2 1
§O-i +§0-m

a,. Nuclear Coherent

o: Nuclear spin-
incoherent

o, Magnetic (electrons)

» Multidetector setup

Non spin-flip

Spin-flip

X

1 1 i 2
JC+§0'i +§amsn a

20.+i0, (I+cos’a)

-0 O
<l

1 1 2
()'C+§Ji +5(7mCOS a

20.+i0, (I+dn’a)

~0!
NI

1 1
Uc +§0-i +§0-m

2 1
§a-i +§0-m
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D7 (ILL)

Diffuse scattering

Cold neutrons
Supermirror polarisers
32 detectors
1-directional polarisation
analysis. Separation of
coherent and incoherent
scattering

3-directional polarisation
analysis.Separation aso of
magnetic scattering

Time-of-flight option

Unpolarised 'White'
P B
Of O

Unpolarised
Monochromatic
Neutron Beam

Supermirror Neutrons Polarised
by Supermirrors

i

Guide | L/ red Neutrons Flipped

Fields |/ , | by Flipper

AAiAARALI

Some Neutrons
Flipped by sample

\ANARARAL,

Neutrons Analysed
by Supermirrors

L

Detectors

‘General Layout of D7 for Polarisation Analys&s‘
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