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Abstract 

 

Perovskites, ABX3, and their associated solid-solutions are a 

particularly important and attractive area of research within materials 

chemistry.  Owing to their structural and compositional flexibility and 

potential physical properties they are one of the largest classes of materials 

currently under investigation.  This thesis is concerned with the synthesis 

and structural characterisation of several perovskite-based materials using 

a combined approach of high-resolution synchrotron X-ray and neutron 

powder diffraction (NPD), solid-state Nuclear Magnetic Resonance (NMR) 

and first-principles Density Functional Theory (DFT) calculations. 

Initial investigations concentrated on room temperature NaNbO3, a 

perovskite widely debated in the literatue.  Published crystallographic 

data indicate NaNbO3 possesses two crystallographically distinct Na sites 

in space group Pbcm.  Whilst some of our materials appear in agreement 

with this (notably a commercially purchased sample) many of our 

laboratory-synthesised samples of NaNbO3 routinely comprise of two 

phases, which we show to be the antiferroelectric Pbcm and polar P21ma 

polymorphs.  Several different synthetic methods were utilised during this 

investigation and the quantity of each phase present was found to vary as 

a function of preparative method.  23Na, 93Nb and 17O DFT calculations 

were used in conjunction with experiment to aid in spectral analysis, 

assignment and interpretation.  In addition, ab initio random structure 

searching (AIRSS) was utilised in an attempt to predict the most stable 

phases of NaNbO3.  This proved to be both successful and highly 

informative. 

A series of NaNbO3-related solid-solutions, namely KxNa1!xNbO3 

(KNN), LixNa1!xNbO3 (LNN) and Na1!xSrx/2!x/2NbO3 (SNN) have also been 

synthesised and characterised.  The substitution of K+, Li+ and Sr2+ cations 

onto the A site appears to produce the same polar P21ma phase initially 

identified in the room temperature NaNbO3 investigation.  The abrupt 

change in cation size in the KNN and LNN series, and the introduction of 

vacancies in the SNN series, is thought to result in a structural distortion 

which, in turn, causes the formation of the P21ma phase. 
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A low temperature synchrotron X-ray powder diffraction study (12 

< T < 295 K) was completed for a sample of NaNbO3 composed of the 

P21ma polymorph (~90%) and a small quantity of the Pbcm phase (~10%).  

A region of phase coexistence was identified between the P21ma, R3c and 

Pbcm phases over a relatively large temperature range.  Full conversion of 

the P21ma phase to the low temperature R3c phase was not possible and, 

consistently, the P21ma phase was the most abundant phase present.  

Factors such as structural, strain, crystallite size and morphology are 

thought to be crucial in determining the exact phases of NaNbO3 

produced, both at low and room temperature. 

The solid-solution La1!xYxScO3 was also investigated.  Compositions 

x = 0, 0.2, 0.4, 0.6, 0.8 and 1 were successfully synthesised and 

characterised.  Refined high-resolution NPD data indicates that an 

orthorhombic structure, in space group Pbnm, was retained throughout 

the solid-solution.  Using 45Sc and 89Y MAS NMR each sample was found 

to exhibit disorder, believed to result from both a distribution of 

quadrupole and chemical shifts.  NMR parameters were calculated for 

several model Sc and Y compounds using DFT methods to determine the 

feasibility and accuracy of 45Sc and 89Y DFT calculations.  These proved 

successful and subsequent calculations were completed for the end 

members LaScO3 and YScO3.  DFT calculations were also utilised to gain 

insight into the disorder exhibited in the La1!xYxScO3 solid-solution.  
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Chapter 1 
 
Background and Introduction 
 

1.1   Perovskites 

 

Perovskite, CaTiO3, was initially discovered in the Ural Mountains 

of Russia by Gustav Rose in 1839 and named after the Russian 

mineralogist L. A. Perovski (1792 – 1865).1  Since its discovery the name 

perovskite has been utilised to describe hundreds of materials with 

stoichiometry ABX3.  Perovskites are three-dimensional framework 

structures, constructed of corner-sharing BX6 octahedra.  The A-site cation, 

conventionally the larger of the two metal ions, is commonly either a rare 

earth or alkali earth metal.  The smaller B-site cation, typically a transition 

metal, is surrounded by the anions X, usually O2!, forming BO6 octahedra.  

‘Ideal’ perovskite is cubic, as shown in Figure 1.1.  The A-site cations 

(green) are located on each corner of the cube, whilst the B-site cations 

(blue) are placed in the centre of the cube with the anions (red) positioned 

at the centre of each of the cube faces.  Ideal coordination geometries for 

the A- and B-site cations are 12 and 6 fold respectively.  A cubic close 

packed array is conventionally formed between the A-site cations and 

anions, whilst the B-site cation is positioned in 1/4 of the octahedral holes 

formed between the two.  The size of A is vital in enabling such a close 

packed arrangement to occur.   

 

1.2 Perovskite Distortions 

 

In reality, compounds adopting the perovskite structure are often 

of lower symmetry owing to distortion or, more commonly, tilting of the 

octahedra.  As a direct consequence there are considerably more distorted 

perovskites known than there are cubic.2  Octahedral tilting is considered 

an intrinsic property of perovkites and is a direct consequence of the 

relative sizes and charge of both the A- and B-site cations situated within 

the structure.  The mechanism and degree of such tilting plays a
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Figure 1.1:  Cubic perovskite, CaTiO3, with the origin centred on (a) the B-site cation 

and (b) the A-site cation. 

 

significant role in the symmetry adopted by a structure.  The level of 

distortion or strain imposed upon a structure is commonly measured 

using a parameter known as the tolerance factor, t, first introduced by 

Goldschmidt,3 

 

 

  

! 

t =
rA + rX

2(rB + rX )
, (1.1) 

 

where rA, rB and rX are the ionic radii of A, B and X respectively.4,5  When t 

is close to unity the degree of distortion observed is low.  Large deviations 

from unity however result in increasing levels of strain upon the 

perovskite structure, commonly imposed by inappropriately sized ions for 

their allocated site, i.e., either too large or too small.  In order to relieve 

such strain from the structure the BX6 octahedra undergo some degree of 

rotation, accompanied by a corresponding shift of the A-site cation.  When 

0.85 < t < 1.06 a perovskite structure, or suitably distorted version, will be 

adopted.  In addition, when using the Shannon and Prewitt radiiK5 for 0.9 

< t < 1.0 the structure is often cubic and therefore more like an ideal 

structure.  Values outside this range indicate the perovskite structure 

cannot meet the coordination requirements of the two chosen cations, 

hence a different structural arrangement is required.  This is often the case 

when A and B cations of similar size are used.  

The perovskite structure is routinely modified, either by cation 

displacements, tilting or distortion of the octahedra or, more commonly, a 
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Figure 1.2:  (a) A schematic representation of an exaggerated B-site cation 

displacement, (b) an example of octahderal tilting in perovskites and (c) a perovskite 

exhibiting both a B-site cation displacement and octahedral tilting. 

 

combination of the two, as illustrated in Figure 1.2.  Cation displacements 

are small shifts of the A- and/or B-site cations from their ideal positions.  

B site displacements are more common and are often directly related to 

the physical properties exhibited by a material, for example the 

ferroelectric displacement of the Ti4+ cation in BaTiO3.
6,7  A schematic 

representation of an exaggerated B-site cation displacement is shown in 

Figure 1.2(a).  Such displacements commonly give rise only to very slight 

distortions of the octahedra, hence they are relatively simple to deal with 

and have very little effect on the lattice parameters of a structure.  Tilting 

of the octahedra (Figure 1.2(b)) have a considerably greater effect on the 

lattice parameters and are, in effect, more difficult to accurately describe.  

Numerous papers within the literature have attempted to depict methods 

for describing and illustrating how the various tilting mechanisms operate 

and, in turn, how they may be classified.  Extensive work has been 

completed in this area by Megaw,8 Darlington,8 O’Keeffe and Hyde,9 

Thomas,10-12 Zhou and Goodenough,13 Howard and Stokes.14,15  To date, 

however, Glazer16 has provided the most exhaustive and comprehensive 

study of octahedral tilting mechanisms and, in turn, developed an 

accurate and detailed notation for describing the most commonly 

encountered tilts.  The notation established by Glazer is by far the most 

influential and has, in turn, become the standard notation adopted within
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Figure 1.3:  The crystal structure of KCuF3 viewed (a) along c and (b) across the ab 

plane. 

 

the perovskite literature.  Octahedral distortions are commonly caused by 

electronic instabilities of the enclosed metal ion.17  In particular, 

perovskites containing Jahn-Teller ions such as Cu2+ and Mn3+ routinely 

exhibit cooperative Jahn-Teller distortions, for example KCuF3
17 shown in 

Figure 1.3.  As a result they also commonly display many interesting 

physical properties such as charge and spin ordering.18 

 

1.3 Glazer Notation 

 

 Octahedral tilting is commonly observed when the A-site cation is 

too small to fully occupy the 12 coordinate site.  Under such circumstances 

the BO6 octahedra are forced to tilt or rotate in order to accommodate its 

size.  An associated effect of such tilting is greater flexibility in the 

coordination of the A-site cation (8 – 12) whilst leaving the B site 

environment essentially unchanged.  Glazer16 recognised that cooperative 

rotations give rise to as many as 23 different tilting mechanisms.  The 

work presented within his original paper concentrated solely on the tilting 

systems adopted, with no discussion regarding cation displacements 

and/or octahedral distortions.  The tilting mechanism adopted within a 

structure is extremely important as the overall symmetry follows that of 

the tilts.  
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Table 1.1:  Glazer notation and initial space group allocation by Glazer.  The two 

possible space group ambiguities, for tilts a+a+c! and a+a+a!, are denoted by *.    

 
Tilt System 

Number 

Tilt System 

Symbol 
Space Group 

Three-tilt systems 1 a+b+c+ Immm 

 2 a+b+b+ Immm 

 3 a+a+a+   

! 

Im3

"

 

 4 a+b+c! Pmmn* 

 5 a+a+c! Pmmn 

 6 a+b+b! Pmmn 

 7 a+a+a! Pmmn* 

 8 a+b!c! A21/m11 

 9 a+a!c! A21/m11 

 10 a+b!b! Pnma 

 11 a+a!a! Pnma 

 12 a!b!c!   

! 

F1

"

 

 13 a!b!b! I2/a 

 14 a!a!a!   

! 

R3

"

c  

Two-tilt systems 15 a0b+c+ Immm 

 16 a0b+b+ I4/m 

 17 a0b+c! Bmmb 

 18 a0b+b! Bmmb 

 19 a0b!c! F2/m11 

 20 a0b!b! Imcm 

One-tilt systems 21 a0a0c+ C4/mmb 

 22 a0a0c! F4/mmc 

Zero-tilt systems 23 a0a0a0   

! 

Pm3

"

m 

 

 Fundamentally Glazer’s work was based on the sole assumption 

that octahedra are rigid and regular and, when tilted, they produce a 

considerable effect on neighbouring octahedra.  Glazer realised the 

complexity in trying to visualise and describe the effects on successive 

octahedra and therefore his initial work concentrated on understanding 

feasible tilting modes for individual octahedra.  Glazer’s notation provides 
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an accurate and effective method for comparing the various tilts exhibited 

by different structures.  The notation,   

! 

a
±
b

±
c

± , describes a tilting 

mechanism by specifying rotations of the octahedra about the three 

Cartesian axes.  Each rotation is described by two parameters, a letter and 

a superscript.  The letter indicates the magnitude of the rotation about that 

axis relative to the magnitude of all other rotations about the other 

Cartesian axes whilst the superscript denotes whether rotations in 

adjacent layers are in or out-of-phase.  A positive superscript indicates 

adjacent octahedra tilt in the same direction, negative values indicate they 

rotate in opposite directions.  Repetition of a letter represents equal tilts 

along different rotation axes.  A simple example is ‘ideal’ perovskite 

(cubic) in which no tilts are observed, resulting in the notation a0a0a0.  The 

tilt a+b!b! indicates the rotation about the x axis to be different to that 

about the y and z axes.  Similarly, the superscript indicates that rotations 

of two neighbouring octahedra along the x axis are in the same direction, 

whilst neighbouring octahedra along the y and z axes rotate in opposite 

directions.  All 23 Glazer systems are listed in Table 1.1 and classified 

according to the number of tilts exhibited.   

In addition to the notation Glazer also assigned space groups (see 

Chapter 2, section 2.1.2) to each tilt system identified.  All space group 

allocations can also be found in Table 1.1.  Interestingly, however, in 

recent years it has been suggested that Glazer was incorrect in his initial 

space group assignment for certain tilt systems, in particular a+a+c! and 

a+a+a!.19  Leinenweber and Parise completed an extensive structural 

investigation for the perovskite CaFeTi2O6 and within this study they 

concluded that the tilt exhibited, a+a+c!, was incorrectly assigned by Glazer 

to space group Pmmn.  Their findings suggested space group P42/nmc to 

be a more accurate description of the observed tilt.  

The two one-tilt systems a0a0c+ and a0a0c! are shown in Figures 

1.4(a) and (b) respectively.  When two neighbouring octahedra rotate in 

the same direction they are in-phase with one another resulting in the tilt 

a0a0c+ (Figure 1.4(a)).  If, however, the two rotate in opposite directions 

they become out-of-phase, resulting in the tilt illustrated in Figure 1.4(b).  

When viewed along the c-axis these simple one-tilt systems provide a
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Figure 1.4:  Examples of the one-tilt Glazer systems (a) a0a0a+ and (b) a0a0c!. 

 

convenient way of visualising Glazer notation.  In reality, however, 

systems routinely adopt more than one tilt hence visualisation becomes 

increasingly difficult.  The most commonly encountered tilt system is 

a!a!b+, displaying three different tilts resulting in an orthorhombic 

distortion, commonly associated with GdFeO3 (Figure 1.5).  Interestingly, 

this mechanism is also adopted by naturally occurring perovskite, CaTiO3, 

thereby making it orthorhombic as opposed to the ideal ‘cubic’ structure. 

By careful consideration of the interatomic distances between the 

octahedra centres Glazer’s work extended to include a relation between 

the tilting mechanism observed and the symmetry adopted within a 

particular system, details of which can be found in his original 

publication.16  Unfortunately, Glazer did not expand this information into 

detailed structural models complete with atomic coordinates for each of 

the systems described.  In 1997 Woodward20,21 completed an extensive 

review of Glazer’s work and attempted to translate his original 

classifications into complete structural models by developing a FORTRAN 

program known as POTATO (Program Originated To Analyse Tilted 

Octahedra).  Using the Glazer symbol, rotation angle about each of the 

Cartesian axes and the metal to oxygen bond lengths as input POTATO 

was capable of outputting a unit cell description of the compound, 

complete with atomic coordinates.  This was successfully undertaken for 

many of the tilt systems originally proposed by Glazer.     

Woodward’s investigation did, however, highlight several areas of 

discrepancy.  Using POTATO, six tilt systems posed considerable 

problems when calculating appropriate space groups and structural 
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Figure 1.5:  The crystal structure of GdFeO3 displaying the most commonly 

encountered Glazer tilt, a!a!b+, as viewed (a) across the ab plane and (b) down the c 

axis. 

 

models, namely a+b+c!, a+a+c!, a+b+b!, a+a+a!, a0b+c! and a0b+b!.  

Interestingly, the two tilts reported in the literature as being wrongly 

assigned by Glazer were amongst these six.  Woodward suggested such 

discrepancies existed owing to octahedral distortions being an inherent 

geometric property of tilt systems and that slight distortions of the 

octahedra were always necessary to retain the overall connectivity of the 

octahedra.  In turn for such structures it is extremely challenging to 

uniquely define a space group as the symmetry adopted by the unit cell 

depends upon the initial distortion of the octahedra.  Woodward therefore 

concluded that it was not possible to rigorously assign space groups for 

the six problematic crystal systems and, in reality, compounds adopting 

such tilting mechanisms would favour the most symmetric configuration 

and space group.  Therefore, the original space group assignment by 

Glazer for the tilts a+a+c! and a+a+a! was not necessarily incorrect, but 

rather extremely difficult to accurately and precisely assign.   

 

1.4 Cation Substitutions 

 

 Since the discovery of BaTiO3, perovskites have been a subject of 

significant interest and are studied extensively for their interesting and 

useful physical properties.  They are currently one of the most heavily 

researched fields within solid-state chemistry. 
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Figure 1.6:  Two examples of double perovskites, A2BB’X6.  In (a) Sr2FeMoO6 and (b) 

Ba2FeNbO6. 

 

Perovskites are renowned for their compositional flexibility and 

ease of distortion, and hence the perovskite family is routinely extended 

by cation substitutions at either the A or B sites, leading to the formation 

of many useful solid-solutions; A1!xA!xBX3 and AB1!xB!xX3.  When x = 0.5 

perovskites of this nature are generally written as AA!B2X6 and A2BB!X6, 

commonly known as double or double-edge perovskites, two examples of 

which, namely Sr2FeMoO6 and Ba2FeNbO6, are shown in Figures 1.6(a) 

and (b) respectively.22,23  By careful consideration of parameters such as the 

tolerance factor it is often possible to ‘tune’ solid-solutions to exhibit very 

specific physical properties such as ferroelectricity, piezoelectricity, 

superconductivity and ionic conductivity.  Solid-solutions routinely 
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undergo interesting first- or second-order phase transitions with 

corresponding shifts in lattice parameters and cation displacements.  In 

some cases dramatic structural changes may occur resulting in a 

Morphotropic Phase Boundary (MPB).  The term MPB, initially used by 

Jaffe et al.,24 to described a phase boundary in lead zirconium titanate 

(PZT) (x = 0.48) where an abrupt change from rhombohedral to tetragonal 

symmetry was observed over an extremely small compositional range.  

This term is now routinely utilised to describe systems exhibiting similar 

behaviour.  For example, exceptional piezoelectric responses, believed to 

be comparable to those exhibited by PZT, were recently identified in the 

50:50 region, i.e., x = 0.5 of the Na1!xKxNbO3 (KNN) phase diagram.25,26  

Such perovskites are, therefore, both a crucial and hugely attractive area of 

research within solid-state chemistry, with many potential applications to 

a variety of materials and devices.   

Double perovskites are currently under extensive investigation 

owing, principally, to their magnetic and magnetoresistive properties.27  B 

site substitutions in such perovskites are investigated more frequently as 

changes to the octahedral environment commonly contribute to the 

generation of useful properties.  Many A site substitutions are also widely 

known and within this particular investigation work has been completed 

on a variety of A site substituted systems, namely Na1!xKxNbO3 and 

La1!xYxScO3.  A specific discussion of each can be found in Chapters 4 and 

6 respectively.  Ultimately, cation substitutions are driven by either 

specifically desired physical properties or potential applications of a 

particular material to certain devices.  In many cases it is extremely 

challenging to accurately predict what effects will occur within a specific 

system, therefore simple trial and error methods are often necessary. 

 

1.5 Cation Ordering 

1.5.1 A site Ordering 

 

Cation ordering across the A site occurs less often28 and is typically 

only observed in anion deficient, double or triple-perovskites, for example 

YBa2Cu3O7!x,
29,30 LnBaFe2O5+x

31-33 and YBa2Fe3O8+x,
34 respectively.  More
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Figure 1.7:  (a) An example of rock-salt ordering of the A-site cations in Na2BaFe4F12,
38 

and (b) an example of layered ordering of the A-site cations in BaLaMn2O6.
39,40 

 

recently, nonstoichiometric perovskites, A1!xBO3, have been shown to 

display layered cation ordering over the A site.35-37  In many cases, to 

achieve ordering on the A site specific and often extreme experimental 

conditions such as high-pressure synthesis using diamond anvil cells are 

required to try and force the cations to order.  Rock-salt ordering across 

the A site is exceptionally rare with only a single report of such behaviour 

in the literature, the A-site deficient Na2BaFe4F12 shown in Figure 1.7(a).38  

Layered ordering, in contrast, occurs more readily on the A site, an 

example of which is BaLaMn2O6, illustrated in Figure 1.7(b).39,40  

The anion environment plays a crucial role in the understanding of 

why rock-salt ordering is not favourable or often feasible across the A 

site.41  When rock-salt ordering is exhibited across the B site in a system 

A2BB!X6 a mechanism is required to relieve stress and strain from the 
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Figure 1.8:  The anion environment for perovskites exhibiting: (a) rock salt ordering of 

the B-site cations, (b) rock salt ordering of the A-site cations and (c) layered ordering of 

the A-site cations. 
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structure, and therefore the anion moves towards the smaller of the two B-

site cations, as shown in Figure 1.8(a).  In a similar manner, if the position 

of the anion is considered in the system AA!B2X6 the anion is ‘locked’ in a 

plane coordinated to four A-site cations and two B-site cations (Figure 

1.8(b)).  As previously stated for cation ordering to occur there must be a 

significant mismatch in ionic radii and when a structure is as illustrated in 

Figure 1.8(b) there is no available space for movement or displacement of 

the anion to deal with such a mismatch.  The anion is therefore held 

rigidly in a highly unstable formation.  Rock-salt ordering across the A site 

is therefore not energetically feasible or favourable when there is a 

significant mismatch in ionic radii.  Layered ordering is therefore highly 

favourable in such circumstances and is often adopted by many 

structures, as shown in Figure 1.8(c).  In this case there is sufficient space 

for the anion to move when a significant difference in ionic radii is 

observed.  Interestingly, layered ordering on the A site is not generally 

observed in stoichiometric perovskites in the absence of rock-salt ordering 

of B-site cations, as seen for example in NaLaTi2O6.
42  This does not exhibit 

long-range ordering of the Na+ and La3+ cations as there is no octahedral 

site ordering.  

  

1.5.2 B Site Ordering 

 

In A2BB!X6-type perovskites the distribution of the B and B! cations 

across the B site can be either random or regular.  B-site cation ordering is 

highly desirable and, as a direct result, has been studied extensively 

within the perovskite literature.43-47  It is well reported that octahedral-site 

cation ordering is particularly favourable when the stoichiometry is 

A2BB!X6 and there is a large difference in oxidation state and/or ionic radii 

of the B and B! cations.  If B is replaced by a cation of similar size there will 

be very little change to the size and shape of the already distorted 

octahedron.  Such a small change produces no real effect on the stability of 

the structure, resulting in the B and B! cations being randomly distributed 

over the B site.  If, however, the deformation of the octahedron is very 

large after substitution the B-site cations will prefer to be in a certain
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Figure 1.9:  Example of a 2:1 ordered perovskite, Ba3IrNaO6.
49 

 

conformation so their arrangement can stabilise the perovskite structure, 

resulting in ordering of the cations.  The extent of deformation exhibited 

by an octahedron depends upon both the difference in the ionic radii and 

the charges of the B and B! cations.  The polarisabilities of both B and B! 

also play an integral role, as one may be more susceptible to deformation 

when under the action of the neighbouring ion.  Therefore, all such factors 

must be taken into account when considering the potential for cation 

ordering across the B site.  There are two major classifications for 

octahedral-site ordering; rock-salt and layered.  The most commonly 

adopted within perovskite structures is rock-salt,48 in which the cations B 

and B! order into alternate octahedra.  Octahedral-site ordering may occur 

for many different compositions, for example 2:1 ordered, A3B2B!X12, and 

3:1 ordered perovskites, A4B3B!X12.  Figure 1.9 illustrates Ba3IrNaO6, an 

example of a 2:1 ordered perovskite.49  

Over many years there have been several attempts to devise a 

simple method for predicting whether perovskite-based systems will be 

ordered or disordered.50-53  Liu et al.,46 proposed an elementary set of 
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equations to predict order or disorder within A2BB!X6 compounds.  Their 

work began by defining two variables, X and Y, as shown in Equations 1.2 

and 1.3 respectively, 
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the ratios of the charges to the ionic radii of the B and B! cations, 

respectively.  When X > 1.8 the compound will be ordered, irrespective of 

the value of Y.  However, if X < 1.8 the compound resides in a region 

between order and disorder and an additional parameter, Y0 (Equation 

1.4), is required to determine precisely where in the order-disorder phase 

diagram the compound lies.   

 

   

! 

Y
0

= "1.9X + 2.3 (1.4) 

 

Liu determined that an order-disorder transition region exists when Y0 = ± 

0.3.   Hence, if Y > Y0 + 0.3 the compound will be ordered and if Y < Y0 ! 

0.3 it will be disordered.  In cases where Y0 ! 0.3 < Y < Y0 + 0.3 the 

compound resides in the order-disorder transition region or is partially 

ordered.  All methods of this type can be extremely useful as an aid to 

predicting whether ordering will occur however, in reality, factors such as 

temperature, cooling rate and particle size often affect whether a 

compound is ordered or disordered.  It is virtually impossible to model 

such factors using simple equations; hence it is often extremely difficult 

for simple prediction systems to accurately match experimental results.  
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Figure 1.10:  (a) The crystal structure of NaLaMgWO6, a perovskite exhibiting 

simultaneous ordering of the A- and B-site cations.  (b) An expansion of the unit cell in 

the NaLaMgWO6 structure highlighting the simultaneous ordering observed.54-56 

 

1.5.3 Simultaneous A and B Site Ordering 

 

According to the literature only rarely can ordering be exhibited 

simultaneously across both the A and B sites.  The first reported example 

of such behaviour was NaLaMgWO6,
54-56 exhibiting rock-salt ordering of 

the Mg2+/W6+ and layered ordering of the Na+/La3+ ions, as illustrated in 

Figure 1.10.  This compound is highly informative as it provides a 

valuable connection between B-site cation displacements and layered 

ordering, an area previously ignored within the perovskite literature.  
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Within the structure a Jahn-Teller distortion forces a displacement of the 

B! cation which, in turn, stabilises layered ordering of the Na+ and La3+ 

cations.54  More recently such behaviour has also been reported for 

NaLaScNbO6
41 and is believed to occur when the B! cation is a d0 transition 

metal in a high oxidation state.  Subsequently, the following compounds 

have also been discovered to exhibit simultaneous ordering of the A- and 

B-site cations KLaMgTeO6,
57 NaLaMgTeO6,

57 KLaMgWO6,
58 NaLaCoWO6

59 

and NaLaNiWO6.
59  Now there is a better understanding of simultaneous 

ordering of the A- and B-site cations it is highly probable research will 

continue in this field.  This will, presumably, lead to the development of 

methods for accurately predicting when simultaneous cation ordering will 

occur in such systems. 

 

1.6 Layered Perovskites  

 

Perovskites are currently one of the most heavily researched areas 

of solid-state chemistry owing to their extensive structural and 

compositional versatility.  The basic perovskite unit, ABX3, is routinely 

utilised as a structural ‘building block’ for a variety of diverse and 

interesting materials.  In addition to the many solid-solutions and double 

perovskites previously discussed a variety of layered perovskite structures 

exist including Aurivillius, Ruddlesden-Popper and Dion-Jacobson 

phases, and Brownmillerites.  

Perovskites possess both the ability and flexibility to exhibit various 

stacking mechanisms, producing a variety of layered perovskites.  In 

recent years A2BO4-type oxides have received significant interest owing to 

the discovery of superconductivity within their structures.60-62  Based upon 

the K2NiF4-type structure,63,64 A2BO4 oxides form corner-sharing BO6 sheets 

with rocksalt layers containing A-site cations lying between.  An effective 

stacking system again requires the A- and B-site cations to be accurately 

matched to reduce the degree of tilting and rotation observed by the BO6 

octahedra.  There are numerous stacking systems available with single, 

double or even triple perovskite layers separated by rock-salt or fluorite-

type layers. 
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Figure 1.11:  (a) Single-layer Aurivillius phase, Bi2WO6
67 and (b) 3-layer Aurivillius 

phase, Bi4Ti3O12.
69 

 

1.6.1 Aurivillius Phases 

 

 Aurivillius phases are just one of many families of layered 

perovskites.  First discovered over 50 years ago by B. Aurivillius65,66 they 

exhibit a characteristic structure composed of [An!1BnO3n+1]
2! perovskite-

type blocks separated by [Bi2O2]
2+ fluorite-type layers, where A is a large 

12-coordinate cation and B is a smaller 6-coordinate cation.  An extensive 

family of Aurivillius phases exist and are classified according to the 

number of repeat perovskite layers, denoted by the integer n.  Single-layer 

(Bi2WO6
67), 2-layer (SrBi2Ta2O9

68), 3-layer (Bi4Ti3O12
69) 4-layer (Bi5Ti3FeO15

70) 

and mixed layer (Bi4Ti3O12
71 mixed with BaBi2Nb2O9

65) Aurivillius phases 

are all widely known, two examples of which are shown in Figure 1.11. 

 

1.6.2 Ruddlesden-Popper Phases 

 

Work by Ruddlesden and Popper in 1957 led to the successful 

preparation of compositions such as Sr2TiO4, Ca2MnO4 and SrLaAlO4,
72 

regarded as the oxide derivatives of the well-known K2NiF4 structure.  

Successful determination of the structure Sr3Ti2O7
73 a year later gave rise 
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Figure 1.12:  (a) 1-layer, NaLaTiO4,
74 (b) 2-layer, Ca3Ti2O7,

75 and (c) 3-layer, 

Na2La2Ti3O10,
76 Ruddlesden-Popper phases. 

 

to a new family of layered perovskites now widely known as Ruddlesden-

Popper phases, with general formula M2[An!1BnO3n+1].  As expected with 

layered perovskites there are many 1-, 2- and 3-layer phases known, 

including NaLaTiO4,
74 Ca3Ti2O7

75 and Na2La2Ti3O10,
76 as shown in Figures 

1.12(a), (b) and (c) respectively.  Several Ruddlesden-Popper phases are 

known to possess ionic conduction capabilities, believed to occur through 

the interlayer region.  A number have also been discovered to possess 

Colossal Magnetoresistance (CMR), thereby making such materials more 

desirable for use in devices.  In recent years, several investigations have 

concentrated solely on 3-layer Ruddlesden-Popper phases with alkali 

metals in the interlayer and various lanthanides (Ln = La, Nd, Sm and Gd) 

on the A site within the perovskite blocks.77  Such studies concluded that 

the lanthanide radius played a vital role in the ionic conductivity of a 

particular phase; a decrease in ionic size was accompanied by an increase 

in ionic conductivity. Trends in cation size are extremely important as 

they can often influence the physical properties exhibited by a particular 

perovskite or perovskite-based system.   

The scope of interest for Ruddlesden-Popper phases has been 

extended by the possibility of proton conduction and many such studies 

are currently being undertaken.78  Several Ruddlesden-Popper phases are 

well-known superconductors, for example the 1987 Nobel Prize in Physics
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Figure 1.13:  (a) 2-layer, NaLaNb2O7,
82 (b) 3-layer, KCa2Ta3O10

83 and (c) CsLa2Ti2NbO10 

Dion-Jacobson phases. 

 

was awarded to Bednorz and Müller for their discovery of 

superconductivity in ceramics materials, namely (La,Ba)2CuO4.
79  Many 

other additional phases have also been found to exhibit superconducting 

behaviour, including Sr2RuO4.  Their practical application is, however, 

limited owing to the exceptionally low temperatures required to achieve 

such properties. 

 

1.6.3 Dion-Jacobson Phases 

 

One class of layered perovskites very closely related to 

Ruddlesden-Popper phases is the Dion-Jacobson family, general formula 

A![An!1BnO3n+1].
80,81  Structurally the two phases are extremely similar, with 

the only differences occurring in the composition of the interlayer.  

Ruddlesden-Popper phases have a double interlayer of cations whereas 

Dion-Jacobson phases possess only a single layer.  Conventionally small 

alkali metals such as Li+, Na+ and K+ are utilised in the interlayers of 

Ruddlesden-Popper phases.  However, Dion-Jacobson phases are capable 

of accommodating larger cations such as Rb+ and Cs+, owing, 

predominantly, to the presence of a single interlayer.  Commonly 3-layer 

Dion-Jacobson phases have compositions with divalent or trivalent cations 

on the A site of the perovskite block which, in turn, affects the valence of
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Figure 1.14:  Example of the brownmillerite structure, Ba2In2O5.
91 

 

the cation on the B site.  For divalent cations the B site is usually fully 

occupied either by Nb5+ or Ta5+.  Trivalent cations however produce mixed 

valence on the B site.  To date, there are no documented reports of single 

layer oxide Dion-Jacobson phases.  Solely 2-layer (NaLaNb2O7
82) and 3-

layer (KCa2Ta3O10
83) oxide phases have been reported.  Three examples of 

Dion-Jacobson phases are shown in Figures 1.13(a), (b) and (c) 

respectively.  There are only very few known cases of Dion-Jacobson 

phases with greater than 3 layers.84-87 

 

1.6.4 Brownmillerites 

 

Brownmillerites are anion deficient derivatives of the perovskite 

structure, named after L. T. Brownmiller who first discovered the mineral 

Ca2[Fe,Al]2O5.
88  The brownmillerite structure, shown in Figure 1.14, is 

composed of alternating layers of corner-sharing octahedra and distorted 

tetrahedra with oxygen vacancies in the ab plane.89  Brownmillerites are 

studied extensively owing to their conduction capabilities.90 
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1.7 Physical Properties 

 

 Perovskites, or their derivatives, routinely possess enhanced 

physical properties such as ferro-, piezo- or pyroelectric behaviour, all of 

which are desired in a variety of materials and devices throughout solid-

state chemistry.  This is the principal reason perovskite-based materials 

are of such importance and significance. 

 

1.7.1 Piezoelectricity 

 

Piezoelectric ceramics respond to mechanical stress, becoming 

polarised and developing electrical charges on opposite crystal faces. The 

magnitude of the piezoelectric response observed depends upon both the 

crystal structure of the material and direction of the applied stress.  

Polarisation will, therefore, only occur when mechanical stress is applied 

in specific directions. The polarisation, P, and stress, !, observed are 

related to the piezoelectric coefficient, d, by Equation 1.5.  Conversely, the 

opposite is true, piezoelectrics can also develop a mechanical stress due to 

the application of an electric field.91   

 

   

! 

P = d"  (1.5) 

 

Potentially the most influential piezoelectric ceramic in materials 

science is Pb[ZrxTi1!x]O3 (PZT).24  Since its discovery in 1952 it has received 

considerable attention and is still heavily investigated.  At varying 

compositions within the solid-solution different physical properties are 

exhibited.  For example, it is known to be both ferroelectric (x " 0.1) and 

antiferroelectric (x < 0.1).  To date, the largest dielectric responses were 

recorded when x = 0.52 at the MPB.92-95  

 

1.7.2 Pyroelectricity96 

 

Pyroelectric materials are closely related to ferroelectrics; however, 

the fundamental difference between the two is that the direction of the
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Figure 1.15:  An example of a hysteresis loop of a ferroelectric material.99 

 

saturation polarisation, PS, cannot be reversed by application of an electric 

field.  Temperature plays an integral role within pyroelectric materials, 

and only when the sample is heated will a change in PS (Equation 1.6) be 

observed, as there will then be a change in the magnitude of the dipoles.  

The temperature dependence of PS is given by 

 

   

! 

"P
S

= #"T  (1.6) 

 

where ! is the pyroelectric coefficient. 

Ferroelectric, piezoelectric and pyroelectric behaviour are closely 

related.  By definition, ferroelectric materials are also pyroelectric and 

piezoelectric.  In addition, pyroelectric materials are also piezoelectric.  

However, it must be noted that the reverse does not always hold, i.e., not 

all piezoelectric materials are pyroelectric.  

 

1.7.3    Ferroelectricity 

 

Ferroelectric behaviour was initially discovered in 1920 with the 

first ferroelectrically active material reported; Rochelle salt (potassium 

sodium tartrate), now known to rapidly lose all ferroelectric ability when 
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its composition is slightly changed, thereby preventing any potential 

industrial application.97  At that time ferroelectricity was considered a 

scientific curiosity and believed to be an order/disorder phenomenon 

associated with hydrogen bonding, and its true scientific importance had, 

at that stage, not been established.  In 1945, BaTiO3 was found to possess 

similar behaviour and, as a direct result, is now one of the most widely 

known and utilised ferroelectric materials.  BaTiO3 exhibits a significant 

displacement of the Ti4+ cation within the octahedron, resulting in long-

range ordering of the dipoles.  This type of displacement is routinely 

adopted by many perovskites.  Of the several hundred ferroelectrics now 

known a large percentage are disordered perovskite structures displaying 

significant octahedral cation displacements.   

 To be ferroelectrically active a material must be non-

centrosymmetric and exhibit spontaneous polarisation which may be 

reversed upon the application of an electric field.  Polarisation is achieved 

by the presence of a net dipole moment, commonly the result of cation 

displacements.  The temperature above which polarisation is lost is 

defined as the Curie temperature, TC.  When a potential difference is 

applied across a ferroelectric material the polarisation is increased until a 

saturation polarisation, PS, is reached.  Once the voltage has been removed 

a remnant polarisation, PR, remains.  To reduce the polarisation to zero a 

reverse field is required, known as a coercive field, EC.  The behaviour of a 

ferroelectric material under the application of a potential difference can be 

described by a hysteresis loop, as shown in Figure 1.15.98  Ferroelectric 

materials are distinguished from ordinary dielectrics due to this 

behaviour, as common dielectrics do not possess the ability to retain large 

residual polarisations once the applied voltage has been removed.  To be 

successfully utilised in commercial and industrial applications relatively 

high values of TC are desired, i.e., close to room temperature.  However, it 

is often extremely challenging to produce materials with adequate values, 

as many materials exhibit interesting ferroelectric properties at extremely 

low temperatures. 
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1.7.4 Applications of Perovskites 

 

Currently, the largest commercial application of ferroelectrics is in 

capacitors using materials such as BaTiO3 and PZT.  In recent years there 

has been significant interest and research into finding potential ‘green’ 

replacements for PZT owing to toxicity issues regarding the presence and 

continued use of heavy metals such as lead.  Therefore, a compound 

exhibiting piezoelectric responses equal to or superior to PZT needs to be 

discovered.  Compounds containing heavy metal ions are renowned for 

producing exceptional piezoelectric and ferroelectric responses, but their 

use is limited owing to their toxic nature.  Piezoelectrics have been 

routinely utilised as transducers to convert mechanical to electrical energy 

in a variety of diverse materials, for example they are applied as bimorphs 

in microphones, earphones and loudspeakers.99  Pyroelectric materials are 

routinely used in infrared radiation detectors.99  By far, materials 

exhibiting ferroelectric behaviour provide the greatest number of potential 

applications. 

 

1.8 A Multidisciplinary Approach 

 

The work presented within this thesis is the result of a 

multidisciplinary investigation combining two principal characterisation 

techniques within solid-state chemistry, namely powder diffraction and 

solid-state Nuclear Magnetic Resonance (NMR).  When compared with X-

ray and neutron powder diffraction, solid-state NMR is a relatively new 

technique with the first application of NMR to solids occurring in 1945 by 

Felix Bloch and Edward Mills Purcell.100,101  This revolutionised chemistry.  

Bloch and Purcell later collected a Nobel Prize in physics (1952) for their 

contributions. 

Powder diffraction and solid-state NMR are now recognised as 

being highly complementary to one another.  Powder diffraction examines 

the long-range order of a material whereas solid-state NMR investigates 

and determines more local, short-range structural effects.  Therefore, when 

used in combination they aid considerably in obtaining a better structural 
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understanding and characterisation of a solid.  Powder diffraction is 

principally used to identify the symmetry adopted within a structure.  

However, in some cases, this can be difficult to accurately determine using 

laboratory diffractometers owing to poor resolution.  Hence, high-

resolution data is often required, commonly synchrotron X-ray or neutron 

powder diffraction.  The source utilised is often related to the material 

under investigation; for example, in some cases the sample may be too 

sensitive to be bombarded with neutrons and therefore high energy X-rays 

would be more favourable.  Within this particular investigation a variety 

of dense ternary oxides have been investigated and for such materials 

neutron diffraction is often the only plausible option to successfully 

determine subtle structural effects such as phase transitions.  

High-resolution solid-state NMR data has also been essential 

throughout this investigation.  Lineshapes acquired in solution-state 

spectra are inherently narrower than those observed in the solid state 

owing principally to the presence of molecular motion when in solution.  

This motion averages any potential sources of broadening such as 

chemical shift anisotropies (CSA) or dipolar couplings.102  In solids, 

however, there is usually no such averaging and therefore lines are often 

broadened.  To obtain high-resolution spectra various experiments can be 

utilised to average the interactions that cause such broadenings and 

produce well resolved lineshapes.  Specific details of these experiments 

can be found in Chapter 2.  In many cases, solid-state NMR can provide 

additional information regarding the dynamics of a particular system and, 

in turn, provide essential structural information for often highly complex 

systems.  Dynamics cannot be investigated easily using diffraction 

techniques and therefore solid-state NMR enables hugely important and 

significant additional information to be obtained for any system. 

In addition, Density Functional Theory (DFT) calculations have 

been utilised routinely throughout this investigation.  These calculations 

provide a direct link not only between experiment and theory but also 

between diffraction and NMR.  Using DFT it is possible to calculate the 

NMR parameters for a particular structure and to do this an initial 

structural model is required, often provided by diffraction studies.  DFT 
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calculations are therefore a direct and convenient way of bridging the two 

techniques whilst also providing additional information often lost by 

experiment. 

 

1.9 Thesis Overview 

 

 This thesis is concerned with the synthesis and structural 

characterisation of several perovskite systems using high-resolution 

powder diffraction, solid-state NMR and first-principles DFT calculations.  

Chapter 2 begins by introducing many of the basic principles of crystal 

symmetry and powder diffraction.  The generation and practical 

implementation of both X-rays and neutrons to high-resolution powder 

diffraction experiments is also discussed.  A basic description of the theory 

used in structural refinement is presented and the Rietveld method is 

introduced.  The NMR phenomenon is also introduced within Chapter 2 

and includes detailed considerations of the many interactions present 

during the course of an NMR experiment.  In particular, a detailed 

description of the quadrupolar interaction and its effect upon NMR 

spectra is given.  In addition, a detailed discussion regarding the practical 

implementation of first-principles calculations to periodic systems using 

DFT methods for the calculation of NMR parameters is given, and many 

of the basic methodologies relevant to the calculation of NMR parameters 

using first-principles DFT calculations are introduced. 

Chapter 3 presents a detailed structural study of room temperature 

NaNbO3.  Particular focus is placed on the effect of different synthetic 

methods on the different phases of NaNbO3 formed and their respective 

quantities.  Conventional solid-state, molten salt and sol-gel techniques 

have been investigated and compared.  A detailed discussion regarding 

the structural subtleties of the NaNbO3 system is given and considerable 

emphasis is placed on the need for a multidisciplinary approach to 

achieve an accurate and complete structural conclusion.  Both high-

resolution X-ray and neutron powder diffraction data will be presented.  

In addition, 23Na, 93Nb and 17O MAS NMR data and DFT calculations are 

presented, each of which highlights the importance of using a combined 
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approach to characterise structurally complex compounds such as 

NaNbO3. 

Chapter 4 concentrates on the structural characterisation of several 

analogous NaNbO3-based solid-solutions, namely KxNa1!xNbO3, 

LixNa1!xNbO3 and Na1!xSrx/2!x/2NbO3.  An understanding of the structure 

adopted after doping with the cations Na+, Li+ and Sr2+ is developed.  The 

structural trends exhibited by each series are compared and the origin of 

the structural changes are discussed.  Again, high-resolution X-ray and 

neutron powder diffraction techniques have been utilised to establish the 

structural subtleties exhibited by each system.  The results obtained from 

each dataset will be presented in conjunction with the 23Na MAS NMR 

data. 

In Chapter 5 a low temperature structural study is presented using 

a sample of NaNbO3 synthesised using a sol-gel approach.  The same 

sample was initially characterised at room temperature in Chapter 3.  

Using high-resolution X-ray diffraction the structural changes observed as 

a function of temperature are discussed. 

Chapter 6 presents a detailed structural study of LaScO3, YScO3 and 

the related solid-solution La1!xYxScO3 for compositions x = 0.2, 0.4, 0.6 and 

0.8.  High-resolution neutron diffraction data will be presented in 

conjunction with conventional and two-dimensional 45Sc and 89Y MAS 

NMR data and DFT calculations.  The structural trends exhibited are 

presented and discussed, with possible reasoning as to why the observed 

changes occur. 

 Chapter 7 summarises the findings presented and suggests possible 

directions for future work. 
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Chapter 2 
 
Experimental Techniques 
 

2.1 Crystal Symmetry  

2.1.1 Crystal Systems and Lattices104,105 

 

Crystalline solids can be described by a periodic arrangement of 

atoms or ions in space.  The simplest repeating portion of the structure, 

known as the asymmetric unit, yields the unit cell when translated, 

rotated or reflected.  The unit cell can then be translated along all three 

dimensions to produce an infinite lattice, defined as an array of equivalent 

points in three dimensions.  The lattice provides no information regarding 

the positional coordinates of any atoms; it simply displays the 

translational symmetry within a structure by locating equivalent 

positions.  Increasing symmetry produces relationships between the 

various cell parameters that, in turn, leads to the definition of crystal 

classes.  In total there are seven possible crystal systems (Figure 2.1) used 

to describe crystal structures, each governed by a minimum number of 

symmetry operations, as summarised in Table 2.1.  As a direct 

consequence, a unit cell in each crystal system can be described using axes 

a, b and c, and angles !, ", and #.  Three-dimensional structures can also 

be described according to their lattice type, of which there are four 

possibilities; primitive (P), body centred (I), face centred (F) and side 

centred (C), illustrated in Figure 2.2.  When combined with the seven 

crystal systems they give rise to the Bravais lattices, of which there are 

fourteen unique combinations.  

 

2.1.2 Point Groups and Space Groups104,105,106 

 

To fully describe a crystal structure more than simply the crystal 

system and lattice type are required.  Crystals, owing to their infinite 

repeating structures, also possess some degree of space symmetry as 

opposed to solely point symmetry.  There are 32 different point groups,
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Figure 2.1:  The seven crystal systems. 

 

each of which provides information regarding the symmetry around a 

single point (rotations or mirror plane reflections).  Point groups are 

therefore ideal for studying finite-sized molecules.  In contrast, symmetry 

elements in the solid-state do not pass through a single point, instead they 

are regularly arranged as periodic solids.  Space symmetry combines point 

symmetry elements with incremental translational steps giving rise to 

screw axes and glide planes.  The symmetry of any system can then be 

characterised using a space group, a convenient and concise notation 

which utilises a set of pre-determined symbols to accurately summarise 

the symmetry elements exhibited.  Space groups are extremely important 

as they provide key information regarding the crystal system, lattice type 

and elements of both the point and space symmetry exhibited by any one 

structure.  In turn, they are routinely utilised throughout solid-state 

chemistry to describe all crystal structures.  There are 230 space groups in 

total and the symmetry properties for each are well characterised.  Details 

for each can be found in the International Tables for Crystallography, 

Volume A.107  
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Table 2.1:  The seven crystal systems.105 

 

Crystal Class Symmetry Operation 
Imposed Unit Cell 

Dimensions 

Cubic 
Four three-fold axes at 109.28° to 

each other 

a = b = c 

! = " = # = 90° 

Tetragonal 
One four-fold acis or one four-

fold improper axis 

a = b ! c 

! = " = # = 90 

Hexagonal 
One six-fold axis or one six-fold 

improper axis 

a = b = c 

! = " = 90°, # = 120°  

Trigonal One three-fold axis 
a = b = c 

! = " = # $ 90° 

Orthorhombic 

Any combination of three 

mutually perpendicular two-fold 

axes or symmetry planes 

a $ b $ c 

! = " = # = 90° 

Monoclinic 
One two-fold axis or one 

symmetry plane 

a $ b $ c 

! = # = 90°, " $ 90° 

Triclinic None None 

 

Space groups can be further classified into one of two categories; 

centrosymmetric or non-centrosymmetric.  Structures that are non-

centrosymmetric do not possess an inversion centre which often leads to 

many interesting physical properties, such as ferroelectricity.  Solid-

solutions are commonly synthesised, in which carefully selected cations 

are doped into the perovskite structure to try and force a structural 

transition to a non-centrosymmetric space group.  In many cases, this is 

highly successful, enabling the physical properties exhibited by a 

particular perovskite to be ‘tuned’.  Perovskites in polar (non-

centrosymmetric) space groups are therefore highly desirable as they 

commonly exhibit interesting physical properties that ultimately lead to 

many potential applications.  
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Figure 2.2:  The four lattice types (a) primative, (b) body centred, (c) face centred and 

(d) side centred. 

 

2.1.3 Miller Planes108,109 

 

Bragg’s Law, Equation 2.1, considers crystals as being composed of 

layers or planes of atoms, known as Miller planes, where adjacent planes 

are separated by an interplanar d-spacing, dhkl.  These planes are described 

by a set of integers known as Miller indices, commonly denoted as (hkl).  

Bragg’s Law110 governs diffraction, the physical process by which a beam 

of particles is refracted by a crystal and is given by 

 

   

! 

n" = 2d
hkl

sin# (2.1) 

 

where n is an integer value, ! is the wavelength of the radiation used, d is 

the spacing between the lattice planes within a crystal and " is the angle 

between the incident beam and the sample.  Consider the path of two X-

ray beams reflected from two adjacent planes within a crystal, as 

illustrated in Figure 2.3.  The beam reflected from the lowest of the three 

planes travels an extra distance, XY + YZ.  When this path length 

difference is an integer number of wavelengths constructive interference 

results and Bragg’s Law is satisfied.  Bragg’s Law imposes extremely 

stringent conditions on the angles at which reflections may occur and if 

the angle of incidence is incorrect by even a few tenths of a degree 

cancellation of the reflected beams will occur.  In reality diffraction 

patterns are plotted as a function of 2" rather than " as 2" corresponds to 

the angle between the X-ray source and the detector, i.e., the path of 

incident and reflected X-rays.  Bragg’s Law is considered a highly 

simplistic model to describe how X-rays are reflected in reality.  The 
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Figure 2.3:  X-rays reflecting off adjacent planes. 

 

‘planes’ described by Bragg are merely a concept rather than a physical 

reality.  Crystal structures are large three-dimensional networks resulting 

from a regularly repeating unit cell, as previously discussed.  Planes can 

be used to divide up the unit cell into various different orientations and it 

is this concept of planes that is utilised in the derivation of Bragg’s Law.  

For extremely simple crystal structures the planes can correspond to 

layers of atoms however, in reality, this is generally not the case as atoms 

are commonly located on sites that do not correspond to such ‘layers’. 

 

2.1.4 The Reciprocal Lattice111-114 

 

The reciprocal lattice is essential in the understanding of 

diffraction.  To fully comprehend the concept of reciprocal space it first 

must be understood that diffraction patterns do not display the real-space 

reflections of a crystal.  Instead, all diffraction patterns are functions that 

exist as a regular three-dimensional lattice known as the reciprocal lattice, 

defined with reference to a particular Bravais lattice.  The reciprocal lattice 

is a vector perpendicular to the Miller planes and can be regarded as the 

Fourier transform of the real space or direct lattice of a crystal.  The 

magnitude of this vector is the reciprocal of the interplanar distance and 

the reciprocal lattice parameters can be calculated from those of the crystal 

lattice in real space by 1/dhkl, where dhkl is the spacing between the Miller 

planes.  
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2.2   Diffraction Techniques 

  

The powder diffraction techniques utilised within this particular 

study can be separated into three main categories conventional 

(laboratory) X-ray diffraction, high-resolution synchrotron X-ray 

diffraction and high-resolution neutron diffraction. 

 

2.2.1 X-rays 

 

 X-rays, electromagnetic radiation of wavelength ~1 Å, were initially 

discovered by Wilhelm C. Röntgen in 1895.  The first description of X-ray 

diffraction (XRD) and subsequent diffraction pattern of a crystal followed 

seventeen years later by Max von Laue and Paul Knipping.115 X-rays 

possess a wavelength comparable to interatomic distances making them 

suitable for the structural characterisation of many complex solids.  In 

1913 William H. Bragg and his son, William L. Bragg, devised a method 

and equation (Bragg’s Law) to describe diffraction that revolutionised the 

technique and is now universally used as the basis for X-ray diffraction 

geometry, as previously discussed in section 2.1.3.  

 

2.2.2 Generation of X-rays108,116,117 

 

Laboratory X-rays are conventionally generated using an X-ray 

tube, where a beam of electrons (produced from a tungsten filament) is 

accelerated towards a metal target, commonly copper.  As electrons 

penetrate the metal target they decelerate and generate radiation with a 

continuous range of wavelengths, known as Bremsstrahlung or ‘white 

radiation’.  The X-ray tube used to produce monochromatic radiation is 

evacuated and held under vacuum to avoid collision of the incident 

electrons and/or X-rays with air particles. 

  The accelerated incident electrons possess sufficient energy to 

ionize some of the 1s electrons in the copper and upon impact an electron 

is expelled from the inner shell and an electron of higher energy from an 

outer orbital, typically a 2p or 3p electron, drops down to occupy the
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Figure 2.4:  Bremsstrahlung radiation.118 

 

vacant shell.  Such electronic transitions result in the release of 

monochromatic X-rays and peaks corresponding to this radiation are 

superimposed onto the broad featureless Bremsstrahlung background, as 

shown in Figure 2.4.  For copper the   

! 

2p" 1s transition, K!, has a 

wavelength " = 1.5418 Å whilst the   

! 

3p" 1s transition, K#, has a 

wavelength " = 1.3922 Å.  The K! transition occurs more frequently and is, 

in turn, more intense when compared with K# transitions.  As K! radiation 

is more desirable for use in X-ray diffraction experiments, a method is 

required to accurately separate out the K! and K# radiation.  Various 

metals filters, known as monochromators, can be utilised to successfully 

split the two; however their effectiveness is dependent upon the metal 

target initially used.  For copper, Ni foil is extremely effective as a 

monochromator as it successfully absorbs the K# radiation leaving a 

monochromatic beam of Cu K! radiation.   

The desirable K! radiation is, in reality, a doublet composed of K!1 = 

1.54051 Å and K!2 = 1.54433 Å.  This is a consequence of spin multiplicity 

in the p shells , and therefore the ‘K! line’ in the copper spectrum has two 
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lines instead of one.  Patterns obtained by X-ray diffraction using both K!1 

and K!2 often appear broadened and poorly resolved.  Therefore, to 

overcome this problem and improve resolution the weaker K!2 beam can 

be removed from the incident radiation using an appropriate 

monochromator.  Most modern diffractometers currently operate using 

monochromatic X-rays composed of solely Cu K!1 radiation.  

 

2.2.3 X-ray Scattering and Powder Diffraction 

 

X-rays interact with electrons present in matter and, upon contact 

with an inorganic compound or crystal a beam of X-rays, will be scattered 

in various directions by the electron density.  The scattering factor or form 

factor, f, of an atom is directly proportional to the atomic number, Z, or, 

more accurately, the number of electrons possessed by a particular atom.  

There is a fall off in scattering power for X-rays owing to the finite size of 

the electron cloud, highlighted in Figure 2.5 for Ca2+ and F!.  The 

scattering factor is also dependent on the scattering angle, sin"/#, also 

illustrated in Figure 2.5.  Atoms such as oxygen and hydrogen scatter X-

rays weakly therefore it is often extremely challenging to locate their 

position when much heavier elements are present.  The more electrons an 

atom possesses the more intense the scattered X-rays will be.  Compounds 

containing several elements of similar atomic number can be exceptionally 

difficult to characterise as each element will scatter the X-rays in 

essentially the same manner.  The structure factor, Fhkl, is related to the 

scattered intensity in any diffraction pattern and the structure factor for a 

particular reflection can be defined as 

 

 
  

! 

Fhkl = fi exp(2"i(hxi + kyi + lzi))
i=1

N

#  (2.2)

 

where fi is the scattering factor, hkl are the Miller indices of a particular 

plane and (xi, yi, zi) are the fractional coordinates of each of the atoms 

within the unit cell.  The intensity of this reflection is given by  

 

   

! 

I
hkl

= F
hkl

2   . (2.3)
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Figure 2.5:  Fall off in scattering power for X-rays. 

 

Polycrystalline samples are composed of millions of tiny crystallites, each 

with a different orientation.  As a result, when an X-ray beam strikes a 

powdered sample it is diffracted as cones of radiation in all possible 

directions, as illustrated in Figure 2.6.  Each cone is composed of a set of 

closely spaced dots, each of which represents diffraction from a single 

crystallite within the sample.  When large numbers of crystallites are 

present the dots join together resulting in one continuous cone.  To 

convert these ‘cones’ of radiation to a real space diffraction pattern a 

transformation from three to two-dimensional space is required, i.e., 

envisage taking a ‘slice’ through one particular cone from its point to its 

base, this is then represented in the diffraction pattern obtained.  A highly 

diffracting (electron rich) atom with a very distinct location will produce 

an intense, narrow peak in the powder pattern.  The converse is also true 

with broad peaks indicating weakly diffracting atoms.  The powder 

pattern obtained is characteristic of the sample under analysis.  
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Figure 2.6:  Cones of radiation produced in diffraction. 

 

2.2.4  Conventional X-ray Diffraction 

 

All “laboratory” powder diffraction (l-PXRD) experiments were 

completed on a Stoe STADI-P X-ray diffractometer equipped with a 

position-sensitive detector (PSD) and using Cu anodes with primary beam 

(Ge Crystal) monochromation, producing Cu K!1 radiation (" = 1.54056 Å).  

Samples were ground to a fine powder and mounted between two lightly 

greased Mylar film disks.  Once prepared the film was mounted onto a 

sample disk.  Diffraction patterns were initially collected from 5° to 70° (2# 

angles) in steps of 0.02° using a continuous scan time of 12 s.  Where 

necessary, higher quality patterns were obtained by increasing the 

scanning rate. 

 

2.2.5 Generation of Synchrotron X-rays115,116,119 

 

Synchrotron light is emitted when a beam of electrons travelling 

close to the speed of light is bent by a powerful magnetic field and the 

light produced spans the entire electromagnetic spectrum, producing X-

rays, infrared and ultraviolet light.  To date, there are approximately 50 

operating synchrotrons in the world, the three biggest being the APS 

(USA), ESRF (France) and Spring-8 (Japan).  Synchrotron radiation is 

currently of considerable use in the structural characterisation of many
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Figure 2.7:  A schematic representation of a synchrotron facility.120 

 

complex solids and is utilised across many disciplines, principally 

chemistry, physics and biology.  

For example, at Diamond Synchrotron Light Source121 electrons are 

produced in an electron gun and accelerated through a series of three 

particle accelerators namely the linear accelerator (linac), booster 

synchrotron and large storage ring, as shown in Figure 2.7.  The electrons 

are initially accelerated to 100 MeV using the linear accelerator, after 

which they enter into the booster synchrotron where they follow a 

specially designed trajectory composed of both straight and semicircular 

curved sections.  To drive the electrons round the bends within the 

booster synchrotron dipole bending magnets are utilised.  When in the 

straight sections a radiofrequency (rf) voltage source is used to further 

accelerate the electrons until they reach an energy of 3 GeV.  Once the 

correct energy is reached electrons are transferred into the third and final 

particle accelerator, the storage ring.  In a similar manner to conventional 

X-ray sources the storage ring is held under vacuum to prevent interaction 

or collision of the electrons with air particles.  
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Electrons emit very intense beams of X-rays, infrared and 

ultraviolet light called synchrotron light as they travel round the storage 

ring.  As this occurs the electrons become lighter and their path through 

the ring begins to change until they eventually hit a wall and are lost.  To 

compensate for this loss the RF system in the booster ring provides each 

electron with a ‘kick’ each time they complete one cycle of the ring.  This 

‘kick’ replaces the energy lost in the previous cycle enabling them to then 

follow the correct path. The length of time the electrons remain in the 

storage ring is defined as the lifetime of the beam.  When circulating in the 

ring the electrons collide with the few particles that remain in the vacuum 

and are then lost, thereby requiring new electrons to be added.  Modern 

third generation synchrotron sources, such as Diamond Light Source 

Synchrotron,121 function using a ‘top-up’ mode where the electron beam is 

topped up at regular intervals.  This is a highly advantageous system as 

the beam is highly stable and the quality of beam produced remains high 

for longer periods of time.   

The dimensions of the storage ring are dependent solely upon the 

research facility utilised.  The work presented within this particular 

investigation used Diamond Light Source Synchrotron, Didcot, United 

Kingdom.121  Diamond’s storage ring has a circumference of 562 m and is 

composed of 24 straight sections that are angled together to form a closed 

loop.  Inside the storage ring 48 large electromagnets or dipole magnets 

are utilised to curve the electron beam between adjacent straight sections.  

Beamlines are strategically placed at tangents to the ring to guide narrow 

beams of synchrotron light into the various experimental hutches.  Each 

beamline is specifically designed for a particular type of experiment, for 

example high-resolution powder diffraction, small molecule diffraction 

and diffraction using extreme conditions (such as diamond anvil high 

pressure cells).  Synchrotron X-rays are more intense than laboratory 

sources and offer a wide range of tunable wavelengths.  Synchrotron 

sources are a highly desirable facility and, as a result, user time available 

is becoming increasingly limited. 
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2.2.6   Synchrotron X-ray Diffraction 

 

All high-resolution X-ray diffraction data was collected using 

beamline I11 (high-resolution powder diffractometer) at Diamond Light 

Source Synchrotron (! = 0.827267 Å), shown in Figure 2.8.122-124  Within this 

particular study both room and low temperature diffraction experiments 

were completed using this facility.  Room temperature samples were 

loaded into 0.5 mm or 0.7 mm glass capillaries and mounted on brass 

capillary spinners.  The low temperature investigation was conducted 

using a PheniX cryostat (11 – 295 K) in which the sample was loaded into 

an aluminium capillary and mounted onto a flat brass plate that employed 

a continuous ‘rocking’ motion throughout data collection.  Peaks resulting 

from the aluminium capillary were present in all low temperature 

diffraction patterns obtained and for ease of analysis these peaks were 

excluded from the data during Rietveld refinement.  All data was 

automatically collected from 5° to 145° using the five multi-analysing 

crystal detectors (MACs), each composed of 9 Si (111) analysing crystals 

and 9 detectors.  Typical collection times were between thirty minutes and 

one hour.  Only data up to and including 70° was utilised and analysed 

using the General Structure Analysis System (GSAS) software package.125  

  

2.2.7 Neutron Diffraction126   

 

The neutron is an uncharged particle with spin 1/2 and mass 1.675 

" 10!27 kg.  Neutrons, unlike X-rays, are scattered by atomic nuclei, thereby 

making neutron diffraction isotope specific.  This can be of considerable 

use when trying to distinguish between different isotopes of the same 

element, as each will scatter neutrons in a different manner.  The 

scattering factor for neutrons is therefore not proportional to the number 

of electrons and, in turn, does not diminish with scattering angle, as 

shown in Figure 2.9.  Neutrons are exceptionally effective in locating 

lighter elements, such as oxygen and hydrogen, when in the presence of 

much heavier elements such as bismuth and lead.  Unlike X-rays neutrons 

possess spin, I = 1/2, therefore they have the ability to interact with any
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Figure 2.8:  Beamline I11 at Diamond Light Source Synchrotron.124 

 

magnetic species in a sample, making them an invaluable tool for solving 

complex magnetic structures.  If magnetic centres of interest are present 

there will be additional interactions with the neutrons bombarding the 

sample, resulting in the appearance of extra peaks in the diffraction 

pattern obtained.  However, there are many associated disadvantages of 

the technique, principally the high running and maintenance costs, the 

complexity of generating neutrons and the large sample quantities 

required (typically 5 g for powder diffraction).  Furthermore, user time 

allocated at neutron sources is becoming increasingly limited and, in turn, 

highly competitive. 

 

2.2.8   Generation of Neutrons127,128  

 

 Neutrons are generated from one of two sources, either a nuclear 

reactor or a spallation source.  The first of these relies upon a series of 

controlled chain reactions of neutron-induced fission of a heavy nucleus, 

most commonly 235U.  In a spallation source a heavy metal target is 

bombarded by high energy protons (~50 MeV), generated using a linear 

particle accelerator.  Modern spallation sources utilise a synchrotron in 

conjunction with the linear accelerator to produce higher energy protons 

(~800 MeV).  During collision of the protons with the metal target enough 

energy is imparted to the target to produce spallation neutrons.  However, 

the neutrons produced in each case are too high in energy and possess too 

short a wavelength to be utilised in diffraction experiments.  Therefore, to
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Figure 2.9:  Schematic representation of the neutron scattering factor. 

 

be used effectively the neutrons need to be slowed, i.e., reduce their 

frequency, using a moderator, the type of which varies depending upon 

the facility used.  Once the neutrons have been slowed sufficiently to 

reduce their frequency the corresponding wavelength will be increased.  

There are, however, fundamental differences between the neutrons 

produced by a nuclear reactor and those from a spallation source.  

Neutrons from nuclear reactors need to be passed through a 

monochromator to reduce the neutrons incident on a sample to a single or 

‘fixed’ wavelength.  In this type of experiment the detector is then moved 

during data collection.  An example of a fixed wavelength facility is the 

high-resolution D2B diffractometer (! = 1.594 Å) at the Institut Laue-

Langevin (ILL), Grenoble.128  In contrast, neutrons from spallation sources 

arrive at an instrument in ‘bunches’; hence neutrons possessing a variety 

of wavelengths are utilised and separated according to their different 

velocities.  In such cases, fixed detector banks are used because each of the 

wavelengths will diffract off the hkl planes in the structure with different 

d-spacings.  This technique is known as time-of-flight (TOF) neutron 

diffraction and one example of such a diffractometer is POLARIS at the 

ISIS neutron spallation source, United Kingdom.129  Within this particular 
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structural investigation solely TOF neutron diffraction experiments have 

been completed, specific details of which can be found in the following 

sections. 

 

2.2.9   POLARIS130-133 

 

POLARIS is a medium resolution TOF neutron powder 

diffractometer located at the ISIS neutron spallation source, Rutherford 

Appleton Laboratories, Didcot, United Kingdom.  POLARIS consists of 

three fixed detector banks, backscattering (130-160°), 90 degrees (85-95°) 

and low angle (28-42°) composed of 3He tube, ZnS scintillator and 3He 

tube detectors respectively.  The sample is conventionally held in a 

cylindrical vanadium can in a tank evacuated to pressures of ~0.1 mbar.  

Samples are held under vacuum principally to avoid collision of the 

incident and scattered neutrons with air.  All experiments completed 

using POLARIS were under ambient reaction conditions with use of the 

sample changer.  Once collected, all datasets were normalised using the 

GENIE program and converted into GSAS format for compatibility with 

the GSAS software. 

 

2.2.10   High Resolution Powder Diffractometer (HRPD)134,135 

 

HRPD is the high-resolution TOF neutron powder diffractometer 

situated at the ISIS neutron spallation source, Rutherford Appleton 

Laboratories, Didcot, United Kingdom.129  To gain the required high-

resolution HRPD possesses an extended flight path and is therefore 

located ~100 m from the ISIS target at the end of the neutron guide.  

HRPD is utilised principally in the study of complex materials exhibiting 

subtle structural variations such as phase transitions, hence extremely 

accurate and precise crystallographic data is required to characterise such 

changes.  HRPD is currently the highest resolution neutron powder 

diffractometer of its type in the world and consists of three fixed detector 

banks, the backscattering (160-176°), 90 degree (87-93°) and low angle (28-

32°) banks.  Both the backscattering and 90 degree banks are composed of 
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ZnS scintillator detectors whilst the low angle bank uses 3He tube 

detectors.  The highest resolution data is acquired using the backscattering 

bank with a !d/d resolution of ~4 x 10!4 and can record out to d-spacings 

of up to 6 Å.  The measurable d-spacing range can be extended to over 20 

Å using the complementary detectors at 90 degrees and low angle; 

however, the resolution is considerably reduced.  Samples are 

conventionally held in vanadium cans, the size of which varies depending 

upon sample quantity.  All experiments were completed under ambient 

reaction conditions.  Once collected, all datasets were normalised using 

the GENIE program and converted to the relevant GSAS format for 

compatibility with the GSAS software. 

 

2.2.11 Comparison of Diffraction Techniques 

 

Laboratory X-ray diffraction is typically only sufficient to 

determine phase purity owing to relatively low resolution and poor data 

quality.  Synchrotron X-ray and neutron diffraction are superior 

techniques owing, fundamentally, to higher resolution.  A comparison of 

data obtained from each of the three sources is shown in Figure 2.10 and 

highlights the considerable differences in peak definition and overall 

resolution.  In particular, the signal-to-noise ratio is greatly improved in 

both the synchrotron XRD and neutron data when compared with the 

laboratory XRD data.  Neutron diffraction is often essential in the 

structural characterisation of dense ternary oxides as location of the 

oxygen atoms within such structures is extremely challenging and 

requires well-resolved, precise crystallographic data.  Neutron diffraction 

is also known to enhance superstructure peaks within such solids; hence it 

is possible to identify any superstructure characteristics exhibited.  Within 

this particular investigation neutron diffraction was of considerable use as 

it enabled the key identification of subtle structural discrepancies 

otherwise unseen using high-resolution X-ray methods.  
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Figure 2.10:  Comparison of Rietveld profiles for commercial NaNbO3 (Aldrich) 

obtained from (a) conventional “laboratory” XRD, (c) synchrotron XRD and (e) 

neutron powder diffraction.  (b, d, f) show corresponding expansions of the 

‘superstructure’ peaks, highlighting the differences observed in resolution between 

the three techniques. 

 

2.3 Rietveld Analysis136 

 

The use of powder diffraction techniques in the determination of 

crystal structures is extremely challenging.  However, it is one of the most 

common uses of powder data and the procedure adopted to complete 
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such structural investigations is that of the Rietveld method, originally 

proposed by Hugo Rietveld.137-139  To use this particular technique some 

prior knowledge of the structural model is required, enabling the 

refinement process to be simplified considerably.  

Polycrystalline samples routinely generate a considerable number 

of peaks within any powder diffraction pattern, the majority of which 

occur at low d-spacings.  Owing to the quantity of peaks generated they 

often overlap with one another making it virtually impossible to 

accurately identify and fit each individual peak.  The Rietveld method 

provides an accurate solution to such a problem by attempting to fit a 

structural model to the pattern as a whole, thereby avoiding the problem 

of indexing and fitting each peak separately.  The method adopted within 

this particular type of refinement is a least squares minimisation, in which 

model parameters for a theoretical structure are refined until a reasonable 

degree of fit is achieved with the experimental powder pattern.  The 

theoretical model utilised is commonly obtained from the Inorganic 

Crystal Structure Database.140  Structural refinement involves the 

adjustment of factors such as the background coefficients,  detector zero 

point, instrumental parameters, lattice parameters, profile coefficients, 

isotropic and anisotropic thermal factors and atomic positional 

coordinates.  During any structural refinement the residual, Sy, (as 

detailed by Equation 2.4, where the parameter yoi corresponds to the 

observed intensity and yci is the calculated intensity) is minimised using a 

least squares method.  

 

 
  

! 

Sy =
1

yi

(yoi " yci)
2

i

#  (2.4) 

 

When Sy is a minimum the ‘best’ possible fit between the calculated and 

experimental patterns is achieved.  However, this does not take into 

consideration the chemical accuracy of the model.  To determine the 

quality of fit obtained R-factors such as the R-profile, Rp, and R-weighted 

profile, Rwp, are utilised, given by Equations 2.5 and 2.6 respectively.  

Profile weighting is hugely important within the Rietveld method as it 

attempts to fit all peaks in the pattern equally, with no preference given to 
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peaks of higher intensity.  Therefore, to prevent peaks of greater intensity 

dominating any refinement the parameter 1/yi is used.  This enables peaks 

of weaker intensity to be fitted with the same preference as peaks 

exhibiting the greatest intensity in any diffraction pattern. 
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An additional parameter used to establish the quality of a fit is given by !2, 

Equation 2.7, where N is the number of observations, P is the number of 

refined parameters and C is the number of constraints.  This parameter is 

particularly useful as it indicates the ‘goodness’ of fit.  When !2 is equal to 

one this is indicative of a perfect fit.  Therefore, to determine the quality of 

Rietveld fit the closeness of !2 to one is measured.  All structural 

refinements were completed using GSAS. 
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2.4   Basic Principles of NMR 
 

Nuclear Magnetic Resonance (NMR) is a hugely powerful 

technique and is widely used in the study and characterisation of complex 

structures.  Almost all stable elements in the periodic table possess active 

nuclei and therefore NMR is routinely utilised, both in solution and in the 

solid state.  

 

2.4.1 Nuclear Magnetism 
 

Nuclei possess an intrinsic spin angular momentum, I, with a 

corresponding spin quantum number, I, related to the composition of the 

nucleus.  I may be zero or any positive integer or half-integer value.  The 

magnitude of the spin angular momentum is given by 

  

 
    

! 

I = ! I(I + 1)[ ]
1/2

  . (2.8) 

 

The projection of this angular momentum vector onto the z-axis is given 

by 
  

! 

I
z

= m
I
!, where mI is the magnetic quantum number with values 

ranging from !I to +I, resulting in 2I + 1 states degenerate in energy.  The 

circulating charge creates a magnetic dipole moment, µ , given by  

 

 

! 

µ = "I  , (2.9) 

 

where ! is the gyromagnetic ratio of the nucleus.  The orientation of µ  is 

either parallel (if ! is positive) or anti-parallel (if ! is negative) to I.  In the 

absence of an external magnetic field all 2I + 1 orientations of I are 

degenerate in energy and orientated at random.  Upon application of a 

strong magnetic field, B0, the axis of quantization is defined and the 

nuclear spins align themselves relative to B0.  Upon doing so the 

degeneracy of the 2I + 1 is lifted, as shown in Figure 2.11 for spin I = 1/2, 1 

and 3/2 nuclei.  When the field is applied along the z-axis the energy is 

given by 

 

   

! 

E = "µ
Z
B

0
  , (2.10)
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Figure 2.11:  The effect of the Zeeman interaction upon the nuclear energy levels for 

spin (a) I = 1/2, (b) I = 1 and (c) I = 3/2 nuclei. 

 

where µZ is the projection of the magnetic dipole moment onto the z-axis 

and B0 is the applied magnetic field in this direction.  This is known as the 

Zeeman interaction.  In a macroscopic sample at thermal equilibrium there 

will be a very slight excess of spins in the lower energy level which gives 

rise to a net or bulk magnetization vector, M0.  In NMR the spectroscopic 

selection rule for an observable transition is !mI = ±1 and the frequency of 

any such transition is therefore given by  

  

     
    

! 

"
0

=
#E

!
= $%B

0
  , (2.11) 

   

where "0 is the Larmor frequency with units of rad s!1.   

 

2.4.2 The Vector Model 

 

Although spin must be treated quantum mechanically, it is possible 

to treat the ensemble of spins in a macroscopic sample in a classical way.  

The ‘vector model’ was first proposed by Bloch and is now routinely 

utilised as a geometrical interpretation of the basic principles involved in 

NMR.141  Modern spectrometers commonly employ pulsed NMR methods 
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in which short pulses of intense linearly oscillating radiofrequency (rf) 

radiation is applied to a sample.  The frequency of this radiation, !rf, is 

close to the resonance frequency, !0.  The applied pulse, with strength B1 

and duration "p, interacts with the nuclear spins in a sample, exciting all 

resonances simultaneously, thereby affecting the orientation of the bulk 

magnetization vector, M0, as shown in Figure 2.12.  Pulsed NMR methods 

are highly advantageous over previous continuous wave (CW) methods as 

the experiment can be repeated more rapidly which, in turn, improves 

signal-to-noise which can be limiting in NMR spectroscopy owing to the 

low Boltzmann population differences.  The interaction of a pulse with a 

sample is extremely difficult to visualise in the laboratory frame and so a 

‘rotating frame’ is utilised.  This is a frame of reference which itself is 

rotating about the z-axis at a frequency !rf.  In this frame, the bulk 

magnetization vector precesses around the magnetic field at a frequency 

#, with an effective magnetic field,   

! 

B
0

eff , along the z-axis. 
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In the rotating frame a pulse can be described as a static field, B1, applied 

perpendicular to B0.  If applied along x the bulk magnetization vector, M0, 

nutates into the xy plane.  Once the pulse is removed M0 undergoes free 

precession at a frequency # = !0 ! !rf, as shown in Figure 2.12.  The angle 

through which the magnetization nutates during the pulse is defined as 

the ‘flip angle’, $, 

 

 
  

! 

" =#1$p   , (2.14) 

 

where !1 = !%B1 and "p is the duration of the pulse.  Flip angles commonly 

utilised in NMR experiments are $ = 90°, where the magnetization is 

placed in the xy plane, and $ = 180°, where the magnetization is inverted 

to lie along the !z-axis. 
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Figure 2.12:  (a) Vector model representation of the effect of a pulse applied along the x 

axis of the rotating frame on the bulk magnetization vector M0.  (b) After nutation into 

the yx plane the vector undergoes free precession at frequency ! .  (c) A schematic 

representation of an FID and corresponding spectrum post Fourier transformation and 

phasing. 

 

2.4.3 Relaxation 

 

Various relaxation effects, returning the system to equilibrium, 

dampen the precession of the magnetization around the z-axis.  

Transverse or spin-spin relaxation, characterised by a time constant T2, is 

defined as the loss of magnetization from the xy plane and occurs through 
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interaction between the spins.  Longitudinal or spin-lattice relaxation, with 

time constant T1, describes the return of the z component of the 

magnetization to equilibrium. Values of T1 are sample dependent and, in 

some cases, are extremely long.  For example, in solids 89Y (I = 1/2) has 

typical T1 values on the order of hundreds to thousands of seconds.  As a 

result, this determines the rate at which experiments can be repeated.  The 

damped precession of M0 is known as the free induction decay (FID) and 

is the signal detected when an induced voltage is detected in the receiver 

coil.  The FID is a time-domain signal and to convert to a frequency-based 

spectrum Fourier Transformation (FT) is required.142,143 

 

2.4.4 Fourier Transformation 

 

 The FID obtained is the sum of many different oscillating waves, 

each with a different frequency, amplitude and phase.  This signal is 

commonly detected using a technique known as quadrature detection144 

which enables simultaneous measurement of both the x and y components 

of the FID.  For each resonance observed in the spectrum two signals are 

acquired, one a cosine and the other a sine function of the offset frequency 

!, decaying at a rate of 1/T2 (owing to transverse relaxation effects).  

These signals are the real and imaginary parts of a complex time-domain 

signal, s(t), given by145,146 

 

   

! 

s(t) = cos"t + isin"t[ ]exp(#t/T2 )  (2.15) 

 

   

! 

s(t) = exp(i"t)exp(#t/T2 )  t ! 0 (2.16) 

 

   

! 

s(t) = 0   t < 0  . (2.17) 

 

The signal is then converted to a frequency-domain spectrum S(") by 

Fourier transformation 
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S(") = s(t)e# i"tdt
0
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%   . (2.18) 
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The frequency-domain function, S(!), is composed of both real and 

imaginary parts, given by Equations 2.20 and 2.21, respectively.  The real 

part corresponds to an absorptive Lorentzian lineshape and the imaginary 

part the corresponding dispersive Lorentzian.  
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S(") = A(#") $ iD(#")  (2.19) 
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(1/T2 )2
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 (2.20) 
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"#

(1/T2 )2
+ ("#)2

  . (2.21) 

 

Spectral lineshapes, in reality, are neither purely real or imaginary.  They 

instead possess an arbitrary phase composed of both the real and 

imaginary parts and to obtain absorption-phase lineshapes a process 

known as ‘phasing’ is required post Fourier transformation.  This is 

achieved by taking linear combinations of the real and imaginary parts of 

the spectrum until the desired lineshape is achieved.  A schematic 

representation of an FID and corresponding spectrum, post Fourier 

transformation and phasing, are shown in Figure 2.12(c).  

 

2.4.5 Density Operator Formalism 

 

 Macroscopic samples are known to contain large numbers of 

nuclear spin systems, each of which may be described quantum 

mechanically by a wavefunction, "(t).  Each wavefunction may be 

expanded as a linear combination of the elements of an orthogonal basis 

set #i$ : 

 

 
  

! 

"(t) = ci(t) i
i

#   , (2.22) 

 

where ci(t) are time-dependent coefficients.  A more compact approach 

involves using a density operator, %(t), whose matrix representation is 

termed the density matrix.147  The elements of this matrix, %i,j(t), are the 

products of the expansion coefficients of the wavefunction "(t), i.e.,  
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! 

" i, j(t) = i "(t) j   

 

                    

! 

= ci(t)c j(t)
"   , (2.23) 

 

where the overbar and * denote an ensemble average and complex 

conjugate, respectively.  The density operator formalism,147 when 

compared with the classical vector model description, is a more rigorous 

and compact quantum mechanical approach to describe the ensemble of 

spins during the course of an NMR experiment.  For a spin I > 1/2 nucleus 

quantum mechanical behaviour is a more convenient description. 

 

2.4.6 Coherence 

 

 Consider an ensemble of non-interacting spins.  Each spin, with 

wavefunction !(t), can be described as a superposition of the states "#$ 

and "%$.  The contributions to these states, described by coefficients c#(t) 

and c%(t), possess both a time and phase dependence.  At t = 0, the 

complex superposition coefficients c#(t) and c%(t) have phases &# and &%, 

respectively and !(t) is given by, 

 

 
  

! 

"(t) = c#(t)ei$# # + c%(t)e
i$% %   . (2.24) 

 

The matrix representation of the density operator, '(t), for the system 

therefore takes the following form 

 

 

 
  

! 

"(t) =
c#c#

$ c#c%
$e

i(&# '&% )

c%c#
$e

i(&% '&# )
c%c%

$

( 

) 
* * 

+ 

, 
- -   . (2.25) 

 

 

The diagonal elements 
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c"c"
#  and 

  

! 

c"c"
#  are equal to 
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c"
2  and 

  

! 

c"
2  respectively, 

thus, they refer to the populations of the "#$ and "%$ spin states.  If the 

relative phases of each of the spins are the same then the off-diagonal 

elements 
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i(%" &%# )  will have non-zero magnitude.  In 
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such cases there is said to be phase coherence between the spins.  The 

converse is also true, if each spin exhibits a random phase difference, then 

the off-diagonal elements in the density matrix will, on average, sum to 

zero and in such cases no coherence exists in the ensemble.  Consider the 

density matrix for a single spin I = 3/2 nucleus where the chosen basis set 

is the set of eigenstates of the Zeeman Hamiltonian, i.e., mI = 3/2, 1/2, 

!1/2, !3/2.  The density matrix is of the form 
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where the elements !i,i±1(t) represent coherences with "mI = ±1, commonly 

denoted as coherence order p = ±1.  It is these coherences which are 

directly observable in an NMR experiment.  However, by convention only 

p = !1 coherences are detected when quadrature detection144 is utilised.  

The elements !i,i±2(t) and !i,i±3(t) represent multiple-quantum coherences, 

i.e., those with coherence orders of p = ±2 and ±3 respectively.  Although 

these are not directly observable they are utilised in many important NMR 

experiments. 

 

2.5 NMR Interactions 

 

There are many important interactions in NMR, the most dominant 

of which is usually the Zeeman interaction.  These interactions, including 

the Zeeman interaction, can be described by a Hamiltonian, H, given in 

general form by,   
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Figure 2.13:  Schematic representation of the transformation of a tensor between the 

laboratory frame and the PAS.  

 

where I is the spin angular momentum operator, R is a second-rank 

Cartesian tensor defining the interaction and X represents either a second 

spin operator or a magnetic field.  Hence the total Hamiltonian, H, for any 

nucleus may be expressed as the sum of the individual Hamiltonian 

contributions for the Zeeman interaction, HZ, the applied radiofrequency 

pulse, Hrf, dipolar, HD, chemical shielding, HCS, scalar, HJ, and 

quadrupolar, HQ, interactions given by,  

 

   

! 

H = HZ + Hrf + HD + HCS + HJ + HQ   . (2.29)   

 

It is convenient to describe an interaction within a frame, defined 

by the magnitude and shape of the interaction itself.  This is known as the 

Principal Axis System, or PAS, a frame where the second-rank tensor 

defining the interaction is defined such that all off-diagonal elements are 

zero.  A schematic representation of the PAS is shown in Figure 2.13.  To 

convert between the laboratory frame and the PAS a rotation is required, 

thereby highlighting the angular dependence of many of the interactions. 
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2.5.1  Chemical Shift Anisotropy (CSA) 

 

The field experienced by a nuclear spin, in reality, is not the applied 

magnetic field, B0.  In a magnetic field, the electrons around a nucleus 

circulate and, in turn, generate a small magnetic field, B!, which either 

opposes or augments the applied field. Consequently, this changes the 

field experienced by the nucleus and perturbs the Larmor frequency 

 

 
  

! 

" # = $%B0 (1$&)   , (2.30) 

 

where " is a shielding parameter.  In reality, the shielding is orientation 

dependent and is described by a second-rank tensor, " .  The Hamiltonian 

describing the chemical shielding, HCS, is given by 
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H
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When B0 is defined to be along the z-axis the secular approximation may 

be applied and the Hamiltonian becomes 
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More usually the shielding tensor is expressed in the PAS.  In this frame 

the tensor can be represented by an ellipsoid, as illustrated in Figure 2.14, 

and is defined by three parameters, the isotropic shielding, "iso, the 

shielding anisotropy, #"CS, and the asymmetry, $CS, given by   
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3
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where "11, "22 and "33 are the three principal components of the tensor.  To 

convert from the PAS to the laboratory frame a rotation is necessary,
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Figure 2.14:  A schematic representation of the shielding tensor in the PAS, where !11, 

!22 and !33 are the three principal components of the tensor.  The angles "  and #  are the 

angles defining the orientation of the tensor relative to the magnetic field B0. 

 

revealing the angular dependence of the chemical shielding.  This is 

highlighted in the !zz component148 of the shielding tensor, given by   

 

 
  

! 

"zz = " iso +
#"CS

2
(3cos2 $% 1) + &CS (sin2 $cos2')[ ]  . (2.36) 

 

For different orientations of the shielding tensor PAS, a different chemical 

shift is observed.  In solution the chemical shielding is averaged solely to 

its isotropic value, shown in Equation 2.33, by rapid molecular tumbling 

and, as a result, lineshapes are inherently sharp and narrow.  Solids, 

however, are often densely packed and therefore do not usually exhibit 

such molecular motion, hence they display the full extent of the CSA, 

producing extremely broad spectra.  Powders are composed of millions of 

tiny crystallites, each with a different orientation with respect to B0, hence
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Figure 2.15:  Simulated CSA lineshapes for a spin I = 1/2 nucleus with !"CS = 2000 ppm 

and asymmetry, #CS, (a) 0, (b) 0.5 and (c) 1. 

 

shifts from all possible orientations will be observed resulting in broad 

‘powder-pattern’ lineshapes.  Powdered CSA lineshapes simulated with 

#CS = 0, 0.5 and 1 are shown in Figures 2.15(a), (b) and (c), respectively.  

The lineshapes simulated highlight how the shape of the powder-pattern 

line observed varies depending upon #CS.  Specific details are given in the 

figure caption. 
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The shielding is an inconvenient measure of the chemical shift and 

therefore a deshielding parameter, !, is used, defined by 

 

 
  

! 

" = 106 (
# $#ref

#ref

) (2.37) 

 

where " and "ref are the resonance frequencies of the nucleus of interest 

and a standard or reference.149  The chemical shift of a nucleus is a 

property that reflects the environment the nucleus experiences.  It 

therefore provides valuable information regarding the electron 

distribution around the nucleus. The chemical shift is dimensionless and 

quoted in parts per million (ppm). 

 

2.5.2 Dipolar Coupling 

 

 The nuclear magnetic dipole moments of nuclei produce small 

localised magnetic fields that, in turn, interact with dipole moments of 

nearby nuclei.  This through space interaction, referred to as dipolar 

coupling, is orientationally dependent, as the effect of the localised field 

from one spin to another depends upon the relative position of the two 

spins.   This interaction is averaged to zero in solution by rapid molecular 

tumbling.  In solids, however, the dipolar interaction produces an 

associated broadening of the observed spectrum.  In the laboratory frame 

the dipolar Hamiltonian, HD, between two spins I and S contains many 

orientationally dependent terms, and therefore a truncated form is usually 

used.  Hence, for two homonuclear spins (I = S), separated by an 

internuclear distance rIS, a truncated version of the dipolar Hamiltonian 

after the secular approximation is given by150 

 

 
  

! 

H
D

IS ="
D

3I
z
S

z
# I . S[ ]   , (2.38) 

 

where "D is the dipolar splitting parameter, given by 
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with151,152 
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where rIS is the internuclear distance between two spins I and S.  It must be 

noted that the dipolar tensor is always axially symmetric, with !D = 0.  For 

two heteronuclear spins (I ! S) further truncation of the Hamiltonian is 

required, reducing it to153 
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Consider two isolated heteronuclear spin 1/2 nuclei I and S.  A schematic 

representation of the energy levels for such a system is given in Figure 

2.16(a).  The effect of the heteronuclear dipolar coupling on the spectrum 

is to split each single transition into a doublet separated by 2"D, also 

shown in Figure 2.16(a).  The dipolar interaction, in a similar manner to 

the CSA, is orientationally dependent, therefore the dipolar splitting 

observed depends upon the angle between the internuclear vector and the 

magnetic field.  The variation of this angle produces an associated effect 

on the dipolar splitting also observed.  In powdered or polycrystalline 

samples an average over all possible orientations is observed, resulting in 

a ‘Pake doublet’ lineshape, an example of which is shown in Figure 

2.16(a).  For two homonuclear spins I = S only two possible transitions are 

allowed, these are shown in Figure 2.16(b).  The effect of homonuclear 

dipolar coupling on a spectrum is to split the single transition into a 

doublet, separated by 3"D, as shown in Figure 2.16(b).  Powdered samples 

therefore result in a Pake doublet lineshape with a maximum splitting of 

3"D, also shown in Figure 2.16(b).  

In reality it is extremely rare to find two isolated spins, and hence 

there are many dipolar couplings involved between numerous spins.  As a 

direct consequence of these interactions lineshapes typically exhibit an 

associated Gaussian broadening.  Spectral lineshapes displaying different 

degrees of Gaussian broadening simulated to highlight the effect of such 

broadening on the observed lineshapes are shown in Figure 2.17.  The
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Figure 2.16:  Schematic energy level diagrams for (a) two heteronuclear dipolar 

coupled I ! S = 1/2 nuclei and (b) two homonuclear dipolar coupled I = 1/2 nuclei.  In 

each case, the single transition is split into a doublet by 2"D and 3"D in (a) and (b), 

respectively for a single orientation.  For a powdered sample an average over all 

possible orientations is observed, resulting in a Pake doublet powder pattern 

lineshape. 
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Figure 2.17:  Second-order broadened quadrupolar (I = 3/2) lineshapes (see section 2.8 

regarding quadrupolar interactions) simulated with CQ = 2 MHz, !Q = 0, "0/2! = 158.75 

MHz and linebroadening of (a) 100, (b) 200, (c) 300, (d) 400, (e) 500 and (f) 600 Hz.  

 

broadening exhibited can often lead to the loss of distinct features in the 

lineshape.  For example in Figure 2.17(a) a distinct set of ‘horns’ are 

displayed which begin to diminish (Figures (b-e)) as the extent of 

Gaussian broadening is increased.  The distinct features are then fully 

removed when the broadening is dominant, as illustrated in Figure 2.17(f).  

This type of broadening often hinders the extraction of any structurally 

relevant information.  Hence, a method for removing such sources of 

broadening is highly desirable.   

 

2.5.3 Scalar Couplings 

 

 In solids the scalar or J-coupling is usually the smallest of the 

contributions to the total Hamiltonian.  In solution, high-resolution 

spectra commonly exhibit complex splitting patterns as a direct result of 

scalar couplings.  For two J-coupled spins I and S the Hamiltonian154 is 

given by 
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! 

HJ = 2" J . I . S   ,  (2.42) 

 

where J is a second-rank tensor defining the interaction.  When B0 is 

defined to be along the z-axis the secular approximation may be applied 

and the Hamiltonian becomes 

 

   

! 

HJ = 2"JIzSz   . (2.43) 

 

where J is the isotropic J-coupling or scalar coupling and is equal to the 

average of the diagonal elements of the J-coupling tensor.  Scalar 

couplings are a through-bond interaction mediated by the electrons within 

the chemical bond.  J-couplings are often present in solid-state NMR 

spectra; however, they are commonly only on the order of a few tens of 

hertz, and are therefore usually dominated by larger anisotropic 

interactions such as CSA and dipolar couplings.  Despite this, the coupling 

is often utilised for the successful transfer of magnetization from one spin 

to another. 

 

2.6 Magic-Angle Spinning 

 

 Magic-angle spinning (MAS) is a method for suppressing 

anisotropic interactions such as CSA and dipolar couplings by the 

introduction of artificial motion upon a solid.155-157  The technique involves 

rapid rotation of the sample about an axis orientated at an angle of 54.736° 

relative to the external magnetic field, B0, as illustrated in Figure 2.18(a).   

Both CSA and dipolar interactions possess an orientation 

dependence proportional to 3cos2! ! 1, as shown in Equations 2.36 and 

2.39 respectively.  When ! = 54.736° the interaction is removed.  However, 

for a powdered solid all crystallites must be orientated at ! simultaneously 

to remove the interaction.  This is, in reality, not feasible and a method 

capable of imposing an average orientation on the whole sample is 

required.  Magic-angle spinning achieves this by fast rotation of the 

sample around an angle where 3cos2! ! 1 is reduced to zero.  MAS is
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Figure 2.18:  (a) Schematic representation of a rotor at the magic angle of !  = 54.736° 

and (b) picture of an MAS probe showing the stator block containing the coil inclined 

at the magic angle. 

 

therefore a successful method for averaging many of the anisotropic 

interactions within solid-state NMR to their isotropic value.  To 

successfully suppress the interactions the spinning rate must usually be 

equal to or greater than the anisotropy of the interaction being removed.  

MAS rates of up to 30 kHz are routinely possible, and with considerable 

advances in probe design, faster MAS rates of up to 65 kHz are now 

feasible commercially.  If the spinning rate is insufficient to suppress the 

interaction the lineshape breaks up into an envelope of spinning 

sidebands separated from the centreband by the spinning speed, as shown 

in Figure 2.19.  As the rate of spinning changes the centreband position 

remains unchanged.  Broad sideband patterns severely hinder the 

extraction of important structural data, and hence fast spinning rates are 

desirable.  Both CSA and several heteronuclear dipolar couplings are 

typically of the order of a few kilohertz, and hence they can be averaged 

relatively easily by MAS.158  In contrast, homonuclear dipolar couplings 

can only be removed when very fast MAS rates are utilised as the 

spinning rate needs to be greater than the homonuclear dipolar coupling 

linewidth, e.g., 1H – 1H dipolar couplings can often be 80 - 100 kHz.  It is 

challenging to routinely use such speeds and therefore alternative 

methods capable of removing homonuclear dipolar couplings are more
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Figure 2.19:  Simulated I = 1/2 lineshapes with !"CS = 300 ppm, #CS = 0.3 at MAS rates 

of (a) 0 kHz, (b) 2 kHz, (c) 5 kHz and (d) 10 kHz.  The isotopic centreband is marked 

with *.   

 

commonly used, such as decoupling (see later section).  Magic-angle 

spinning significantly improves the resolution of a spectrum, thereby 

making it feasible to accurately determine the number of distinct sites in 

addition to their respective chemical shifts and relative populations.  

 

2.7 Dipolar Decoupling 

  

At moderate MAS frequencies the heteronuclear dipolar coupling 

interaction is not fully removed, resulting in large homogeneous 

broadenings.  Hence, very fast MAS rates are required to successfully 

remove the effects of such couplings.  An alternative method for removing 

the dipolar couplings is a technique known as heteronuclear dipolar 

decoupling.159,160  This is a hugely powerful method involving continuous 

irradiation of the spin not under observation during acquisition of the 

FID.  Decoupling can be applied either static or under MAS, and when 

utilised under MAS further narrowing of the lineshape is commonly
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Figure 2.20:  A schematic representation of a continuous wave (CW) pulse sequence 

used for 1H decoupling of an X nucleus FID. 

 

observed.  Different schemes for decoupling exist, the simplest of which is 

continuous wave (CW) decoupling.161   Consider two dipolar-coupled 1H 

and 13C spins where the 13C spins are to be observed.  The method consists 

of applying continuous irradiation of very high power, commonly 100-

1000 watts, at the frequency of the proton resonance.  The required pulse 

sequence for the 13C nuclei is then applied and the 13C FID is acquired 

whilst the 1H is irradiated with high power rf pulses.  This method of 

decoupling is relatively easy to implement and an example of the 

sequence used for CW decoupling is shown in Figure 2.20.  It must be 

noted that this type of decoupling requires very high rf powers for 

effective decoupling.  Alternatively, other decoupling pulse sequences 

may be used such as Two Pulse Phase Modulated (TPPM) which, in 

contrast to CW methods, incorporates phase modulation of the rf to 

achieve more efficient decoupling.162  

As described previously, homonuclear dipolar couplings can only 

be removed when the MAS rate is greater than the homonuclear dipolar 

linewidth.  Where this is not possible the effects of homonuclear dipolar 

couplings may be removed by homonuclear decoupling.  Unlike 
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heteronuclear decoupling, it is not possible to pulse and acquire 

simultaneously on two identical spins.  Therefore, a ‘windowed’ approach 

is required in which pulses are applied to remove the dipolar interaction 

and points of the FID are collected in small windows between each of the 

pulses applied.  This type of sequence is technically challenging to 

implement. 

 

2.8 Quadrupolar Interactions 

2.8.1 Introduction 

 

 The periodic table is dominated by quadrupolar nuclei, with 

approximately 75% of the NMR-active species possessing a spin quantum 

number greater than 1/2.  Quadrupolar interactions are therefore a 

relatively common occurrence in NMR. 

Quadrupolar nuclei possess a nuclear electric quadrupole moment, 

eQ, that interacts with the electric field gradient (EFG), generated at the 

nucleus by other atoms present in the sample.163  This interaction, known 

as the quadrupolar interaction, is extremely strong and, in turn, produces 

an inhomogeneous broadening, commonly of the order of megahertz, in 

the solid-state NMR spectra of quadrupolar nuclei.  The quadrupolar 

interaction is orientationally dependent and in its PAS it may be described 

by three principal components; Vxx, Vyy and Vzz.  The magnitude of the 

EFG is given by eQ = Vzz and the shape of its cross-section can be 

represented by an asymmetry parameter, !Q (Equation 2.45). The 

magnitude of the quadrupolar interaction is given, in Hz, by the 

quadrupolar coupling constant, CQ,163 

 

 
  

! 

CQ =
eQVzz

h
=

e2qQ

h
 (2.44) 

 

 

 
  

! 

"Q =
Vxx # Vyy

Vzz

      

! 

0 < "Q < 1  . (2.45) 

 

As stated previously, the total Hamiltonian, H, for a particular nucleus 

depends upon many contributions.  The quadrupolar interaction is often 
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very large but, in many cases, remains smaller than the more dominant 

Zeeman interaction.  The Hamiltonian describing the quadrupolar 

interaction is given by164 
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Hence, the total Hamiltonian for a quadrupolar nucleus, neglecting for the 

moment contributions from smaller interactions such as chemical shift 

anisotropy, dipolar and scalar couplings, may be expressed as the sum of 

the individual Hamiltonians for the Zeeman and quadrupolar 

interactions, given by 

 

   

! 

H = HZ + HQ   . (2.48) 

 

In the PAS the quadrupolar tensor, V, is diagonal and the Hamiltonian is 

given by164  
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2.8.2 First-Order Quadrupolar Interactions 

 

The effect of the quadrupolar interaction may be described as a 

perturbation of the Zeeman energy levels and can therefore be described 

using perturbation theory.165  The quadrupolar interaction perturbs all 

energy levels and, to a first-order approximation, splits the original 

degenerate transitions at !0 into 2I transitions, equally spaced by 2!Q.  In 

Figure 2.21 the Zeeman energy levels for spin I = 1 and I = 3/2 nuclei are 

shown, displaying two and three degenerate transitions at !0, respectively. 
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Figure 2.21:  First-order perturbation of the Zeeman energy levels by the quadrupolar 

interaction for systems with (a) I = 1 and (b) I = 3/2.  Also shown are resulting spectra 

for each spin system with 2I non-degenerate transitions separated by 2!Q, and 

corresponding spectra for a powder distribution of crystallites.  In each case the central 

transition and satellite transitions are marked by CT and ST, respectively. 

 

Also shown is the effect of the quadrupolar interaction, to a first-order 

approximation, on the energy levels.  The quadrupolar splitting 

parameter, !Q, is given by  

 

 
  

! 

"Q =
("Q

PAS )

2
(3cos2 #$ 1+ %Q (sin2 #cos&))    (2.50) 

 

with 
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! 

"Q

PAS
=

3#CQ

2I(2I$ 1)
  , (2.51) 

 

given in rad s!1, where the angles ! and " define the orientation of the PAS 

of the EFG with respect to the external magnetic field. 

For I = 3/2 nuclei, all energy levels are perturbed by the first-order 

quadrupolar interaction.  However, for single-quantum transitions only 

the frequency of the central transition (mI = +1/2 # !1/2) remains 

unchanged at $0.  The frequency of the outer transitions, termed satellite 

transitions with mI = ±1/2 # ±3/2, is now dependent upon the 

quadrupolar splitting parameter, $Q.  This highlights a vital distinction 

between quadrupolar nuclei with integer and half-integer spins.  For 

nuclei with half-integer spin quantum numbers the central transition is 

not affected to first-order by the quadrupolar interaction, producing a 

sharp peak in the centre of the spectrum.  No such transition exists in the 

case of integer spins, and hence all transitions exhibit a perturbation by 

the quadrupolar interaction.  These differences are highlighted in Figure 

2.21.    

Polycrystalline samples are composed of millions of tiny 

crystallites, each with a different orientation with respect to B0, and hence 

in a similar manner to the CSA they commonly exhibit broad ‘powder 

pattern’ lineshapes, as a direct result of the orientational dependence of 

$Q.  The width of each lineshape is directly proportional to CQ therefore a 

measure of the linewidth can give a good indication as to the magnitude 

of the quadrupolar interaction.  Examples of powdered lineshapes for spin 

I = 1 nuclei have been simulated with varying %Q values and are shown in 

Figure 2.22. 

 

2.8.3 Removal of First-Order Effects 

 

For static samples substantial inhomogeneous broadening is 

exhibited for quadrupolar nuclei owing to the quadrupolar interaction.  

Therefore, a method for removing this interaction and obtaining high-

resolution spectra is highly desirable.  Examination of the first-order
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Figure 2.22: Powdered spin I = 1 lineshapes simulated under static conditions with CQ 

= 2 MHz and !Q = 0, 0.2, 0.4, 0.6, 0.8 and 1 in (a-f) respectively.  

 

quadrupolar interaction (Equation 2.50) reveals an angular dependence 

similar to that previously identified for the chemical shift anisotropy and 

dipolar couplings, 3cos2" ! 1.  Therefore, under MAS the quadrupolar 

interaction should be removed to first order.  As previously described in 

section 2.6 MAS is only effective when the MAS rate is similar or greater 

than the anisotropy of the interaction attempting to be removed.  

Quadrupolar interactions are commonly many megahertz in magnitude 

and therefore fast MAS rates would be required to fully remove the 

interaction.  For integer spins, if the MAS rate is too slow the spectrum 

will be broken up into a series of spinning sidebands.  For half-integer 

spins under MAS only the satellite transitions are affected, the central 

transition is not broadened to first-order. 

 

2.8.4 Second-Order Quadrupolar Interactions 

 

When the quadrupolar interaction is relatively small a first-order 

approximation is sufficient to describe the effect upon the spectrum.  

However, in reality, for many solids this interaction is very large and a 

first-order perturbation approximation is no longer sufficient.  When this
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Figure 2.23:  Perturbation of the Zeeman energy levels arising from the quadrupolar 

interaction to a first- and second-order approximation for a I = 3/2 system.  Although 

not broadened by the first-order quaderupolar interaction, the central-transition is 

broadened by the second-order quadrupolar interaction. 

 

is the case second-order terms are required to describe the perturbation of 

the Zeeman energy levels by the quadrupolar interaction.  The four energy 

levels for a spin I = 3/2 nucleus are shown in Figure 2.23 under the effect 

of the Zeeman interaction, the first-order quadrupolar interaction and the 

second-order quadrupolar interaction.  Both the central (CT) and satellite 

transitions (ST) are affected by the second-order quadrupolar interaction.  

The second-order perturbation to a transition frequency mI ! !mI as 

defined, under MAS with "Q = 0, is given by  
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E
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"mI

2
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where   

! 

An (I,mI)  are spin and energy level dependent coefficients, # is the 

angle between the rotor axis and the applied field (i.e., 54.736°) and 
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! 

dmm

l (") are Wigner reduced rotation matrix elements.166  It can be seen that 

the second-order interaction is composed of three distinct terms: an 

isotropic shift (proportional to   

! 

A0 (I,mI) ), a second-rank anisotropic term 

(proportional to   

! 

A2 (I,mI)d00

2 (")d00

2 (#) ) and a fourth-rank anisotropic term 

(proportional to   

! 

A4 (I,mI)d00

4 (")d00

4 (#)).  The spin-dependent coefficients 

  

! 

An (I,mI)  are listed in Table 2.2 for half-integer spins. 

For a spin I = 3/2 nucleus (again with !Q = 0) Equation 2.52 may be 

expressed more simply as 
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where 
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The second-rank element,   

! 

d00

2 ("), has the same orientational dependence 

as the chemical shift anisotropy, dipolar and scalar couplings, and hence 

this broadening may be removed under MAS.  The fourth-rank element, 

however, possesses a much more complex orientational dependence.  This 

term is averaged to zero only when " = 30.56° or 70.12°.  Hence, it is not 

feasible for conventional MAS to remove completely the anisotropic 

second-order quadrupolar broadening. 

As shown previously, the central transition of a half-integer 

quadrupolar nucleus was not broadened, to a first-order approximation, 

by the quadrupolar interaction.  This transition does, however, experience 

a second-order broadening.  To illustrate the effect of this broadening on 

NMR spectra of half-integer nuclei, second-order broadened central 

transition powder pattern lineshapes have been simulated under MAS for 

a spin I = 3/2 nucleus with varying !Q values, as shown in Figure 2.24.  

The central transition, previously unaffected to first order, now exhibits a 

complex ‘powder pattern’ lineshape that is shifted from the centre of the 

spectrum.  The magnitude of the second-order quadrupolar interaction is



 76 

Table 2.2:  Coefficients for zero-, second- and fourth-rank terms in Equation 2.50 for 

half-integer spin nuclei. 

 

I mI A0(I,mI) A2(I,mI) A4(I,mI) 

I = 3/2 1/2 !2/5 !8/7 54/35 

 3/2 6/5 0 !6/5 

I = 5/2 1/2 !16/15 !64/21 144/35 

 3/2 !4/5 !40/7 228/35 

 5/2 20/3 40/21 !60/7 

I = 7/2 1/2 !30/15 !120/21 270/35 

 3/2 !54/15 !96/7 606/35 

 5/2 30/15 !240/21 330/35 

 7/2 294/15 168/21 !966/35 

I = 9/2 1/2 !48/15 !192/21 432/35 

 3/2 !108/15 !168/7 1092/35 

 5/2 !60/15 !600/21 1140/35 

 7/2 168/15 !336/21 168/35 

 9/2 648/15 432/21 !2332/35 

 

proportional to   

! 

("Q

PAS )2 /"0 , and so it is considerably smaller than the first-

order quadrupolar interaction, proportional to   

! 

"Q

PAS .  The position of the 

NMR resonance for a quadrupolar nucleus is the sum of the isotropic 

chemical shift, !iso, and the isotropic quadrupolar shift, !Q. 

 

2.8.5 Removal of Second-Order Quadrupolar Broadening 

 

 Second-order quadrupolar broadening of NMR spectra often 

hinders the extraction of important information regarding the number of 

crystallographically distinct sites or the relative populations of different 

sites within a sample as it cannot be removed by MAS.  Hence, a 

technique capable of removing such broadenings and achieving high-

resolution spectra for quadrupolar nuclei exhibiting such effects is 

required.  For example, two-dimensional techniques such as double 
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Figure 2.24: Second-order broadened central-transition MAS powder lineshapes for a I 

= 3/2 system simulated with CQ = 2 MHz, !0/2! = 158.75 MHz and asymmetry, !Q, of (a) 

0, (b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8 and (f) 1.  

 

rotation167,168 (DOR), dynamic-angle spinning169,170 (DAS) or multiple-

quantum (MQ) MAS may be utilised.171  

 

2.8.6 Double Rotation (DOR) 

 

 One possible method for obtaining high-resolution NMR spectra 

for quadrupolar nuclei is the double rotation (DOR) technique.167,168  In 

Equation 2.53 it was shown that the second- and fourth-rank anisotropic 

quadrupolar broadenings possessed different angular dependencies; 

hence, to remove both interactions simultaneously, rotation of the sample 

would need to occur around two different angles.  DOR achieves high-

resolution spectra by spinning the sample, by means of a double rotor, 

simultaneously at two different angles, one being the magic angle, ", 

which averages the second-rank anisotropic broadening contribution, 

whilst the other angle ("R = 30.56° or 70.12°) averages the fourth-rank 

terms to zero.  A schematic representation of the apparatus used in DOR is 

shown in Figure 2.25.  Furthermore, the use of the magic angle removes 

any additional CSA or dipolar interactions from the spectrum.  However, 

it must be noted that DOR, despite producing high-resolution spectra, is
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Figure 2.25:  Schematic representation of the DOR experiment.  Shown are two rotors, 

one spinning inside the other.  The outer rotor spins about an axis inclined at 54.736° 

to the applied magnetic field, B0, whilst the inner rotor spins about an axis inclined at 

30.65° (or 70.12°) relative to the outer rotor. 

 

an extremely specialist technique and its practical application is limited 

owing to technical restrictions on the spinning speed of the outer rotor.  

The mechanical complexity of the technique leads to the requirement of 

expensive hardware different to that utilised for conventional MAS. 

 

2.9 Multiple-Quantum Magic-Angle Spinning (MQMAS) 

2.9.1   Introduction    

  

 Owing to the technical demands and complex practical 

implementation of methods such as DOR, alternative methods for the 

acquisition of high-resolution spectra have been developed in recent 

years.  In 1995, Frydman and Harwood171 suggested a method for 

removing second-order quadrupolar broadening which utilises the 

hardware conventionally used for MAS.  The experiment, now termed 

multiple-quantum magic-angle spinning (MQMAS), is a two-dimensional 

technique which correlates multiple- and single-quantum coherences 

under MAS.  The coherences exploited in MQMAS are the symmetric mI 
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! !mI coherences, i.e., triple-quantum (+3/2 ! !3/2), five-quantum 

(+5/2 ! !5/2) etc.  Note that these coherences cannot be directly 

observed.  Owing to the ease of its implementation the development of 

MQMAS has resulted in renewed interest in high-resolution NMR in a 

wide range of quadrupolar nuclei. 

 

2.9.2 The MQMAS Experiment 

 

 The original MQMAS experiment used two pulses to excite 

multiple-quantum coherences.171  However, it has subsequently been 

shown that single-pulse excitation172,173 is a more efficient method to excite 

such coherences for nuclei with half-integer spin, as shown in Figure 

2.26.174-176  In MQMAS experiments multiple-quantum coherences are first 

excited using a high power rf pulse, and these then evolve during a time 

period t1.  The pulse utilised needs to be sufficiently high in power to 

efficiently excite multiple-quantum coherences.  To select the desired 

coherence changes and ensure that no unwanted coherences are carried 

forward for the remainder of the pulse sequence a process known as phase 

cycling is required.  Additional details regarding phase cycling can be 

found in Appendix I.  The experiment is conducted under MAS and 

therefore it may be assumed that the second-rank second-order 

anisotropic broadening is averaged to zero throughout the experiment.  

Hence, the only anisotropy that arises during t1 is due to the fourth-rank 

term.  At the end of t1 a second rf pulse is applied which converts the 

remaining multiple-quantum coherence to observable single-quantum 

coherences.  A two-dimensional time domain dataset is obtained, 

displaying the evolution of single- and multiple-quantum coherences in 

the t2 and t1 dimensions respectively.   

The key feature of the MQMAS technique is its ability to refocus 

fourth-rank anisotropic broadenings whilst retaining isotropic shifts.  The 

second-order perturbation to the frequency of the central transition of a 

spin I = 3/2 nucleus under MAS conditions was shown earlier in Equation
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Figure 2.26:  (a) Pulse sequence and coherence transfer pathway diagram for the two-

pulse MQMAS NMR experiment adapted from that of Frydman and Harwood.171  (b) 

Conventional 97Rb MAS (14.1 T) NMR spectrum and triple-quantum MAS NMR 

spectrum of RbNO3, recorded using the pulse sequence shown in (a).  The spectrum is 

the result of averaging 96 transients with a recycle interval of 0.25 s for each of the 512 

increments of 60.0 µs.  The MAS rate was 12.5 kHz. 
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Figure 2.27:  Schematic representation of a spectrum resulting from an MQMAS 

experiment.  Shown in (a) are a series of ridges aligned along a gradient equal to the 

MQMAS ratio, R.  To obtain an isotropic projection a projection orthogonal to the 

ridges is obtained, as shown in (a).  This isotropic projection is free from quadrupolar 

broadening but retains the isotropic shifts.  Shown in (b) is the spectrum post 

shearing, exhibiting a series of ridges parallel to !2.  An isotropic spectrum is then 

obtained from a projection onto !1. 

 

2.53.  A similar expression may be obtained for the frequency of the triple-

quantum transition for a I = 3/2 nucleus under MAS, given for "Q = 0 by 
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It can be seen from equations 2.53 and 2.56 that the ratio of the coefficients 

in the single- and triple-quantum expressions is different for the isotropic 

and anisotropic fourth-rank terms, i.e.,   

! 

A0 (I, 3/2)/A0 (I,1/2)  and 

  

! 

A4 (I, 3/2)/A4 (I,1/2) .  Using this property it is possible to refocus the 

anisotropic terms and retain solely the isotropic shifts to produce a high-

resolution spectrum.  It must be noted that the ratio of the coefficients of 

the anisotropic fourth-rank terms under single- and multiple-quantum 

coherences,   

! 

A4 (I,mI)/A4 (I,1/2), is different for each spin system and 

coherence order.  It is this value, termed the MQMAS ratio, R, that 

determines the point during t2 at which the anisotropic broadening will be 

refocused.  In addition, this value also determines the gradient along 


