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Developing a greater understanding of multiferroic materials, particularly those in which
a strong coupling is exhibited between magnetic and electrical orderings, is of great im-
portance if potential applications are to be realised. This thesis reports new experimental
findings on several multiferroics using the techniques of X-ray and neutron diffraction to-
gether with nonlinear optical experiments.

Spherical neutron polarimetry measurements on RbFe(MoO4)2 show how this system’s
chiral magnetic structure can be controlled by an external electric field. Consideration is
given to the axial distortion that the crystal structure makes, and the effect that this has
on the stabilised magnetic structures. A ferroaxial coupling is invoked to explain, from a
symmetry point of view, the spin driven multiferroicity in this proper screw system.

The charge ordering in YbFe2O4 is examined by a detailed imaging of reciprocal space
measured by elastic X-ray diffraction. Continuous helices of scattering are observed above
the three-dimensional ordering transition temperature, whereas the intensity is concentrated
onto separated maxima below this. The low temperature data are modelled using a simple
oxygen displacement pattern, generalised to an incommensurate structure. The observed
incommensurability implies that YbFe2O4 cannot be truly ferroelectric.

The low field magnetic structures of a Y-type hexaferrite Ba0.5Sr1.5Zn2Fe12O22 are ob-
served in a resonant soft X-ray diffraction study. In zero field the system is helimagnetic,
and with small applied fields peaks corresponding to a new phase appear. Energy calcula-
tions are used to suggest a suitable magnetic structure for the new phase and to show how
this relates to the known commensurate phases that are present in low fields.

Finally, an experimental setup designed to measure second harmonic generation from
non-centrosymmetric crystals is presented, along with static measurements on the multifer-
roic system MnWO4. An optical pump / second harmonic probe study is then undertaken,
with the result that a pump induced enhancement in the efficiency of the second harmonic
generation is observed.
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Chapter 1

Introduction

A large portion of research in condensed matter systems is focussed on understanding how

materials develop long range order in response to changes in external parameters such as

temperature, pressure, or electric and magnetic fields. Scientists have at their disposal a

wealth of different degrees of freedom within an extremely diverse range of materials: thus

these systems may exhibit ordering in the spatial arrangement of their constituent atoms

or ions, or in the arrangement of any magnetic or electric dipole moments belonging to

these constituents. Ordering may also appear in the arrangement of atomic orbitals or in

toroidal moments. In addition, more exotic degrees of freedom can be important, such as

the order leading to correlation in the behaviour of electrons within a superconductor, or

the correlation of atomic wavefunctions within a superfluid. In all cases, the orderings that

appear within these materials lead to certain symmetries being broken. Understanding

the symmetry of the ordered phase is vitally important as this knowledge places strong

restrictions on the physical properties that a material may exhibit.

The motivation for this research is driven, in large part, by the desire to find new ma-

terials whose orderings can be exploited in technologically useful applications. There are

obvious benefits, for example, in developing an understanding of superconductivity in ex-

isting systems that show this effect so that the knowledge can be applied in the search

for new systems with improved properties (for example, a higher transition temperature).

In a similar way, research into materials that exhibit magnetic ordering has extremely im-

portant applications in the development and improvement of future data storage devices.

Going beyond this, recent years have started to see the exploitation of materials which

exhibit multiple orderings, and of the interplay between these. This gives intriguing new

possibilities for novel applications, since the multiple orderings may work together to im-

prove significantly the properties of devices. An example would be the comparison between

existing computer hard disk technology, which relies on the generation of magnetic fields

requiring moderate currents in coils of a relatively large size to write the data in the form

1
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of a magnetic ordering on the surface, with a device in which the data could instead be

written by an electric field but still stored robustly in the system’s magnetism. The latter

has distinct advantages in that no large currents are required to write the data (improv-

ing energy efficiency) and that electric fields can be more easily localised than magnetic

fields which would allow an increase in the storage density. However, a material in which

this could work would not only require both electrical and magnetic orderings, but also a

significant coupling between the two such that the material would respond to changes in

the electrical ordering by adjusting its magnetic structure. It is candidate materials for

this type of application that are the subject of this thesis: I shall therefore, in essence, be

concerned with materials with multiple and coupled ordered regimes, an understanding of

which may help pave the way toward future applications.

It is fortunate that the symmetry breaking that accompanies the onset of an ordered

phase can be measured very sensitively by a number of well-developed experimental tech-

niques. All of the systems studied in the present work are crystals (i.e. certain symmetries

have already been broken in arranging the constituent atoms in a periodic way) and there-

fore diffraction techniques, which provide direct information on the periodicity of these

structures via their Fourier transforms, are highly suited to their study. Furthermore, peri-

odic superstructures that arise in addition to the crystal structure, such as orderings of any

magnetic spins or electric charges that may be present, also lend themselves very well to

being examined with diffraction methods. X-ray and neutron scattering are typically the

techniques of choice, since both provide detailed information about the crystal structure

and both probes may also interact with the arrangement of magnetic moments. However

the two interactions are fundamentally different in that neutrons are sensitive to the posi-

tions of the nuclei and the unpaired spins present in the solid, whereas X-rays are scattered

by the electron cloud surrounding the atoms. The energy of the X-rays can also be tuned

to coincide with atomic transitions, from which further information (for example, resulting

from charge or orbital ordering) can be gained in an experiment. Modern high intensity

sources such as the Diamond Light Source synchrotron and the Institut Laue–Langevin re-

search reactor, as well as continually advancing the available instrumentation with which to

collect data, have contributed greatly to the power of this technique. In addition, a further

method of determining the symmetry of a material exists in optical second harmonic gener-

ation. This is a laboratory-scale experiment that is often extremely sensitive to changes in

the point group symmetry of both crystallographic and magnetic orderings, and is therefore

able to complement diffraction measurements.

In the remainder of this chapter I shall discuss magnetic and electrical orderings (the

two ‘ferroic’ orders relevant for the experimental work I have undertaken), and explain how
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Figure 1.1: Schematic representation of a lattice of XY-spins, below and above the critical
temperature for a ferromagnetic transition, Tc.

these come together in so-called multiferroic materials. I shall then give an outline plan for

the remainder of the thesis.

1.1 ‘Ferroic’ materials

Ferroic materials exhibit phase transitions at some critical temperature Tc, below which

the order parameter becomes non-zero and long range order (up to the level of domains)

is present throughout the system, without the need to apply any external stimulus field.

In addition, all ferroics are coupled to the external field and this field can be used to

switch the long range order. In the example of the paramagnetic-ferromagnetic transition,

shown schematically in figure 1.1 with a two-dimensional lattice of XY-spins, the random

arrangement of spins in the paramagnetic phase is symmetry broken to the ferromagnetic

phase as it is cooled through Tc. A magnetic field could then be applied across the sample

to set the direction along which the spins align.

The system is said to have undergone spontaneous symmetry breaking because the rota-

tional invariance present in the paramagnetic phase is no longer present in the ferromagnetic

one, and a spontaneous magnetisation along the direction of the spins will result1. It is of-

ten energetically favourable for a system to form individually ordered domains rather than

exhibiting the same ordering throughout the whole crystal. In the case of a ferromagnet,

these domains will have magnetisations pointing in different directions in order to minimise

the energy associated with the dipolar field. Ferroic systems also tend to show hysteresis

effects; the behaviour of the system in response to an external field depends on the history

of the system.

1This magnetisation is non-zero only below the transition temperature and this quantity may therefore
be used to describe the transition as an order parameter, which is coupled to the external field.



4 Chapter 1. Introduction

Figure 1.2: Transformation of (a) magnetic dipoles, and (b) electric dipoles, under the
spatial inversion and time reversal operators.

Two symmetry operations are of central importance in discussing the ferroic properties

of materials: the spatial inversion operator, Î, and the time reversal operator, T̂ . As can

be seen in figure 1.2, the two operators act differently on magnetic and electric dipole mo-

ments. The direction of a magnetic moment, which arises from electronic angular momenta

(represented by the circulating black arrows in the figure) and is therefore an axial vector, is

unchanged by inversion but its direction is flipped by time reversal. Conversely, an electric

dipole moment is invariant under time reversal (the charges are static) but changes sign

upon spatial inversion: hence the electric dipole moment is a polar vector. The way in which

a vector behaves under Î in fact defines whether that vector is axial or polar: thus, any

vector which changes sign under Î is polar, and any vector whose sign remains unchanged

is axial.

The four principal types of ferroic ordering (ferromagnetism, ferroelectricity, ferroelastic-

ity, and ferrotoroidicity) can each be characterised by the operations that leave the ordering

invariant, as shown in figure 1.3.

1.1.1 Ferromagnetism

Ferromagnetism is the oldest known ferroic ordering, and indeed it is from the behaviour

of the ‘ferrous’ metal oxides showing this effect due to the iron moments that we generalise

to other ‘ferroicities’ (which often have nothing to do with iron). An example of a ficti-

tious ferromagnetic system was shown in figure 1.1 with the lattice of spins aligning along

a certain direction below Tc. Often these materials also show magnetostriction, a phe-

nomenon in which the physical size of a material changes slightly with the spin ordering.

(Anti)ferromagnetic properties appear because of significant exchange interactions between

nearby spins.
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Figure 1.3: The properties of the four principal ferroic orderings under time reversal and
spatial inversion (after [1]). c© IOP Publishing. Reproduced by permission of IOP Pub-
lishing. All rights reserved.

The exchange interaction is essentially quantum mechanical in nature, arising from the

fact that for identical particles the quantum mechnical wavefunction must either remain

the same (i.e. be symmetric) or gain a minus sign (be antisymmetric) if the particles are

exchanged. This is because, for identical particles, all physically observable phenomena

(which depend on the modulus of the wavefunction) must remain unchanged upon particle

exchange. Further, the spin statistics theorem states that identical fermions must behave

antisymmetrically under exchange (this is equivalent to stating that fermions must obey

the Pauli exclusion principle). Considering the simple picture of two electrons a and b at

positions r1 and r2, the wavefunction describing the system may, following [2], be written

in one of the following two forms:

ψS =
1√
2

[φa(r1)φb(r2) + φa(r2)φb(r1)]χS, or (1.1)

ψT =
1√
2

[φa(r1)φb(r2)− φa(r2)φb(r1)]χT, (1.2)

where the φ’s are spatial wavefunctions of the individual electrons, and χS,T are the nor-

malised spin parts (either singlet or triplet). In general there is a difference in energy

between these two states, and it is this difference that appears in the Hamiltonian, H.

Conventionally, J parametrises the difference in energies and is equal to the integral

ES − ET

2
= −Jab :=

∫
d3r1d

3r2 φ
∗
a(r1)φ

∗
b(r2)Hφa(r2)φb(r1). (1.3)

However, for practical purposes the quantity Sa ·Sb can be used to determine whether or not

the two electrons are in a triplet or singlet state2. Therefore the energy of the two-electron

2This is because S1 · S2 = 1
2

[
(S1 + S2)2 − S2

1 − S2
2

]
= 1

4
for a triplet state, or − 3

4
for a singlet state.
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system can be written in the form

E =
1

4
(ES + 3ET)− (ES − ET)Sa · Sb = ET or ES. (1.4)

This can be written as a constant plus a spin-dependent part, motivating the term in the

Hamiltonian Hexchange =
∑

ij JijSi · Sj . Note that the convention used here has Jij > 0

favouring an antiferromagnetic arrangement between the ith and jth spins, and Jij < 0

favouring a ferromagnetic one. To describe a transition from a paramagnetic to a ferro-

magnetic state it is necessary to consider a model in which only nearest neighbour J ’s are

non-zero; in more complex systems it is often necessary to take into account interactions

beyond the nearest neighbours and this can give rise to a variety of interesting magnetic

structures such as helimagnets.

In order for the above mechanism to work it is necessary for there to be spatial overlap

between the orbitals belonging to neighbouring magnetic ions. However, it is often the

case that strong exchange interactions are still present even when this overlap is missing,

and this can be explained by superexchange, in which the exchange interaction is mediated

by a non-magnetic ion (typically oxygen) that is positioned between the magnetic species.

For example, the electron spin occupying a transition metal d-orbital may overlap with

a neighbouring oxygen p-orbital, which in turn overlaps with the neighbouring transition

metal’s d-orbital. The degree of overlap depends on the metal-oxygen-metal bond angle

and therefore the crystal structure strongly influences the size (and sign) of the exchange

constants.

1.1.2 Ferroelectricity

There are various ways in which the electrical properties of certain systems may change

under an external stimulus. In piezoelectric materials, a mechanical stress applied to the

material will result in the onset of an electrical polarisation (and conversely application of a

polarising electric field will lead to a strain within the crystal). Pyroelectrics are materials

whose electrical polarisation changes with temperature. However, only in ferroelectrics is

there the onset of a spontaneous switchable polarisation below the critical temperature:

thus the direction of the electrical polarisation may be changed with an external electric

field in complete analogy to the ferromagnetic case. In fact, it is far from obvious how

one can define a unique electrical polarisation in a charge-neutral periodic structure at all

(this is discussed in greater depth in [3]). However, a change in polarisation as measured,

for example, when one reverses the direction of a polling field can easily be understood to

be uniquely valued and is the physically relevant quantity that one obtains in experiment.

Whilst ferromagnetism has been around for centuries, ferroelectric behaviour is a more
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recent discovery [4] and there are various mechanisms that can give rise to the effect [5],

discussed below.

In proper ferroelectrics, the spontaneous polarisation occurs as a direct consequence

of a structural transition that results in a lower energy (and polar) state. Well-known

examples of materials where this happens are BaTiO3 [6] where the energy is lowered due

to covalent bonding that occurs between the oxygen and the 3d0 titanium orbitals resulting

in a deformation, and also BiFeO3 [7] and BiMnO3 in which the 6s2 lone pairs on the Bi

become ordered below Tc [8].

Improper ferroelectrics, by contrast, are materials in which the ferroelectric polarisation

appears as a result of some other ordering. An example of this behaviour can be found in

mixed valence compounds such as RFe2O4 (the subject of chapter 4), where the different

iron species (Fe2+ and Fe3+) that are present in equal quantities to ensure charge neutrality

can order in various ways, some of which result in a net polarisation. A further example

is to be found in TbMnO3, in which it is energetically favourable for the lattice to distort

below the transition temperature in response to the magnetic structure [9]. As a side effect

of this transition electric dipole moments are set up between the ions. Since the crystal

symmetry is such that these do not cancel out, the material develops a macroscopic electrical

polarisation.

1.1.3 Ferroelasticity and ferrotoroidicity

Ferroelastics exhibit a spontaneous strain below the transition temperature. In one re-

cent example it was predicted that K0.6FeII0.6FeIII0.4F3, a compound forming a charge ordered

ground state, ought also to show a lattice strain as a result of distortions introduced by the

charge ordering and behave ferroelastically [10]. Just as an external electric field can be

used to change the polarisation of a ferroelectric in such a way as to show hysteresis, so an

external stress applied to a ferroelastic sample should show hysteresis in the strain.

Ferrotoroidic materials possess below Tc a toroidal moment, T: this is a vector associated

with a vortex of spins as shown in figure 1.3. Because of this, toroidal moments change

sign under both time reversal (flipping the direction of the spins) and spatial inversion

(changing the position of the spins)3. The associated fields that can be used to control the

toroidal moments are ‘source vectors’ [11], S = E×H, although other vectors fields (such

as a magnetic field gradient [12]) with the correct symmetry properties can also be used.

3Ferrotoroidic arrangements are therefore intrinsically magnetoelectric (see section 1.2). In a simple
picture, application of an external magnetic field H in the plane of the spin vortex will lead to an energy
difference between spins on either side of the vortex. The system may therefore respond by becoming
electrically polarised along this direction, leading to a polarisation that is orthogonal to both T and H.
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Ferrotoroidicity will not be of further concern in the present work (but is included here for

completeness); it is discussed further in [1, 13,14].

1.2 Multiferroics

Having introduced the two ferroic orderings associated with magnetism and electricity,

multiferroics4 are those materials that exhibit simultaneously both of these ferroic orderings

in the same phase. They may also exhibit a ‘magnetoelectric effect’, i.e. where an electric

polarisation can be induced by an applied magnetic field, or vice versa. Research into this

class of materials led to pioneering work in the 1950s-1960s (see, for example, [15, 16]) and

more recently these materials have once again become the subject of intense interest in

condensed matter physics [17]. In particular, the discovery in 2003 by Kimura et al. that

a relatively small ferroelectric polarisation in TbMnO3 could be switched by a magnetic

field [9] (see also [18]) sparked a great deal of interest in spin driven multiferroicity.

Multiferroics can be broadly divided into two classes based upon the nature of the

magnetic and ferroelectric transitions. In type-I multiferroics, the transitions occur inde-

pendently of one another and at separate critical temperatures. Whilst the ferroelectric

polarisations in such materials tend to be quite large and the transitions tend to occur at

relatively high temperatures (as is the case for BiFeO3), the disadvantage from the point

of view of practical applications is that this means the coupling between the two orderings

is weak. Therefore it is difficult to influence the behaviour of one ordering by changing

the other with some external field. Conversely, in type-II multiferroics it is the magnetic

ordering itself that breaks the inversion symmetry (a necessary condition for a ferroelectric

polarisation to develop). Thus the magnetism may be thought of as ‘inducing’ the ferro-

electricity, and as such there is a very strong coupling between the two that is of great

interest for potential applications. However, to date only materials with relatively low po-

larisations have been reported (although this looks set to change as new multiferroics, such

as CaMn7O12 [19], continue to be the focus of research), and the temperatures at which the

transitions occur are, in most cases, still rather low for practical applications.

Despite such promising technological ideas on the horizon, it is an unfortunate conse-

quence of the physics behind multiferroicity that means that new multiferroic materials

have so far proved relatively difficult to find. This is because, as explained in [5], the co-

valent bonding that is often the mechanism behind proper ferroelectricity requires empty

electron states in the transition metal d-shell which the oxygen electrons can occupy. This

is incompatible with magnetism on the transition metal ions as this requires the presence

4For the purposes of this thesis this is assumed to mean magnetoelectric multiferroics.
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of unpaired spins within these energy levels. However, as research into novel forms of de-

veloping electrical polarisations continues, hope is growing that practical applications of

this fascinating class of materials will soon be within reach. Indeed, multiferroics have re-

cently been used to demonstrate practical devices both in thin films (see [20] and references

therein, also [21,22]) and bulk crystals [23].

1.3 Plan of the thesis

The main focus of this work will be the three multiferroic systems RbFe(MoO4)2, YbFe2O4,

and a Y-type Ba-hexaferrite. The former is studied using polarised neutrons to examine

in detail the different magnetic structures that are present, and it is shown how these can

be controlled by an external electric field. This system is also used to develop ideas of

‘ferroaxiality’, a symmetry based argument that can allow a ferroelectric polarisation to

appear due to a proper screw magnetic structure. The latter two systems are studied using

X-ray diffraction. Detailed hard X-ray elastic scattering data collected on YbFe2O4 are

used to infer information concerning the precise nature of the charge ordering present in

this system by reciprocal space imaging. Following this, a model is developed to explain the

incommensurate charge ordering observed at low temperatures to which one is sensitive in

the diffraction experiment because of the effect it has on the oxygen positions. A soft X-ray

diffraction study carried out on the hexaferrite clarifies the complex phase diagram that

has been reported at low applied magnetic fields, and evidence for a new phase is presented

and a corresponding magnetic structure suggested. Finally, work on the development and

testing of a new nonlinear optics experimental setup is presented, along with both static

and time-resolved second harmonic generation data collected on the multiferroic MnWO4.

In chapter 2 the key techniques of neutron and X-ray diffraction, as well as the funda-

mentals of nonlinear optics, are discussed. Chapters 3, 4, 5, and 6 then present a detailed

introduction to each of the above materials, more experimental details relevant to each

particular chapter, as well as results, models, and conclusions that can be drawn from the

work.





Chapter 2

Experimental techniques

2.1 Introduction

All of the experimental techniques employed for the work presented in this thesis share a

common foundation, in that they all rely upon exploiting the precise nature of the interac-

tion between radiation and a condensed matter system to inform us about some structural

aspect of that system. The three techniques described in this section are X-ray diffraction,

neutron diffraction, and the nonlinear optical process of second harmonic generation. These

techniques are useful because they are sensitive to particular orderings that occur in the

systems in question as a result of symmetry breaking. All of the samples studied in this the-

sis are crystalline, so have already broken certain translational and rotational symmetries.

In addition, extra symmetry breaking may occur as superstructures (due to magnetism or

ionic displacements) develop.

This chapter will set out the fundamentals of these techniques, beginning with X-rays

and then neutrons. As these are both scattering techniques, the relevant quantity to cal-

culate for these two types of radiation is the cross section, which is proportional to the

scattered intensities and may therefore be directly compared to experimental data. Finally,

second harmonic generation will be discussed as a technique from which to learn extra infor-

mation about the point symmetries that may not always be readily available from diffraction

techniques. As well as explaining the theoretical basis for these techniques, this chapter

will also briefly discuss the various pieces of instrumentation used for the experiments.

2.2 The interaction of X-rays with condensed matter systems

X-rays are very useful for the study of crystalline materials because their wavelength is of

the order of typical interatomic spacings, and they therefore readily diffract from them. The

exact details of this diffraction, for example its dependence on the polarisation of the X-rays

11
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and the energy they have, can be used to learn a great deal about the system being studied.

In this section the interaction between X-rays and electrons is considered, at first in general

and then specialising to the case of crystals. Following this is a discussion of resonant

X-ray scattering, before the instrumentation used for the X-ray scattering experiments is

introduced.

2.2.1 Interaction of a collection of electrons with an electromagnetic field

As a starting point, consider the Hamiltonian for a system of electrons interacting with an

electromagnetic field. This may be written

H =
∑
j

1

2m

[
pj −

e

c
A(rj)

]2
+
∑
i>j

V (|rj − ri|)−
e~

2mc

∑
j

sj · [∇×A(rj)]

− e~
2m2c2

∑
j

sj ·
{

E(rj)×
[
pj −

e

c
A(rj)

]}
+Hrad. (2.1)

As pointed out in [24], the vector potential A(r) describing the radiation field is linear in

photon creation and annihilation operators [respectively denoted ĉ†λ(κ) and ĉλ(κ), where

κ is the wavevector of the photon and λ = σ, π describes its transverse polarisation state],

and takes the form

A(r) =
∑
κ,λ

√
2π~c2
V0ωκ

[
ελ(κ)ĉλ(κ)eiκ·r + ε∗λ(κ)ĉ†λ(κ)e−iκ·r

]
. (2.2)

Here, V0 is the quantisation volume, ωκ is the frequency of the photon with wavevector

κ, and the ελ(κ) are the corresponding polarisation (unit) vectors. Because the radiation

is polarised in a transverse direction (i.e. orthogonally to its direction of propagation), we

have κ · ελ(κ) = 0.

The result of this is that scattering (a process which requires a product of two photon

operators: annihilation together with creation) is only described in first order perturbation

theory by terms quadratic in A, or in second order perturbation theory by terms linear

in A. We restrict ourselves to considering terms up to second order in (v/c) (i.e. this

is a non-relativistic treatment). The first term in the Hamiltonian [equation (2.1)] is the

kinetic energy for the n electrons (j = 1, 2, . . . , n) where the canonical momentum p− e
cA

is appropriate for electrons within an electromagnetic field of vector potential A(r). The

second term represents the Coulomb interaction between pairs of electrons and is a function

of their separation, and the third term is due to the interaction of the electron’s spin, s,

with the magnetic field B = ∇ ×A. The fourth term describes the spin-orbit interaction

between the electron’s spin and the magnetic field set up due to the electron’s orbital
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motion in an electric field1. This term may be expanded, using E = −∇φ − Ȧ
c where φ is

the electrostatic potential (due to the electrons, as opposed to the radiation field) and A is

the vector potential associated with the radiation field, to give

HSO = − e~
2m2c2

∑
j

sj ·
[
− (∇φj × pj) +

( e
c2

Ȧj ×Aj

)
−
(

1

c
Ȧj × pj

)
+
(e
c
∇φ×Aj

)]
,

(2.3)

where φj ≡ φ(rj) and Aj ≡ A(rj). The final term in equation (2.1), Hrad, describes the

energy of the electromagnetic field itself.

Since the spin-orbit term is of order (v/c)2 already [24], for the present derivation I

shall ignore contributions to the scattering coming from the second order perturbations

from the spin-orbit term, as these will be of order (v/c)4. Thus only first order terms will

be considered, which, if we are to have scattering, requires terms in the Hamiltonian that

are quadratic in A. Therefore, neglecting the third and fourth terms in equation (2.3), the

total Hamiltonian may be written in the following form:

H = H0 +H1 +Hrad, (2.4)

where

H0 =
∑
j

1

2m
p2
j +

∑
i>j

V (|rj − ri|) +
e~

2m2c2

∑
j

sj · [∇φ(rj)× pj ] (2.5)

is the part that is unperturbed by the radiation field, and where

H1 =
∑
j

e2

2mc2
[A(rj)]

2 −
∑
j

e

2mc
[pj ·A(rj) + A(rj) · pj ]

− e~
2mc

∑
j

sj · [∇×A(rj)]−
e~

2m2c2

∑
j

sj ·
[ e
c2

Ȧ(rj)×A(rj)
]

(2.6)

is the perturbation due to the interaction between the radiation field and the electrons.

Note that the first and fourth terms in this perturbation are quadratic in A and therefore

correspond to scattering at first order in the perturbation, whereas the second and third

terms are linear in A, resulting in scattering at second order in the perturbation.

2.2.2 Transition probabilities

If the interaction energies are sufficiently small that they may be treated as a perturbation

to the unperturbed states, the Fermi Golden Rule may be used to calculate the probability

per unit time of interaction (transition), W . To first order in the perturbation, this rate is

simply given by

W (1) =
2π

~

∣∣∣〈f |H(per)|i〉
∣∣∣2 δ(Ei − Ef ), (2.7)

1An electron moving with velocity v in an electric field E results in a magnetic field B = −v×E
c2

= E×p
mc2

.
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whereas to second order in the perturbation, the appropriate formula is

W (2) =
2π

~

∣∣∣∣∣∑
n

〈f |H(per)|n〉〈n|H(per)|i〉
Ei − En

∣∣∣∣∣
2

δ(Ei − Ef ), (2.8)

with H(per) equal to the perturbing part of the Hamiltonian. These formulae give the

rates for a transition between an initial state |i〉 ≡ |a; k, ρ〉 (i.e. the state comprising the

collection of electrons described by |a〉 together with a single photon with wavevector k

and polarisation state ρ) and final state |f〉 ≡ |b; k′, ρ′〉 (i.e. the collection of electrons

described by |b〉 and a single photon with wavevector k′ and polarisation state ρ′). Note

that |a〉 and |b〉 are eigenstates of the unperturbed Hamiltonian H0, with energies Ea and Eb

respectively. The delta functions included in these formulae ensure that energy is conserved,

with Ei = Ea + ~ωk and Ef = Eb + ~ωk′ .

2.2.3 Non-resonant scattering

The scattering term arising from first order perturbation theory is given by the above

formula with

H(per) =
∑
j

e2

2mc2
[A(rj)]

2 − e~
2m2c2

∑
j

sj ·
[ e
c2

Ȧ(rj)×A(rj)
]
. (2.9)

Thus the matrix element appearing in W (1) is〈
b; k′, ρ′

∣∣∣∣∣∣
∑
j

e2

2mc2
[A(rj)]

2

∣∣∣∣∣∣ a; k, ρ

〉
−

〈
b; k′, ρ′

∣∣∣∣∣∣ e~
2m2c2

∑
j

sj ·
[ e
c2

Ȧ(rj)×A(rj)
]∣∣∣∣∣∣ a; k, ρ

〉
.

(2.10)

The first of these terms, as explained in the next section, gives rise to the basic Thomson

scattering from a collection of electrons. The second term is more complex and results in

a non-resonant contribution to the magnetic scattering from the set of magnetic moments

sj [25, 26]. For the work presented in this thesis the technique of non-resonant magnetic

scattering is not used and this term will not be considered further.

2.2.3.1 Thomson scattering

It is assumed that the radiation incident onto and diffracted from the sample is monochro-

matic, and therefore may be described by the single wavevector and polarisation states k, ρ

and k′, ρ′ respectively. Additionally, it is assumed that the scattering occurs only from the

electron charges in the sample, and not through interaction with their magnetism. The
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relevant matrix element to be evaluated is therefore

M =

〈
b; k′, ρ′

∣∣∣∣∣∣
∑
j

e2

2mc2

∑
κ,λ

√
2π~c2
V0ωκ

[
ελ(κ)ĉλ(κ)eiκ·r + ε∗λ(κ)ĉ†λ(κ)e−iκ·r

]
2∣∣∣∣∣∣ a; k, ρ

〉
.

(2.11)

Since, in the Born approximation, the incident and exit photon states may be described by

plane waves (∝ e−ik·r or ∝ e−ik′·r), and since we require (for a scattering process) creation

of the k′, ρ′ photon and annihilation of the k, ρ photon, the summation over κ leaves only

M =

〈
b

∣∣∣∣∣∣
∑
j

e2

2mc2

√2π~c2
V0ωk

ερ(k)ĉρ(k)e−ik·rj +

√
2π~c2
V0ωk′

ε∗ρ′(k
′)ĉρ′(k

′)eik
′·rj

2∣∣∣∣∣∣ a
〉
.

(2.12)

This can be further simplified by imposing the condition that, for a scattering process, only

terms containing one creation and one annihilation operator will be non-zero. Thus only

the cross terms survive when squaring the above, giving

M =

〈
b

∣∣∣∣∣∣
∑
j

e2

mc2
2π~c2

V0
√
ωkωk′

ei(k
′−k)·rjερ(k) · ε∗ρ′(k′)

∣∣∣∣∣∣ a
〉
. (2.13)

Let us now assume that the scattering process is elastic, such that |b〉 = |a〉 (i.e. the state

of the electrons is not changed by the interaction) and ωk = ωk′ ≡ ω. Then, using the

shorthand Q = k′ − k for the scattering vector,

M =
e2

mc2
2π~c2

V0ω

〈
a

∣∣∣∣∣∣
∑
j

eiQ·rj

∣∣∣∣∣∣ a
〉
ε · ε′, (2.14)

where ε = ερ(k) and ε′ = ε∗ρ′(k
′). The transition probability for Thomson scattering is

therefore

W (1) =
2π

~
e4

m2c4
4π2~2c4

V 2
0 ω

2

∣∣∣∣∣∣
∑
j

eiQ·rj

∣∣∣∣∣∣
2 ∣∣ε · ε′∣∣2 δ(Ei − Ef ) (2.15)

=
8π3e4~
V 2
0 ω

2m2

∣∣∣∣∣∣
∑
j

eiQ·rj

∣∣∣∣∣∣
2 ∣∣ε · ε′∣∣2 δ(Ei − Ef ). (2.16)

From the transition probability W , the cross section is defined by multiplying by the photon

density of states g = V0
8π3

ω2

~c3 and dividing by the incident flux I0 = c/V0, to give

(
d2σ

dΩdEf

)
Thomson

= r20

∣∣∣∣∣∣
∑
j

eiQ·rj

∣∣∣∣∣∣
2 ∣∣ε · ε′∣∣2 δ(Ei − Ef ), (2.17)

where r0 := e2/(mc2) is the Thomson scattering length.
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2.2.3.2 Bragg scattering

The formalism introduced in the previous section can now be extended to the case where

there are a number of different atoms, each associated with a distribution of electrons from

which the X-rays will scatter. The position of the jth electron, rj , can be written as a sum

of two terms: rl, the position vector of the associated atomic centre, and rm, the position

vector of the electron relative to this. Thus we may make the replacement∑
j

eiQ·rj −→
∑
l

∑
m

eiQ·(rl+rm), (2.18)

which gives the following cross section for scattering from electrons associated with a col-

lection of atoms:(
d2σ

dΩdEf

)
atoms

= r20

∣∣∣∣∣∑
l

eiQ·rl
∑
m

eiQ·rm

∣∣∣∣∣
2 ∣∣ε · ε′∣∣2 δ(Ei − Ef ), (2.19)

where the second summation is understood to run over all of the electrons making up the

atom [often this is replaced by an integral over a continuous charge distribution function,

ρ(r)]. For convenience this second summation is simply written as a function of the scat-

tering vector Q (this function will be specific to the type of atom or ion in question, so the

function carries a label l). This function is known as the form factor, fl(Q), and its values

are tabulated in [27]. Roughly speaking it is proportional to the atomic number, Z, of the

atom it describes. Thus the cross section may now be written(
d2σ

dΩdEf

)
atoms

= r20

∣∣∣∣∣∑
l

fl(Q)eiQ·rl

∣∣∣∣∣
2 ∣∣ε · ε′∣∣2 δ(Ei − Ef ), (2.20)

the summation running over all the atoms in the part of the sample exposed to the X-ray

beam.

For the study of solids one is very often interested in the scattering resulting from a

periodic array of atoms as found in a crystal. If this is the case then a further simplification

can be made that exploits the periodicity of the structure: the atomic positions may be

written rl = Rn + rp. In so doing we consider the crystal structure as being generated by a

basis of atoms convoluted with a set of lattice points at position vectors Rn. In each unit

cell, the atoms in the basis have position vectors rp relative to the lattice point belonging

to that unit cell. In a similar way to before, we may split the summation over l into a pair

of summations over n and p to express the cross section as:(
d2σ

dΩdEf

)
crystal

= r20

∣∣∣∣∣∑
n

eiQ·Rn

∣∣∣∣∣
2 ∣∣∣∣∣∑

p

fp(Q)eiQ·rp

∣∣∣∣∣
2 ∣∣ε · ε′∣∣2 δ(Ei − Ef ). (2.21)
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The phase factors eiQ·Rn , when summed over n, will tend to cancel out in general (this is

because the Rn describe points which are positioned equally apart in space). Therefore this

term always goes to zero unless

Q ·Rn = 2π × integer, (2.22)

in which case all of the phases are unity and add constructively. Hence the summation may

be recast as a delta function [28], giving

(
d2σ

dΩdEf

)
crystal

=
(2π)3

Vcell
Ncell δ

(3)(Q−G) r20

∣∣∣∣∣∣
∑
j

fj(Q)eiQ·rj

∣∣∣∣∣∣
2 ∣∣ε · ε′∣∣2 δ(Ei−Ef ), (2.23)

where there are Ncell unit cells, each of volume Vcell, contributing to the scattering, and

the sum runs over the j atoms in the basis. The vector G is used to denote those values

of Q satisfying equation (2.22). The collection of vectors G describe an array of points in

Fourier space (‘reciprocal space’) and are therefore said to make up the ‘reciprocal lattice’.

For a three-dimensional crystal whose real space lattice vectors are written as a linear

combination of three basis vectors as R = n1a + n2b + n3c with n1,2,3 ∈ Z, the reciprocal

lattice vectors can similarly be expanded in a reciprocal basis as G = ha∗ + kb∗ + lc∗ with

h, k, l ∈ Z. The basis vectors of the reciprocal lattice can be generated from those of the

direct lattice via the following relations:

a∗ =
2π

Vcell
(b× c), b∗ =

2π

Vcell
(c× a), c∗ =

2π

Vcell
(a× b), (2.24)

where Vcell = a · (b × c). Equation (2.23) shows that the cross section is only non-zero

when Q = G: thus one can measure a peak in scattered intensity if the scattering geometry

is positioned for the correct Q. This is known as a Bragg peak. For a perfect crystal the

delta function in equation (2.23) would suggest infinitely sharp Bragg peaks, but deviations

from a perfectly crystalline structure, together with finite correlation lengths in the beam,

deviations from a perfectly monochromatic beam, or finite crystal size mean that these

peaks are always broadened to some extent.

The factor |ε · ε′|2 appearing in the cross section is known as the polarisation factor.

The contribution this term makes depends on the source of X-rays used:

|ε · ε′|2 =


1, synchrotron: σ → σ scattering,
cos2(2θ), synchrotron: π → πscattering,
1
2(1 + cos2(2θ)), unpolarised source,

(2.25)

where 2θ is the scattering angle, and the linear polarisation directions are σ (perpendicular

to the scattering plane), or π (parallel to the scattering plane). These are depicted in figure

2.1.
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y

x

z

Figure 2.1: Geometry of Bragg scattering. The scattering plane, containing the three vectors
k, k′, and Q = k′ − k is shown shaded. The directions of the linear polarisation states εσ
and επ are shown for the incident and scattered beams. A Cartesian coordinate system of
basis vectors êx,y,z is also shown, and the scattering angle is 2θ.

2.2.4 Resonant scattering

Returning to the perturbation theory described above, the second order transition rate is

given in equation (2.8) as:

W (2) =
2π

~

∣∣∣∣∣∑
n

〈f |H(per)|n〉〈n|H(per)|i〉
Ei − En

∣∣∣∣∣
2

δ(Ei − Ef ) (2.26)

where the summation is over the set of all intermediate states |n〉 which are of energy En,

and

H(per) = −
∑
j

e

mc
A(rj) · pj −

e~
2mc

∑
j

sj · [∇×A(rj)] . (2.27)

The resonant process may therefore be thought of in terms of an electron absorbing an

incident photon and being promoted from the ground state |a〉 to an intermediate state |n〉
(which, by the Pauli exclusion principle, must be unoccupied). The electron then undergoes

the reverse, making a transition from |n〉 to |a〉 and emitting the scattered photon in the

process (see figure 2.2). The dominant transition in such a process is the electric dipole

(E1) transition [29], and this is all that will be considered here. For the case of iron, the

corresponding atomic transitions are from the core 2p states to the (empty) 3d valence

states. Most of the terms in the summation over intermediate states are suppressed by the

denominator in the transition rate, Ei − En. However, if the energy of the incident beam

is tuned such that this denominator tends to zero, a strong resonant enhancement of the

cross section will result.

Following Hill and McMorrow [30], it is possible to define a resonant magnetic form factor

which is of practical use in calculating the scattered intensities and polarisations. Only a
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Figure 2.2: Thomson vs. resonant scattering (after [28]). In (a), the electron radiates the
outgoing X-rays in response to the electric field felt by the incident beam, whereas in (b)
the incident energy is precisely tuned to the energy between two atomic levels, allowing
the electron to make a virtual transition to the higher level and radiate the outgoing X-ray
photon as it returns to the ground state.

brief outline is presented here (further details can be found in [30,31]) of some of the steps

in its derivation. The resonant contribution to the scattering depends on the precise nature

of the intermediate atomic states, which we expect to be affected by magnetic interactions

(thus resonant scattering is really an indirect probe of the magnetism, since fundamentally

it probes electronic states). These states are described by spherical harmonics YLM (ϑ, ϕ)

and the resonant form factor depends on these, and the beam polarisations, in the following

way:

fRES ∝
∑

M=−1,0,1

[
ε′ ·Y1M (k̂′) ε ·Y1M (k̂)

]
, (2.28)

where YLM(r̂) = YLMr̂ are the vector spherical harmonics. If a magnetic ion with moment

zj is present, these terms may be written in the following form [32]:

ε′ ·Y1±1(k̂
′) ε ·Y1±1(k̂) =

3π

16

[
ε′ · ε∓ i(ε′ × ε) · zj − (ε′ · zj)(ε · zj)

]
(2.29)

for M = ±1, and

ε′ ·Y10(k̂
′) ε ·Y10(k̂) =

3π

8

[
(ε′ · zj)(ε · zj)

]
(2.30)

for M = 0. Thus, the magnetic resonant scattering form factor for the jth magnetic ion

can be written

fj,RES = (ε′ · ε)F (0) − i(ε′ × ε) · zjF (1) + (ε′ · zj)(ε · zj)F (2), (2.31)

where F (0),(1),(2) are constants that depend on the atomic properties (and also the incident

X-ray wavelength). The first term in this expression does not depend on the magnetic

moment, and simply adds a contribution to the charge scattering (the polarisation factor

being the same as for the Bragg scattering case above). The second term depends linearly
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on the magnetic moment and gives rise to first order magnetic satellite peaks, whereas the

final term depends on the moment quadratically and results in second order satellites. Once

the magnetic form factor is calculated then the magnetic resonant scattering cross section

can be expressed in a form very similar to before:

(
d2σ

dΩdEf

)
Resonant magnetic

=

∣∣∣∣∣∣
∑
j

fj,RESe
iQ·rj

∣∣∣∣∣∣
2

δ(Ei − Ef ). (2.32)

The magnetic resonant scattering form factor can also be written in such a way as to

conveniently emphasise its polarisation dependence [30]. To do this, a matrix representation

is used containing the elements [
εσ → εσ εσ → επ
επ → εσ επ → επ

]
,

where the notation εσ → επ means the polarisation state of the incident photon is σ, and

that of the scattered photon is π, etc. (see figure 2.1 for the definitions of these polarisation

states). In this way, equation (2.31) may equivalently be written2

fj,RES = F (0)

[
1 0
0 cos 2θ

]
− iF (1)

[
0 zj1 cos θ − zj3 sin θ

−zj3 sin θ − zj1 cos θ zj2 sin 2θ

]
+ F (2)

[
z2j2 zj2(zj1 sin θ + zj3 cos θ)

−zj2(zj1 sin θ − zj3 cos θ) − cos2 θ(z2j1 tan2 θ + z2j3)

]
, (2.33)

where θ is half of the scattering angle, and the magnetic moment zj = (zj1, zj2, zj3) is

defined with respect to the Cartesian basis of figure 2.1. Since the second and third terms

allow the polarisation to be rotated in the scattering process (leading to off-diagonal terms

in the matrices), whereas the charge scattering does not, polarisation analysis is a useful

technique for separating out these two contributions. This is particularly true for the case

where the magnetic satellites overlap in reciprocal space with charge peaks, since without

polarisation analysis it is very difficult to distinguish these two contributions. If there is

no such overlap (for example in an incommensurate magnetic structure), then the satellites

originate solely from the magnetic terms in equation (2.31) (plus a very small contribution

from the non-resonant term).

Other contributions to the resonant scattering cross section, such as those arising from

electric quadrupole transitions, have been calculated (see, for example, [30]). However,

they will not be considered in the work presented here since the electric dipole terms are

dominant.

2This formalism uses the polarisation basis vectors εσ and επ. It is sometimes more convenient, however,
to work in the basis of circular left / right polarisation states, particularly since circularly polarised X-rays
are sensitive to both magnetic [33] and crystal [34] chirality.
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Optical camera
LN2 stream

Mo X-ray source

ATLAS CCD detector

Four circle goniometer




 2

Sample position

Figure 2.3: Photograph of the SuperNova diffractometer (inside the safety shielding) with
the key components labelled. The arrows indicate the positive direction of each circle of
rotation.

2.3 X-ray instrumentation

2.3.1 Laboratory sources

An Agilent Technologies ‘SuperNova’ X-ray diffractometer is employed to assess crystal

quality in advance of synchrotron experiments, and to determine the orientation of the

samples. It uses a high flux ‘Mova’ molybdenum 50 W X-ray source, whose beam size

is ≈ 300 µm in diameter (the beam is unpolarised). The sample is mounted onto a four

circle kappa geometry goniometer, which is optionally positioned within the gas stream of a

nitrogen or helium jet for cooling. A camera is mounted above the sample position to allow

accurate alignment of the sample into the beam. The ATLAS area detector consists of a

phosphorescent screen which generates light in response to the scattered X-rays. Behind

this screen a fibre optic taper transmits the light onto the active surface of a CCD chip.

The detector is capable of registering a 32 bit intensity at each of the 2048 × 2048 pixels,

but in order to keep the file sizes manageable the raw data is typically binned into 2 × 2

blocks and compressed. The detector is mounted on a moveable arm which allows it to

move away from the goniometer while the crystal orientation is changed (avoiding potential

collisions), but it can then move inwards to subtend a large solid angle to the sample while

collecting data. A photo of the diffractometer can be seen in figure 2.3.

In the conventional four circle design for a diffractometer, the angles φ, ω, and χ are

used to position the sample. As shown in figure 2.4, the χ circle is tilted at an angle ω + θ

to the primary beam direction, and around this χ circle moves the sample stage which itself

is capable of rotating by an angle φ about its axis. The detector is then set to make an

angle 2θ with respect to the straight through beam, and a further ‘virtual’ angle ψ is used

to refer to the degree of sample rotation about the scattering vector Q. Whilst such a setup

allows the sample to be positioned almost arbitrarily, it has the disadvantage that the large
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Figure 2.4: Conventional four circle diffractometer angles (all of which are shown in the
first quadrant), after [35]. c© International Union of Crystallography. Reproduced by
permission. All rights reserved.

χ circle will often intercept the X-ray beams. To overcome this problem, the χ circle can

be replaced with a κ rotation, inclined at an angle α ≈ 50◦ to the horizontal and attached

to the ω rotation (see figure 2.3).

To index a general reflection requires knowledge of the diffractometer angles and the

scattering vector Q = k′ − k. It is then possible to relate Q to the peak index (h, k, l) =

ha∗ + kb∗ + lc∗ by  |Q|0
0

 = ΩKΦUB

 h
k
l

 , (2.34)

where the (in general non-orthogonal) matrix B converts from the reciprocal basis vectors

{a∗,b∗, c∗} to a set of Cartesian axes rigidly attached to the crystal. The matrix U then

rotates the sample from this Cartesian set of axes onto an equivalent set rigidly attached

to the goniometer head (i.e. allowing for the fact that the crystal may be mounted with an

arbitrary orientation) [35]. The matrices Φ, K, and Ω then rotate about the φ, κ, and ω axes

such that the scattering vector now points along the x direction (parallel to the direction

of propagation of the straight through beam). The matrix UB is generally not known in

advance of the experiment, so the diffractometer software (CrysAlis Pro [36]) continually

processes the data during collection and uses a least squares technique to find the UB that

most accurately indexes the greatest number of reflections consistently. Alternatively, if the

sample is mounted in a specific orientation (for example at a central facilities experiment)

the UB matrix can be calculated from the position of two reflections and a knowledge of

the lattice parameters.

One particularly useful feature of the CrysAlis software is its ability to convert the

data from the raw images obtained on the CCD detector into reciprocal space intensity

maps (these reciprocal space images are used extensively in chapter 4). Essentially this

http://dx.doi.org/10.1107/S0365110X67000970
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works by indexing the entire set of pixels across all images in a data set [in fractional

(h, k, l) coordinates] and then mapping the intensities from appropriate pixels belonging to

a particular plane in reciprocal space [for example: the (h, k, 0) plane] into the new image.

2.3.2 The synchrotron source

The synchrotron X-ray experiments detailed in this thesis were carried out at the Diamond

Light Source, Harwell, UK (‘Diamond’). Synchrotron radiation has many advantages over

laboratory sources: in particular it is far more intense3, can be tuned to a specific en-

ergy, and the polarisation of the X-rays can be arbitrarily set. At a fundamental level,

a synchrotron light source works by accelerating a beam of charged particles (typically

electrons) up to relativistic speeds. The electrons are directed through a series of strong

magnetic fields, which due to the Lorentz force cause them to change their direction and

emit Bremsstrahlung radiation tangentially to their motion in the process. Typically this

radiation is in the X-ray part of the electromagnetic spectrum, although a very wide range

of photon energies (down to the infrared) can be produced.

At Diamond, electrons are generated by an electron gun: a heated metal cathode close

to a positively charged anode. They then pass along a linear accelerator (linac), reaching

an energy of 100 MeV. Following this they enter the booster synchrotron where a series of

straight sections of beam pipe (all held under ultra high vacuum) are connected via bending

magnets to form a loop. The electrons circulate, gaining energy as they repeatedly pass

through a radio frequency (RF) cavity, until they reach 3 GeV (the strength of the booster

synchrotron bending magnets is coupled to the electrons’ energy to ensure they remain on

the same path on each loop). Other magnets (quadrupoles and sextupoles) are used to focus

the beam and keep the electrons together in ‘bunches’. Once at 3 GeV the electrons are

released into the storage ring, in which they circulate for several hours at the same nominal

energy. Diamond operates in continuous top-up mode, meaning that every few minutes the

electron bunches in the storage ring that are most depleted are replenished, maintaining an

approximately constant storage ring beam current of ≈ 300 mA.

Situated between the bending magnets of the storage ring are straight sections, around

which arrays of magnets called insertion devices can be placed. These consist of alternating

north and south poles of permanent magnets, which force the electrons to follow a highly

oscillatory path emitting X-rays as they do so. These devices are therefore named ‘wigglers’

and ‘undulators’, and undulators (the relevant source of X-rays for the work presented in

this thesis) are discussed further in the next section. Useful radiation can also be obtained

3Typical fluxes are 9 × 108 photons s−1 mm−2 for the Mo ‘SuperNova’ laboratory source, and 1.7 ×
1014 photons s−1 mm−2 for hard X-rays generated on beamline I19 at the Diamond Light Source [37].
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Figure 2.5: The geometry of undulator radiation: the electrons follow the curved orange
path and radiate light tangentially. The light radiated at two positions one wavelength
apart is indicated by the blue arrows.

directly from the bending magnets, although it is not as intense as light produced by

insertion devices.

2.3.2.1 Undulator radiation

Undulator radiation differs from wiggler radiation in that it adds in a constructive way from

one period of the insertion device to the next. Therefore, whilst the radiation generated

by a wiggler may be viewed simply as that generated from a series of independent bending

magnets, the energy spectrum for an undulator is centred around a fundamental wavelength

and its harmonics, as is demonstrated in the following.

Let the spatial repeat distance of the undulator be λu, with associated wavevector

ku = 2π/λu, and consider an electron passing along part of the undulator as shown by the

orange path in figure 2.5. With an amplitude of oscillation A, the path may be written

y ≈ A sin(kux), although in reality the curves are circular since they are describing an

electron moving within a magnetic field of strength B directed perpendicular to the diagram.

Such electrons experience a Lorentz force F = −ev×B where v is the velocity of the electron.

The equation of motion for relativistic electrons is γma = evB where γ := (1− v2

c2
)−1/2 and

where a = v2/ρ is the acceleration for motion in a circle. Thus the radius of the circle is

given by

ρ =
γmc

eB
(2.35)

which scales inversely with the magnetic field B as expected.

By expanding the motion described by the sinusoidal path,

y ≈ A sin(kux) = A cos

[
ku

(
x− λu

4

)]
≈ A− Ak2u

2

(
x− λu

4

)2

, (2.36)
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we can compare this to the equation of a circle centred at x = λu/4, y = A− ρ:

(y −A+ ρ)2 +

(
x− λu

4

)2

= ρ2 ⇒ y ≈ A− 1

2

(
x− λu/4

ρ

)
, (2.37)

having assumed that y is small (i.e. the amplitude of oscillation is small). Therefore the

radius of curvature is given by

ρ ≈ 1

Ak2u
. (2.38)

The angle of maximum deviation of the electrons from the x-axis is equal to K/γ (this

is the definition of the parameter K which is used to characterise the undulator), which is

equal to Aku (this can be obtained by evaluating dy
dx at x = 0 for small angles of deviation).

Thus we may substitute into equation (2.35) to obtain a working equation for the parameter

K:

K =
eB

mcku
≈ 0.932 λu[cm] B[T]. (2.39)

Let the time taken (in the electron’s frame of reference) for the electron to travel one

complete spatial period of the undulator be T . Then, as shown in figure 2.5, one will obtain

constructive interference if

nλ1 = cT − λu cosϕ, n ∈ Z, (2.40)

where λ1 is the fundamental wavelength emitted by the undulator. We have T = S
v where

S is the length of the electron’s path over one spatial period, given by

S =

∫ λu

0
dx

[
1 +

(
dy

dx

)2
]1/2

(2.41)

≈
∫ λu

0
dx

[
1 +

1

2
A2k2u cos2(kux)

]
(2.42)

assuming the amplitude of oscillation is small. This can be evaluated to give

S = λu

(
1 +

1

4
A2k2u

)
= λu

(
1 +

K2

4γ2

)
, (2.43)

so that, from equation (2.40), the undulator will produce wavelengths given by

λn =
cλu
vn

(
1 +

K2

4γ2

)
− λu

n
cosϕ (2.44)

≈ λu
2γ2n

(
1 +

K2

2
+ γ2ϕ2

)
, (2.45)

assuming that the angle between the emitted radiation and the undulator axis, ϕ, is small.

Equation (2.45) is known as the ‘undulator equation’ and shows how the emitted wave-

lengths can be tuned by varying the parameter K (in practice this is achieved by changing
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the undulator gap, which varies the magnetic field B). Further considerations of the motion

of the electrons within the undulator limit the harmonics that may be generated to reach

an on-axis observer to odd values of n only. At Diamond, electrons in the storage ring have

γ ≈ 5870, so taking typical values of B = 0.5 T and λu = 1 cm, a fundamental X-ray

wavelength of 1.8 Å can be obtained from the undulator.

Whilst the above would suggest that there exist specific wavelengths at which there will

be constructive interference, in reality limitations on the number of undulator periods limit

the length of the X-ray pulse train, which in turn limits the frequency distribution of the

radiation. Thus, it can be shown that an undulator containing N magnet periods produces

radiation of bandwidth
∆λ

λn
∼ 1

nN
. (2.46)

Therefore monochromation of the beam is important, as well as the obvious need to remove

the unwanted harmonics produced by the undulator.

Finally, it is also possible to construct more complicated arrangements of the magnets

within an undulator, such that the electrons are forced to follow a helical path. Using

this technique one can produce intense beams of circularly polarised light, typically with a

polarisation exceeding 99%, of either handedness.

2.3.2.2 Beamline I19

Elastic X-ray diffraction experiments were undertaken on the hard X-ray beamline I19

at Diamond [37] to study samples of YbFe2O4 (see chapter 4). The undulator generates

linearly polarised X-rays of wavelength 0.6889 Å, which are passed through a double bounce

monochromator, slits, and focussing mirrors to bring the beam down to approximately

170× 85 µm at the sample position. A LN2 cryostream was used to cool the samples down

to 150 K, and additionally the samples could be heated up as far as 360 K. The samples were

mounted onto a microloop which was attached to a four circle diffractometer. A Rigaku

Saturn 724 CCD area detector was used to collect the X-ray reflections, and subsequent

analysis began by indexing the reflections as described for the SuperNova diffractometer

above in section 2.3.1.

2.3.2.3 Beamline I10

This beamline is optimised for soft X-ray diffraction experiments, as employed to study

hexaferrite samples (see chapter 5). The beamline’s undulators are capable of producing

X-rays with energy close to the iron resonance, which was used to carry out elastic resonant

X-ray scattering. The undulators are also optimised to produce both linear (horizontally or

vertically polarised) or circular (left handed or right handed) light, and it is straightforward
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Figure 2.6: Simplified diagram of the RASOR end station on beamline I10, showing the key
rotations / translations, polarisation analyser, and position of the electromagnet around
the sample.

to switch between any of these polarisations during an experiment by adjusting the phase

between the different rows of undulator magnets. A plane grating monochromator is used

and various focussing mirrors and slits are employed to shape the beam before it arrives at

the experimental station.

Unlike the case of hard X-rays as generated, for example, on beamline I19, soft X-rays

are strongly attenuated by air. Therefore the entire experiment is designed to take place

in ultra high vacuum, and to this end a purpose built diffractometer chamber, RASOR4,

is used to house the sample and the detectors (figure 2.6 and [38]). The RASOR end

station contains a Janis LHe cryostat which allows the sample to be cooled to 12 K. The

diffractometer operates mainly in a θ-2θ geometry, with an additional small χ rotation

(limited to ±4◦) which can be used to correct for misalignment in the sample mounting.

The detector arm also has the capability to analyse the polarisation of the scattered beam.

For the work presented in this thesis, this is carried out with an analyser multilayer whose d-

spacing is optimised for the Fe L2,3 edges, and a channeltron (electron multiplier) detector.

The detector and analyser crystal can be rotated about the η-axis to access different exit

polarisations (further details are given in section 5.3). The cryostat has the option of an

electromagnet fitting which allows a magnetic field to be applied across the sample. Both

the sample and chamber can be translated or rotated in various directions (as shown in the

figure) to align the instrument.

4Reflectivity and Advanced Scattering from Ordered Regimes.
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2.4 The interaction of neutrons with condensed matter systems

There are several properties of neutrons that make them a very well-suited probe for the

study of condensed matter systems. Neutrons travelling at slow (nonrelativistic) speeds have

a de Broglie wavelength λ = 2π~/(mv) which is equal to 1.5 Å (a typical interatomic dis-

tance in condensed matter) when v ≈ 2.64×103 ms−1, so they are ideal for use in diffraction

studies of crystals. In addition (although not used in the present work), neutrons’ energies

are on a scale suitable for probing collective excitations (such as phonons) in inelastic scat-

tering experiments. Importantly, the magnetic moment of the neutron µn = −1.913 . . . µN,

where µN is the nuclear magneton, allows it to interact with the magnetic moments of ions

making up a crystal, revealing detailed information about the magnetic structure. Finally,

the fact that the neutron carries no electric charge means it can penetrate deeply into mat-

ter. Diffraction studies with neutrons are often complementary to those with X-rays: in

particular, neutrons have traditionally been the probe of choice to study complex magnetic

structures, and this is still partly the case today although advances in X-ray science continue

to challenge this rôle.

Proceeding in a similar fashion to the scattering theory presented in section 2.2, the

starting point is the Hamiltonian for the sample / neutron system:

H = H0 +
p2

2m
+ V (r) (2.47)

where H0 is the (unperturbed) Hamiltonian of the sample, the kinetic energy of the neutron

is p2/(2m) and V (r) is the interaction energy between the sample and the neutron. The

eigenstates of H0 (i.e. the states describing the sample without the perturbation due to the

neutron) are written |Ψ〉. As with the case of X-ray scattering, in first order perturbation

theory the transition probability per unit time is given by

W (1) =
2π

~
|〈f |V (r)|i〉|2 δ(Ei − Ef ), (2.48)

where |i〉 = |ki, χi,Ψa(Ea)〉 describes the initial state of the system, in which the sample

is in state |Ψa〉 with energy Ea, and the neutron has wavevector ki and spin χi. Similarly

|f〉 = |kf , χf ,Ψb(Eb)〉. We have Ei = Ea + p2
i /(2m), Ef = Eb + p2

f/(2m), and the delta

function in equation (2.48) ensures that energy is conserved.

As for X-rays, the cross section is obtained by multiplying this transition probability

rate by the neutron density of states gkf ,χf (Ef ) [where Ef = p2
f/(2m)] and dividing by the

incident flux I0. The density of states in wavevector interval dkf and solid angle dΩ is given

by

g =
V0
8π3

k2fdkfdΩ =
V0
8π3

k2f
mdEf
~2kf

dΩ, (2.49)
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and the flux is I0 = v/V0 = ~ki/(V0m). Therefore(
dσ

dΩdEf

)
ki,χi,a→kf ,χf ,b

= V 2
0

( m

2π~2
)2 kf

ki
|〈kf , χf ,Ψb(Eb) |V (r)|ki, χi,Ψa(Ea)〉|2 δ(Ei−Ef ).

(2.50)

Since the state of the sample is not determined in an experiment, averaging over all of the

initial states a of the sample and summing over all final states b that are allowed gives(
dσ

dΩdEf

)
ki,χi→kf ,χf

=

V 2
0

( m

2π~2
)2 kf

ki

∑
a

P (|Ψa〉)
∑
b

|〈kf , χf ,Ψb(Eb) |V (r)|ki, χi,Ψa(Ea)〉|2 δ(Ei − Ef ),

(2.51)

where the function P (|Ψa〉) gives the probability of the initial sample state |Ψa〉 occurring.

This is the most general form of the neutron scattering cross section. In the following, two

special cases will be considered: firstly the case of elastic scattering from the nuclei in a

crystal, and secondly the case of elastic magnetic scattering of polarised neutrons.

2.4.1 Elastic neutron diffraction from nuclei

For nuclear scattering, the interaction potential between the neutron and nucleus is short

ranged and, following [39], may therefore be approximated by the Fermi pseudopotential

Vnuclear(r) =
2π~2

m

∑
j

bjδ
(3)(r− rj), (2.52)

where the summation runs over the j = 1, . . . , n nuclei in the part of the sample illuminated

by the neutron beam. In this expression, bj (which depends on the particular isotope) is

known as the scattering length and parametrises how strongly the neutron will interact with

the jth nucleus. If the scattering is elastic (kf = ki, and the scattering does not change the

sample state) and unpolarised (i.e. averaged over all spin states), equation (2.51) reduces

to (
dσ

dΩdEf

)
elastic,
nuclear

= V 2
0

( m

2π~2
)2
|M |2δ(Ei − Ef ) (2.53)

where the matrix element

M =
2π~2

mV0

∑
j

bj

∫
d3reik

′·rδ(3)(r− rj)e
−ik·r (2.54)

assuming that the incident and exit neutron beams can be described by plane waves (of the

form V
−1/2
0 e−ik·r) in the same way as the X-ray scattering treatment above, and neglecting
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the Debye Waller factor that would account for thermal motion of the nuclei. Therefore the

final cross section is given by

(
dσ

dΩdEf

)
elastic,
nuclear

=

∣∣∣∣∣∣
∑
j

bje
iQ·rj

∣∣∣∣∣∣
2

δ(Ei − Ef ). (2.55)

In analogy to the elastic X-ray scattering case, if the nuclei are arranged into a crystal

structure, this may be expressed as

(
dσ

dΩdEf

)
elastic,
coherent

=
(2π)3

Vcell
Ncellδ

(3)(Q−G)

∣∣∣∣∣∣
∑
j

bje
iQ·Rj

∣∣∣∣∣∣
2

δ(Ei − Ef ) (2.56)

where, as before, G is a reciprocal lattice vector. Note that this is the coherent contribution

to the scattering: there will also be an incoherent part which arises from differences in the

scattering lengths, for example due to different isotopes.

2.4.2 Magnetic diffraction of polarised neutrons

As well as interacting with atomic nuclei, neutrons are sensitive to magnetism in solids

arising from unpaired electrons carrying a net spin or orbital magnetic moment. This is

because the neutron itself possesses a magnetic moment µn = −γµNσ which will interact

with the electron’s magnetic moment µe = −2µBs, where γ = 1.9132 and µN = e~/(2mp),

µB = e~/(2me) are respectively the nuclear and Bohr magnetons, and σ is the Pauli spin

operator. The interaction potential due to this magnetism may be written as

Vmagnetic(r) = −µn ·B(r), (2.57)

where B(r) is the magnetic field set up by the ensemble of atoms and is given by5

B(r) =
µ0
4π

∑
j

{
∇×

[
µe,j ×

(r− rj)

|r− rj |3

]
− 2µB

~
pj ×

(r− rj)

|r− rj |3

}
, (2.58)

where rj , pj , and µe,j are respectively the position, momentum, and magnetic moment of

the unpaired electrons belonging to the jth atom. Thus, the magnetic interaction potential

is

Vmagnetic(r) = Vspin(r) + Vorbit(r), (2.59)

5The first of these terms (due to the electron’s spin moment) comes from the curl of the magnetic vector
potential A set up by a point dipole moment: A(r) = µ0

4π
µ×r
|r|3 ; the second (from the orbital moment) is from

the Biot-Savart law for a point charge, setting up a magnetic field B(r) = −µ0
4π
ev × r

|r|3 .
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where

Vspin(r) = −µ0
4π
µn ·

∑
j

∇×
[
µe,j ×

(
r− rj
|r− rj |3

)]
, (2.60)

Vorbit(r) =
µ0
4π
µn ·

∑
j

2µB
~

pj ×
(

r− rj
|r− rj |3

)
. (2.61)

The elastic scattering cross section depends on the matrix element, M , which is given by

M = 〈kf , χf |Vmagnetic(r)|ki, χi〉 = 〈χf |Vmagnetic(Q)|χi〉, (2.62)

where Vmagnetic(Q) is the Fourier transform of Vmagnetic(r), which may be shown6 to be

Vmagnetic(Q) = Vspin(Q) + Vorbit(Q), (2.63)

where

Vspin(Q) = −µ0µn ·
∑
j

eiQ·rjQ̂× (µe,j × Q̂), (2.64)

Vorbit(Q) = µ0µn ·
∑
j

eiQ·rj
2iµB
~|Q|

(pj × Q̂). (2.65)

For practical calculations, this may be written in an alternative form as

Vmagnetic(Q) = γµNµ0σ ·M⊥(Q), (2.66)

where M⊥(Q) is the magnetic interaction vector :

M⊥(Q) = 2µB
∑
j

eiQ·rj
[
Q̂× (sj × Q̂) +

i

~|Q|
(pj × Q̂)

]
(2.67)

= Q̂× [M(Q)× Q̂]. (2.68)

In this expression, M(Q) is the magnetic structure factor and is given by the Fourier trans-

form of the magnetisation distribution function7, M(r). Assuming spin-only scattering,

or both spin and orbital scattering within the dipole approximation, this is conventionally

written

M(Q) =
∑
j

fmag
j (Q)µje

iQ·rj , (2.69)

the summation running over the magnetic ions in the crystal (labelled by j). In this ex-

pression, fmag
j (Q) is known as the magnetic form factor and is the Fourier transform of the

6This can be seen by considering the following relations, worked out in [39]:

∇×
(
m× r

|r|3

)
= 1

2π2

∫
d3q [q̂× (m× q̂)]eiq·r, and

∫
d3r r

|r|3 e
iq·R = 4πi q

|q|2 .
7For the spin part of the potential it is immediately apparent from equation (2.67) that this is the case.

For the orbital part, the result i
~|Q|

∑
j e
iQ·rj (pj × Q̂) = − 1

2µB
Q̂× [Morbit(Q)× Q̂], where Morbit(Q) is the

Fourier transform of the orbital magnetisation density (again proved in [39]), is required.
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magnetisation distribution function due to the jth atom, and µj is the magnetic moment

associated with this atom. Thus, the cross section for elastic magnetic neutron scattering

is given by (
dσ

dΩdEf

)
elastic,
magnetic

=
( m

2π~2
)2
|M |2δ(Ei − Ef ), (2.70)

where the matrix element is

M = γµNµ0〈χf |σ ·M⊥(Q)|χi〉. (2.71)

The value of this matrix element will depend on the neutron spins (i.e. the polarisation

of the beam). After a brief digression to discuss chirality, its dependence on the neutron

polarisations will be evaluated.

2.4.3 The neutron as a chiral probe

The experimental work presented in this thesis relies in part on the neutron being sensitive

to the chiral properties of magnetic structures. By chirality, I take to mean (by definition)

the phenomenon exhibited by systems that exist in two distinct enantiomorphic states that

are interconnected by space inversion but not by time reversal symmetry combined with

any proper spatial rotation and translation [40,41].

A moving neutron is associated with a pair of vectors: a polar vector p describing its

linear momentum (inversion odd and time reversal odd), together with an axial vector s de-

scribing its spin angular momentum (inversion even and time reversal odd) [42]. Imagining

the simple picture of a neutron polarised along the direction of its linear momentum, as in

figure 2.7, it becomes obvious that the neutron itself can exist in two distinct enantiomor-

phic states and is therefore able to interact with chiral structures in a way that depends

explicitly on their chirality. For this to work, one must use polarised neutrons as the probe

of choice as a depolarised beam will not have a well-defined axial (spin) vector associated

with it.

2.4.4 The S-matrix

Let |χi〉 denote the initial neutron spin state. The spin state after the neutron has interacted

with the sample, |χf 〉, is related to the initial spin state by the S-matrix:

|χf 〉 = S|χi〉. (2.72)

Taking as the basis states |+〉 to denote polarisation along the êz direction and |−〉 to

denote polarisation along −êz, a general state may be expanded as |χi〉 = ai|+〉 + bi|−〉
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Figure 2.7: In (a) a neutron is shown polarised such that its spin vector s is parallel to its
linear momentum p. Under spatial inversion, the sign of p changes but that of s remains the
same. This state, depicted in (b), cannot be reached from the state in (a) by a combination
of time reversal [shown in (c)] and proper rotation, and is therefore a distinct ‘enantiomer’.

(and similarly |χf 〉 = af |+〉 + bf |−〉). In such a basis, the S-matrix may be expressed in

component form as (
af
bf

)
=

[
a11 a12
a21 a22

](
ai
bi

)
. (2.73)

This matrix, being Hermitian, may be decomposed (rather suggestively) into two parts as

follows: [
a11 a12
a21 a22

]
=

[
β 0
0 β

]
+

[
Az Ax − iAy

Ax + iAy −Az

]
, (2.74)

and in so doing the S-matrix may be written

S = βI + A · σ, (2.75)

where I is the identity matrix, σ = (σx,σy,σz) is the vector of Pauli spin matrices, A =

(Ax, Ay, Az) is a vector and β is a scalar.

2.4.5 The polarised neutron spin-flip cross sections

Physical meaning is now attached to the quantities β and A introduced in the previous

section. Since the S-matrix connects the initial spin state of the neutron to the final spin

state, it clearly needs to describe interactions between the neutron and the sample.

The first term on the right of equation (2.75) describes processes in which the neutron

spin couples to a scalar and its direction of polarisation is therefore unchanged. This is
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simply the nuclear scattering process derived in section 2.4.1, i.e.

βnuclear(Q) = N(Q) :=
∑
j

bje
iQ·Rj . (2.76)

The second term on the right of equation (2.75) involves a coupling between the spin of

the neutron (described by the Pauli spin matrices) and a vectorial quantity A which must

therefore be connected to magnetism within the sample. There are two contributions to A:

the first comes from the magnetic moments carried by the nuclei Ij and may be written

Anuclear(Q) =
∑
j

bjIje
iQ·Rj , (2.77)

whereas the second comes from the interaction between the magnetic moments of the elec-

trons and the neutron, and was derived in section 2.4.2:

Amagnetic(Q) = M⊥(Q) (2.78)

where M⊥(Q) is defined in equation (2.68). Usually the nuclear spins are disordered such

that the term described by Anuclear in equation (2.77) leads to incoherent scattering. It

will therefore be neglected from this point onwards. Applying these considerations, the

S-matrix for the scattering of a single neutron by an ensemble of atoms may be expressed

in the following form:

S =

[
N(Q) +M⊥z(Q) M⊥x(Q)− iM⊥y(Q)

M⊥x(Q) + iM⊥y(Q) N(Q)−M⊥z(Q)

]
. (2.79)

In the remainder of this section, this will be used to derive the combined nuclear and

magnetic scattering cross section, with neutron polarisation dependence.

The starting point is equation (2.51). Assuming the Born approximation (incident and

exit wavefunctions may be considered plane waves) together with elastic scattering (the

state of the sample is unchanged), the cross section becomes(
dσ

dΩdEf

)
=
( m

2π~2
)2
|M |2δ(Ei − Ef ), (2.80)

and the matrix element M may be written

M = 〈kf , χf |V (r)|ki, χi〉 = 〈χf |V (Q)|χi〉, (2.81)

where V (Q) is the Fourier transform of the interaction potential V (r). Since, by definition,

the action of this potential is to change the spin state of the neutron from |χi〉 to |χf 〉, we

have

|χf 〉 = V (Q)|χi〉, (2.82)
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or, expressed in the |±〉 basis, (
af
bf

)
= S

(
ai
bi

)
. (2.83)

Thus,

|M |2 =
(
a∗f b∗f

)
S

(
ai
bi

)(
a∗i b∗i

)
S†
(
af
bf

)
. (2.84)

Substituting in the S-matrix from equation (2.79), we may evaluate this quantity for the

four spin-flip processes |±〉 → |±〉. To do this, one chooses the ai,f and bi,f appropriately [for

example, a |+〉 → |−〉 process requires (ai, bi) = (1, 0) and (af , bf ) = (0, 1)] to obtain [43]:

|M |2+→+ = |N(Q) +M⊥z(Q)|2, (2.85)

|M |2+→− = |M⊥x(Q) + iM⊥y(Q)|2, (2.86)

|M |2−→+ = |M⊥x(Q)− iM⊥y(Q)|2, (2.87)

|M |2−→− = |N(Q)−M⊥z(Q)|2. (2.88)

2.4.6 Spherical neutron polarimetry

From the spin-flip cross sections derived in the previous section it is straightforward to

generalise to arbitrary polarisations. If the incident neutron beam is polarised perfectly

along the ±êz direction respectively, we have [dropping the ‘(Q)’ notation]:

|χf 〉 = (N ±M⊥z)|+〉+ (M⊥x ± iM⊥y)|−〉, (2.89)

|M |2±→all = |N ±M⊥z|2 + |M⊥x ± iM⊥y|2 (2.90)

= 〈χf |χf 〉. (2.91)

Now, for arbitrary incident polarisation P, chose êz parallel to the quantisation axis, i.e. êz ‖
P. Since the beam will not be perfectly polarised along this direction, we have in general

a fraction 1+P
2 of the incident neutrons in a spin state parallel to êz and a fraction 1−P

2 of

the incident neutrons in a spin state parallel to −êz. Therefore

|M |2P→all =

(
1 + P

2

)(
|N +M⊥z|2 + |M⊥x + iM⊥y|2

)
+

(
1− P

2

)(
|N −M⊥z|2 + |M⊥x − iM⊥y|2

)
, (2.92)

which, after simplification and considering similar equations for the cases of neutrons po-

larised parallel to êx and êy, results in

|M |2P→all = NN∗ + M⊥ ·M∗
⊥ + P · (NM∗

⊥ +N∗M⊥)− iP · (M⊥ ×M∗
⊥) = I. (2.93)

This formula can be used to determine the scattered intensity (to all polarisation channels)

for arbitrary incident polarisation direction P.
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In a spherical neutron polarimetry experiment, however, it is possible not only to set the

polarisation P of the incident beam but also to analyse the polarisation P′ of the scattered

beam. It is therefore necessary to calculate the expectation of the scattered polarisation:

P′ =
〈χf |σ|χf 〉
〈χf |χf 〉

=
〈χf |σ|χf 〉

I
. (2.94)

Calculating the three components of P′ separately for each of the three Pauli matrices then

gives

IP′ = P(NN∗)−P(M⊥ ·M∗
⊥) +NM∗

⊥ +N∗M⊥ + M⊥(P ·M∗
⊥) + M∗

⊥(P ·M)

+ iP× (NM∗
⊥ −N∗M⊥) + i(M⊥ ×M∗

⊥). (2.95)

Equations (2.93) and (2.95) can be used together to calculate the scattered intensity from

and into arbitrary polarisation states, based on knowledge of the nuclear and magnetic

structure factors. Conversely, if these polarimetry data are measured in experiment, then by

these equations (known as the ‘Blume-Maleev equations’ [44,45]) one may infer information

about the form(s) of the nuclear or magnetic structure factors: this is fundamental to

the work presented in chapter 3. As pointed out in [46] and [47], these equations contain

terms in pure nuclear scattering (∝ NN∗) that conserve the incident polarisation; ‘normal’

magnetic scattering (∝M⊥·M∗
⊥) which flips the polarisation except its component along the

magnetic interaction vector; nuclear-magnetic interference terms (mixing N and M⊥); and,

perhaps most importantly for the present work, ‘chiral’ magnetic scattering (∝M⊥ ×M⊥

which is only non-zero for chiral magnetic structures) which creates polarisation along the

direction of the scattering vector.

So far I have followed the derivation used by Blume and Maleev [44, 45], in which the

so-called ‘Blume convention’ is used for the direction of the scattering vector: Q(Blume) :=

ki−kf . This convention is opposite in sign to the ‘crystallography convention’ which is used

throughout the other parts of this thesis. Since, by equations (2.76) and (2.69), a change

in the sign of Q is equivalent to interchanging N ↔ N∗ and M⊥ ↔ M∗
⊥, the only effect

is to change the signs of the cross product terms. Thus, in the crystallography convention,

the appropriate equations are:

I = NN∗ + M⊥ ·M∗
⊥ + P · (NM∗

⊥ +N∗M⊥) + iP · (M⊥ ×M∗
⊥), (2.96)

and

IP′ = P(NN∗)−P(M⊥ ·M∗
⊥) +NM∗

⊥ +N∗M⊥ + M⊥(P ·M∗
⊥) + M∗

⊥(P ·M)

− iP× (NM∗
⊥ −N∗M⊥)− i(M⊥ ×M∗

⊥). (2.97)
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2.5 Neutron instrumentation

Neutrons for scientific research are produced either by spallation or from a research reactor.

A spallation source (such as the ISIS neutron source, Harwell, UK) generates a pulsed

neutron beam by firing proton bunches at a heavy metal target. The time structure of such

a beam means that neutrons can be separated easily by wavelength by measuring the time

of flight for the neutron to reach the detector. The work presented in chapter 3 of this

thesis, however, used a neutron beam originating from a research reactor, specifically the

Institut Laue–Langevin (ILL) in Grenoble, France.

2.5.1 Research reactors

Nuclear reactors generate neutrons by the nuclear fission of 235U, a process that releases

neutrons (although some of these are absorbed by further uranium nuclei to sustain the

reaction). A research reactor is designed to produce a very high neutron flux (in contrast

to a power reactor) that can be directed along wave guides to the experimental stations.

Before entering the wave guides, the neutrons are passed through a moderator. This slows

down the neutrons to speeds (and therefore wavelengths) that are suitable for studying

condensed matter systems. The ILL has several different moderators, whose temperatures

are chosen depending on the needs of the beamlines that view them. The ILL is currently

the most intense neutron source in the world, producing 1.5× 1015 neutrons s−1 cm−2, and

the beam is continuous in contrast to spallation sources.

2.5.2 Beamline D3

The D3 diffractometer at the ILL uses as a source the hot neutron (2000 ◦C) moderator H4.

The neutrons are monochromatised using diffraction from a polarising Heusler monochro-

mator. This works because, as shown by equations (2.85) and (2.88), the scattered intensity

from a magnetic crystal is given by

I± ∝ [N(Q)±M⊥z(Q)]2 , (2.98)

where the + (−) indicates scattering of spin-up (-down) neutrons respectively. The materials

from which polarising monochromators are made, such as the Heusler alloys, are chosen to

have the size of the nuclear scattering [parametrised by N(Q)] equal to the magnetic part

[parametrised by M⊥z(Q)]. In this way, equation (2.98) will give zero scattered intensity

for spin-down neutrons, but will be maximum for spin-up neutrons. In other words there

is constructive interference between the nuclear and magnetic scattering only when the

neutrons are spin-up; otherwise there is destructive interference and no scattered intensity.
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3

Figure 2.8: Schematic diagram of the CRYOPAD (Cryogenic Polarisation Analysis Device)
setup. Both the detector arm and sample stage can rotate about the central axis of the
device.

This results in a polarised beam of neutrons. The drawback of this technique is that one

compromises on the neutron flux, with a typical intensity of 107 neutrons cm−2 s−1 incident

on the sample.

The monochromatised beam then passes into the CRYOPAD (Cryogenic Polarisation

Analysis Device) in order to measure the polarimetry components: a schematic diagram of

the experimental arrangement is shown in figure 2.8. Central to the device’s operation are

the two thin superconducting niobium Meissner shields, which are transparent to neutrons

(and do not change their polarisation) but separate the space into three magnetically in-

dependent regions [48]. Firstly, the polarised incident beam passes through a nutator: a

device which uses magnetic fields to rotate the neutron spins adiabatically8 to an arbitrary

angle from the vertical (Z-axis). After passing through some slits, the neutrons enter the

region between the two Meissner shields, which contains precession coils whose fields make

the neutrons undergo Larmor precession about the horizontal axis. In CRYOPAD-III, the

incident and exit beam precession coils are completely decoupled [49]. By adjusting the

nutator and the precession coil current, the neutron polarisation can be set to be along the

X-, Y -, or Z-axes as required. The neutrons then enter the zero field region enclosed by

the inner Meissner shield and occupied by the ‘Orange’ cryostat and sample, and undergo

8i.e. the change of the magnetic field direction (as seen by the neutron) is slow compared to the neutron’s
Larmor frequency.
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diffraction. In this region the neutron spin direction does not change except for any inter-

action with the magnetism in the sample. Upon exiting the zero field region, the reverse

process occurs of adjusting the neutron spin in a known way, so as to align those neutrons

which are polarised in the direction of interest onto the axis of a 3He spin filter. Only those

neutrons polarised in the correct direction are permitted through the filter and contribute

to the intensity measured by the detector.

The spin filter relies on the fact that, for a 3He nucleus, the neutron absorption is very

strong if the spins of the neutron and the nucleus are antiparallel (σabs = 5931 barns at

1 Å wavelengths), whereas σabs ≈ 0 if the spins are aligned. Thus, by enclosing polarised

3He gas inside a cell that can in turn be placed inside a specially designed surround in front

of the detector with a magnetic field to maintain the polarisation (‘Decpol’, [50]), one has

a way of spin filtering the neutrons that pass through9. Because the 3He nuclei become

depolarised over time, it is necessary to replace the cell on the order of every 100 hours.

The detector used on D3 is a single 5 cm diameter 3He gas-filled detector: the incident

neutrons generate charged particles in the detector either by forcing the 3He nuclei to recoil

and ionise, or by undertaking a nuclear reaction. These charged particles are detected as

a peak in the voltage across the anode / cathode, proportional to the number of neutrons

being detected.

In an actual experiment, the quantities that are measured are polarimetry components,

which are related to the neutron intensities in given polarisation directions by

Pi→j :=
Ii→j − Ii→−j
Ii→j + Ii→−j

, (2.99)

where i, j = X,Y, Z. The measured polarimetry components must be corrected for the

polarising efficiency of the 3He cells which changes over time: this is done automatically by

the data acquisition software on D3. In addition the software also corrects the measurements

for background (for example, arising from the imperfect polarisation of the beam leaving

the monochromator), and when measuring a particular polarimetry component intelligently

divides the time between measurements of the two intensities according to their relative

sizes, in order to obtain the best statistics.

2.5.3 Orient Express

Orient Express is a neutron Laue diffractometer, also located at the ILL. It was used to

align the RbFe(MoO4)2 sample (the focus of chapter 3). This beamline illuminates the

9This works because the 3He nucleus (a spin-1/2 particle) can capture a neutron (also spin-1/2) to form
a spin-0 4He nucleus, but only if the two spin-1/2’s are antiparallel in order to conserve spin. The 3He gas is
polarised indirectly via 85Rb atoms, which are optically pumped into a specific hyperfine state. These spin
polarised atoms then transfer their polarisation to the 3He nuclei.
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sample with a ‘white’ neutron beam (i.e. one containing a broad continuum of different

wavelengths) and collects the diffraction pattern from the sample on a large area neutron

scintillator coupled to a CCD. The pattern of diffraction spots is directly related to the

orientation that the sample has, so this provides an efficient way of adjusting the sample

position until a desired orientation is obtained. Further information about the instrument

can be found in [51].

2.6 Second harmonic generation

The final experimental technique discussed in this chapter is that of optical second harmonic

generation (SHG). The following two sections introduce the theory of SHG explaining why

it is a useful probe of condensed matter systems, and present details of the laser source used

for the experiments.

2.6.1 SHG in determining point group symmetries

In linear optics, the electrical polarisation set up inside a material is proportional to the size

of the electric field, and these two time varying vector quantities are related by P = ε0χE

where χ is the susceptibility matrix. However, once one applies an oscillating electrical field

whose strength is of a similar order to that binding the electrons into an atom, nonlinear

(anharmonic) effects can also become important. In particular, one can imagine a situation

in which multiple photons are absorbed, promoting an electron temporarily from its ground

state to an excited state within the atom, before it returns to its ground state radiating

light as it does so. This process is shown schematically, for the case where two photons

are absorbed, in figure 2.9. Because such high strengths of field (of order 105 V cm−1) are

needed, the development of the laser was necessary before nonlinear optical effects could be

observed [52].

Each of the transitions made by the electron may be either of electric dipole (ED) or

magnetic dipole (MD) type10. Since the strongest of these is the ED transition, in the

following it will be assumed that the incident laser beam leads to atomic transitions that

are ED type, whereas the electron may radiate in either a single ED or MD transition. An

ED transition will lead to a nonlinear polarisation P = (Px, Py, Pz), which in its general

form has components given by11:

Pi ∝ χED,1
ij Ej + χED,2

ijk EjEk + χED,3
ijkl EjEkEl + . . . . (2.100)

10Higher orders will not be considered here.
11In this and the following, summation convention is used whereby repeated indices are assumed to be

summed over all their values {x, y, z}.
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Figure 2.9: Schematic of the SHG process at an atomic level.

Similarly, MD transitions lead to a nonlinear magnetisation M = (Mx,My,Mz) whose

components are given by

Mi ∝ χMD,1
ij Ej + χMD,2

ijk EjEk + χMD,3
ijkl EjEkEl + . . . . (2.101)

The higher order terms in this expansion correspond to nonlinear processes in which two

(or generally n) photons of frequency ω are absorbed by an electron in making a transition

to an excited atomic state within the material. The electron then returns to its ground

state, radiating a single photon of frequency 2ω (or nω).

In optical SHG experiments, elements of the second order susceptibility tensors χED
ijk and

χMD
ijk (dropping the ‘2’ labels) are measured by examining the polarisation dependence of the

second harmonic signal. The reason why one should want to measure these components is

because, in determining which components of the tensors are non-zero, one typically imposes

quite serious restrictions on the possible point symmetry of the material. Thus, SHG

is a convenient way to determine the point group (whether crystallographic or magnetic)

belonging to a particular system. Since SHG relies on atomic transitions within the material

being studied, it is to be expected that the efficiency of the process will vary dramatically

with the wavelength of the incident (fundamental) light. In particular, if the energy is tuned

to an atomic transition then a large resonant enhancement of the SHG will be expected.

The ED or MD radiative transitions that occur in an SHG process allow one to con-

struct a source term, S(2ω), from which the radiated intensity may be calculated: I(2ω) ∝
|S(2ω)|2. The source term is related to the nonlinear polarisation P(2ω) and nonlinear

magnetisation M(2ω) via [53]:

S(2ω) = µ0
∂P(2ω)

∂t2
+ µ0

[
∇× ∂M(2ω)

∂t

]
. (2.102)
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The free energy associated with the SHG is written

FSHG = −
[
χED
ijkE

∗
i (2ω)Ej(ω)Ek(ω) + χMD

ijk H
∗
i (2ω)Ej(ω)Ek(ω) + c.c.

]
. (2.103)

The free energy must be invariant under those symmetry operations that leave the sample

invariant, in particular those of time reversal and spatial inversion symmetries. This immedi-

ately imposes constraints on the allowed non-zero components of the nonlinear suceptibility

tensors. This is true in general: Neumann’s principle states that any symmetry element

exhibited by the point group of a crystal must also be obeyed by the tensor describing any

physical property of the crystal, whether that tensor describes magnetic phenomena [54] or

other properties such as mechanical strain [55].

If time reversal symmetry is present, for example in SHG due to symmetry breaking

by the crystallographic structure, then the susceptibility tensors must be time-reversal-

invariant (i-type). Non-time-reversal-invariant (c-type) tensors are allowed if, for example,

the SHG occurs as a result of symmetry breaking due to the magnetic ordering within a

crystal. Inversion symmetry places further restrictions on the symmetry of the tensors. In

particular, χED
ijk must be zero if inversion symmetry is present. In the first term of equation

(2.103), E∗i ,Ej , and Ek will all change sign under inversion, but by Neumann’s principle

χED
ijk cannot – it must therefore be zero if FSHG is to remain the same. However, χMD

ijk

is not subject to this restriction, and can sometimes lead to SHG when there is inversion

symmetry in the crystal. If time reversal combined with inversion is a symmetry operation of

the crystal then both ED and MD contributions to the SHG susceptibility must vanish. In a

similar way to this, one can consider the effect of any other point symmetries on the tensor

components, and use this information to determine which components should be non-zero.

Conversely, the existence of certain tensor components as measured experimentally can be

used to determine (or rule out) point symmetries.

Finally, this sensitivity to the point group symmetry may be used in time-resolved

optical experiments, where an optical ‘pump’ pulse perturbs the state of the sample some

time ∆t before the arrival of a ‘probe’ pulse, which is tuned to an energy at which SHG

occurs. By varying ∆t and observing the effect on the SHG, one is able to build up a picture

of how the pump affects the crystallographic and/or magnetic symmetries of the sample.

2.6.2 Laser light sources

The experiments presented in chapter 6 were all carried out using the 800 nm output from

a Ti:sapphire femtosecond laser system. This pulsed source has a repetition rate of 1 kHz

and pulse duration of ≈ 120 fs. SHG processes tend to be very wavelength dependent, and

it is therefore desirable to be able to adjust the wavelength of the light incident on the
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sample. This is achieved by means of an optical parametric amplifier (OPA). Such a system

combines a pump beam of frequency ωp with a weaker signal beam of frequency ωs in a

nonlinear medium.

Consider the expression for the second order polarisation [the second term on the right

of equation (2.100)], but for the case where photons of two different frequencies ωp and ωs

are present. The electric field will therefore contain two frequency components: E(t) =

Epe
−iωpt + Ese

−iωst + c.c. and if the electric field is oriented so as to excite a particular

tensor element χ(2) there will be a nonlinear polarisation given by

P (2)(t) ∝ E(t)E∗(t) (2.104)

= constant + E2
pe
−2iωp + E2

s e
−2iωs

+ 2EsEpe
−i(ωp+ωs)t + 2EpE

∗
s e
−i(ωp−ωs)t + c.c.. (2.105)

In addition to the standard frequency doubled terms, this also gives rise to sum frequency

and difference frequency terms, and will lead to extra beams being generated at these

frequencies. In an OPA, the difference frequency beam is known as an ‘idler’ with frequency

ωi, and energy conservation requires that

~ωp = ~ωs + ~ωi. (2.106)

The OPAs used here are two-stage TOPAS-C’s from Light Conversion, optimised for

the near infrared. Two stages of amplification are necessary to minimise deviations from

the phase matching condition required for efficient nonlinear processes. A small portion of

the incident 800 nm light is used to generate a white light continuum in a sapphire crystal

(this is due to a highly nonlinear process in which the pulse spectrum is broadened [56]).

The 800 nm light is then filtered out leaving only the broadened spectrum. In the first

amplification stage, this continuum is directed into a β-barium borate (BBO) crystal and

mixed with some of the 800 nm light. As the continuum is dispersed in time, only light

whose frequency is such that it arrives at the same instant as the 800 nm pulse is amplified

to produce the desired wavelength. A delay stage is used to adjust the relative arrival times

of the continuum and 800 nm pulses: in this way a specific wavelength can be generated

for the signal beam that is incident on the second amplification stage. Here, another BBO

crystal is used to mix the 800 nm pump and the signal beam. This leads to beams of

frequencies ωp, ωs, ωp+s and ωi all leaving the BBO in a collinear arrangement. A dichroic

mirror is then used to separate out the pump and sum frequency beams before the signal

and idler beams leave the OPA (these are separated further downstream with additional

dichroic mirrors). The OPAs are able to generate signal beams with wavelengths between

1180 and 1620 nm, and idler beams between 1620 and 2680 nm.
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For the work presented in this thesis, the signal beam from one OPA at 1220 nm was

used for the SHG, with the 800 nm output from the laser used in addition for time-resolved

experiments to pump the samples. Further details of the experimental setup beyond the

generation of laser light will be presented in chapter 6.



Chapter 3

Multiferroicity in ferroaxial RbFe(MoO4)2

3.1 Introduction

In ‘type-II’ multiferroics, ferroelectricity appears as a consequence of the magnetic ordering

which is responsible for breaking inversion symmetry within the crystal. Such materials are

of particular interest in applications, since they clearly have a strong coupling between the

magnetic and ferroelectric orderings. Of the type-II materials, the cycloidal multiferroics

(such as TbMnO3 [9], Ni3V2O8 [57], and MnWO4, the subject of chapter 6) have been

well-studied. In these systems the spins rotate within a plane that contains the propagation

direction of the incommensurate modulation. This allows a ferroelectric polarisation to

be induced by the ‘inverse Dzyaloshinskii-Moriya interaction’, and it has the form P ∝
r̂ij × (Si × Sj) where r̂ij is a polar vector connecting adjacent spins in the cycloid Si and

Sj [58, 59].

The range of candidate materials that may exhibit spin driven ferroelectricity extends

beyond the cycloidal multiferroics, however. An interesting line of research has developed

specifically on the magnetochiral or proper screw systems, in which the atomic spins rotate

perpendicularly to the propagation direction of the screw; the above mechanism predicts

zero polarisation in this case. One mechanism that can lead to an electrical polarisation

here is a coupling to the crystal structure if it has ‘axial’ symmetry. This is known as

‘ferroaxial coupling’ and invokes a coupling between the magnetic ordering and a rotational

distortion in the crystal structure to support a ferroelectric polarisation in the system.

These ideas are explored in depth in this chapter, using the relatively simple system of

RbFe(MoO4)2 (RFMO) as a test of the interplay between the different orderings (magnetic,

electric, and structural). The main experimental technique of this chapter, spherical neu-

tron polarimetry, is used to investigate how RFMO’s magnetic structure changes with the

direction of the ferroelectric polarisation in the material (controlled by an applied electric

field). RFMO is a particularly appropriate system upon which to test the ideas of ferroaxial

45
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Figure 3.1: (a) The crystal structure of RbFe(MoO4)2 [one unit cell is drawn]. (b) A view
of the crystal structure with c pointing out of the page, at a temperature above that of the
structural (axial) transition Tc. Below Tc there is a rotation of the MoO4 tetrahedra [shown
in (c)], associated with a non-zero axial vector A. The mirror planes that were present in
the parent phase are lost and consequently the symmetry is reduced from P 3̄m1 to P 3̄.

coupling, since a direct link can be made between the structural distortion and the strength

of the various magnetic exchange pathways. As a prelude to the experimental findings, I

consider the exchange interaction energies for different structural domains and use them to

determine which magnetic structures are favoured. The results of this work may be readily

generalised to other more complex ferroaxial multiferroics, for example Cu2Nb2O8 [60] and

CaMn7O12 [19].

3.2 The structural transition in RbFe(MoO4)2

3.2.1 Axial distortions in RbFe(MoO4)2

The crystal structure of RFMO is shown in figure 3.1(a). It consists of a single magnetic

Fe ion per unit cell, in between which are located MoO4 tetrahedra (two per unit cell). Rb

ions, which take no part in any structural changes and do not contribute to the magnetism

of the sample, are positioned between the two tetrahedra.

Below Tc = 190 K, RFMO undergoes a structural transition in which the MoO4 tetra-

hedra rotate about an axis n̂ ‖ c, lowering the symmetry from P 3̄m1 to P 3̄ [61,62]. This is

shown in figures 3.1(b) for T > Tc, and 3.1(c) for T < Tc. These structural rotations may

be parametrised by an axial vector, A. Such a vector is appropriate because its direction

is not changed by spatial inversion (in contrast to polar vectors: see chapter 1). Figure 3.2

shows why this is the case and compares it to the familiar example of the orbital angular

momentum of a rotating sphere in classical mechanics. (Note, however, that angular mo-

mentum is time reversal odd, whereas time reversal has no effect on the axiality exhibited

by the RFMO crystal structure since this is a ‘static’ rotation.) Since we would like to
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Figure 3.2: The orbital angular momentum of a rotating sphere is described by an axial
vector L whose sign is not changed by inversion (left). Similarly, one can define an axial
vector A resulting from a crystallographic distortion (shown schematically right). In the
case of RFMO, the distortion moves the oxygen ions around the central Fe ion from the
pink to the red positions, but inversion symmetry is retained.

connect the direction of A to the sense of the structural rotation, it is convenient to employ

a ‘right-hand rule’ (in complete analogy to the angular momentum L) in which the axial

vector A points along + (−) c for anticlockwise (clockwise) rotation respectively. This

definition will be made more rigorous in section 3.5.1.

The two senses in which the oxygen ions may rotate are entirely equivalent from an

energetics point of view, so we expect a real crystal of RFMO to consist of roughly equal

populations of two ‘axial’ domains: one in which the rotation is clockwise, and the other

in which it is anticlockwise. The associated axial vectors are therefore of the form A =

(0, 0,±Az). The existence of these two axial domains will be important in explaining the

neutron scattering results that follow in this chapter.

3.2.2 Ferroaxiality

The fact that RFMO has this axial distortion may be used to better understand why, from

a symmetry point of view, materials like RFMO are multiferroic. In general terms (without

any specific material in mind), assume that the onset of a magnetic structure below some

temperature TN breaks inversion symmetry and can therefore be associated with a chirality

σ, a scalar quantity. If the point group of the crystal structure allows the existence of an

axial vector A (for example, symmetry elements such as mirror planes which lie along the

direction of A are not allowed since this would require A = 0) in the parent phase above

TN, then this axial vector may couple to the chirality below TN to give rise to a polar vector

P of the form

P ∝ σA. (3.1)

Note that this transforms correctly as a polar vector (i.e. is odd under spatial inversion,

and even under time reversal1). Thus a ferroelectric polarisation would, by symmetry, be

1Time reversal has no effect on the magnetic chiralities (either helical or triangular – see section 3.3) that
are relevant to this work.
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allowed below TN. The associated term in the free energy would have the following trilinear

form:

Fax = cσA ·P, (3.2)

where c is a coupling constant (note that Fax is one of the allowed terms which sum together

to give the total free energy F ). It is clear that should an external electric field E be applied

to the sample and used to change the direction of P, the system could respond by changing

the sign of the magnetic structure (parametrised by σ) in order to keep the free energy at

a minimum. Thus this may provide a route towards the coupling required for an electric

field to stimulate a change in the magnetic structure.

Point groups in which the above scenario can occur, called here ‘ferroaxial point groups’,

require:

1. that the parent phase does not allow the existence of ferroelectricity by symmetry (so

that the onset of ferroelectric polarisation occurs due to the symmetry breaking of

the magnetic structure and not some other effect); and

2. that the point group symmetry elements allow for the existence of a non-zero axial

vector in at least one direction.

There are seven such ferroaxial groups: 1̄, 2/m, 3̄, 4̄, 6̄, 4/m, and 6/m. All of these, with

the exception of 1̄, define a unique direction in which the axial vector must point. In the

case of RFMO (which has 3̄ ferroaxial symmetry), this is along the c direction as shown

previously.

3.3 Magnetic ordering

The Fe3+ ions (S = 5/2) [63] are responsible for the magnetic properties of RFMO. There

is one magnetic ion per unit cell, located at the origin. The system is known to exhibit

a strong anisotropy, keeping the spins fixed within the ab plane [64]. Hence the magnetic

moments in RFMO, which are arranged on a stacking of triangular lattices, are frustrated

since the nearest neighbour in-plane interactions are all antiferromagnetic. The lowest

energy configuration of the spins is therefore the 120◦ structure, in which the spins in any

given ab plane are all positioned 120◦ apart2. Thus, the magnetic structure of RFMO below

TN ≈ 4 K [61] essentially consists of a 120◦ structure in-plane, with the spins in adjacent

2In order to determine the lowest energy configuration of a triangle of spins Si (i = 1, 2, 3) one should
minimise the exchange energy E = JS2(cos θ12 +cos θ23 +cos θ31) where θij is the angle between the ith and
jth spins, J is the exchange constant (taken here to be positive since the interactions are antiferromagnetic),
and S is the magnitude of the spin. Since θ31 = 360◦ − θ12 − θ23, we should minimise the quantity
E/(JS2) = cos θ12 + cos θ23 + cos θ12 cos θ23 − sin θ12 sin θ23. Doing this separately with respect to both
θ12 and θ23 leads immediately to θ12 = θ23 = θ31 = 120◦.
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Figure 3.3: Sketch of the four different magnetic structures that exist in RbFe(MoO4)2 (four
unit cells are shown for each). Each structure can be associated with both a helical chirality
σh and a triangular chirality σt.

planes undergoing a global rotation by some angle determined by the out-of-plane exchange

constants. The magnetic propagation vectors are of the form q = (q1, q1, q2), where

q1 = ±1/3, q2 ≈ ±0.44, (3.3)

and satellite peaks corresponding to these values were observed in our neutron diffraction

data. The structure is incommensurately modulated along the c direction, and since q2 is

close to 1/2 the spins are close to anti-aligned on adjacent layers.

As shown in figure 3.3, such an arrangement of spins leads to four ways of propagating

a long range structure through the crystal [each can be thought of as corresponding to the

different signs of q1 and q2 in equations (3.3); see also section 3.6]. These structures can be

described by (i) a helical chirality σh, which determines the sense in which adjacent spins

rotate as one moves along the c direction, and (ii) a triangular chirality σt which determines

the in-plane arrangement of spins. These quantities are rigorously defined in section 3.5.1.

As one would expect, the magnetic structure changes significantly under the influence

of an applied magnetic field [64] as it becomes favourable for the structure to develop a

ferromagnetic component along the direction of the field. The work presented here, however,

is restricted to the case where a zero magnetic field is applied to the sample (indeed, this

is a requirement if the technique employed in the CRYOPAD apparatus is to work: see

section 2.5.2).

3.4 Ferroelectricity

RFMO was recently reported to exhibit a small ferroelectric polarisation below TN [65].

Such a polarisation was successfully measured on the present samples by integrating the
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Figure 3.4: Experimental arrangements for (a) field cooling, and (b) measuring pyroelectric
currents. Bold lines indicate data / control flow; fine lines indicate wires making up electrical
circuits. HV: high voltage; DMM: digital multimeter.

pyroelectric current. This technique, which works by measuring the change in surface

charges on the sample surface as a function of temperature, is described in more detail

below.

3.4.1 Experimental arrangement

The experimental arrangement is depicted schematically in figure 3.4. A control computer

communicates with an Oxford Instruments ITC503S temperature controller which is re-

sponsible for setting and reading the temperature at the sample position in a cryostat. The

sample has silver paint contacts painted onto either side, and these are connected via a

pair of wires to a feedthrough from the cryostat insert. For field cooling the sample, the

arrangement in figure 3.4(a) is used: a Keithly high voltage (HV) power supply is connected

across the sample with one contact connected to earth. The HV supply can be removed

and an earthing loop connected once field cooling is complete, removing any initial surface

charges that are present.

To measure the pyroelectric current, a sub-fA current to voltage amplifier is connected

across the sample (using a short connector to minimise noise). This outputs a voltage

which is read by a Keithley digital multimeter, the output of which is logged by the control

software, along with the temperature and the time (measured by the computer’s internal

clock) since the start of the measurement.

3.4.2 Integrating the pyroelectric current measurements

Acquiring the ferroelectric polarisation P (t) as a function of time relies on being able to

integrate a measured pyroelectric current at time t, I(t). This is given, for a sample of area
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A, by

I(t) = A
dP (t)

dt
(3.4)

such that

P (t) =
1

A

∫ t

tfinal

dt′I(t′). (3.5)

In order to obtain P as a function of the temperature T it is necessary to measure the

temperature, as well as the time, for each data point. Thus, to be able to use this technique,

one must record for the nth data point the values of (In, tn, Tn), n = 1, . . . , N . We may

then compute the integral in equation (3.5) numerically to give a set of (Pm, T
(mid.)
m ) values

(where m = 1, . . . , N − 1) comprising

Pm =
1

A

N−1∑
n=m

(In + In+1)

2
(tn+1 − tn), (3.6)

T (mid.)
m =

Tm+1 + Tm
2

, (3.7)

where the trapezium rule has been used to approximate the area under the P (t) curve, and

T
(mid.)
m is the average (midpoint) of the temperatures corresponding to those in the data

points at either side of the mth trapezium.

3.4.3 Results

The pyroelectric currents were measured as described above, following cooling in an applied

electric field of ±7 kV cm−1 (i.e. an applied voltage along the c direction of ±175 V with

respect to the side of the sample that was earthed, across a sample of thickness 250 µm).

Initially the sample was field cooled from a temperature of ≈ 10 K through TN down to

base temperature. The high voltage supply was removed and the contacts shorted out,

and the sample was left (with shorted contacts) at base temperature for 5 minutes. The

shorting cable was removed and the current amplifier (outputting a voltage proportional

to the measured current with a factor of 1012 gain) was connected across the sample. The

voltage from the amplifier was measured, along with the sample temperature and time,

as the sample was warmed through the ferroelectric transition. This process was carried

out for both positive and negative field coolings, and the integrated pyroelectric currents

(i.e. the ferroelectric polarisations) are plotted in figure 3.5(a).

Following this, another sample from the same batch was measured, this time waiting for

25 minutes at base temperature with maximum pumping on the liquid-He. This allowed the

sample to cool to a lower temperature than previously, and the pyroelectric currents from

≈ 2 K were measured: these are plotted in figure 3.5(b). This sample was subsequently

used for the neutron scattering experiment presented later in this chapter. Note that the
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Figure 3.5: Ferroelectric polarisation measurements, obtained by integrating the pyroelec-
tric currents, on RbFe(MoO4)2. (a) Behaviour in the proximity of the transition in both
positive and negative electric field coolings. (b) Data from the neutron scattering sample
(taken with positive field cooling), in which the sample was cooled to lower temperatures.
The polarisation does not appear to saturate within the obtainable temperature range.

polarisation does not appear to saturate within the range of temperatures studied here.

This is consistent with the data presented in [65] on the same system, although our samples

show a higher value of the polarisation compared to these data.

3.5 Energy calculations

In this section I examine the symmetric exchange energies present in RFMO in each of the

axial domains, and establish the rôle played by the axiality in separating different magnetic

states in energy. I also use symmetry constraints to determine which terms are allowed to

appear in the free energy, and explain the ferroaxial coupling in more detail.

3.5.1 Definitions

It is necessary to provide rigorous definitions of the following key parameters:

Axiality, A

The vector A is an axial vector associated with the structural distortion. It is defined

relative to a fixed external vector vext, which is a reference vector pointing along the c

direction that is rigidly attached to the sample. A is defined as positive (A+) if the sense of

the rotational distortion is anticlockwise with respect to vext (i.e. with one’s thumb pointing

along vext the rotation of the tetrahedra is described by the direction of the fingers on one’s
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Figure 3.6: Examples of positive and negative staggered triangular chirality. As one cir-
cumscribes each triangle in the sense indicated by the outer black circular arrow, the spins
rotate in either the same (α = 1, red circular arrow) or opposite (α = −1, blue circular
arrow) sense.

right hand); or negative (A−) in the opposite case (left-handed). Note that this definition

reverses under vext → −vext.

Helical chirality, σh

The standard definition of helical chirality is adopted, namely

σh =
(S1 × S2) · r12
|(S1 × S2) · r12|

, (3.8)

where S1 and S2 are axial vectors describing the spins at two sites linked by the polar vector

r12. This definition is independent of the direction of vext.

Triangular chirality, σt

The triangular chirality is defined as

σt = α
v · vext

|v · vext|
, (3.9)

where α is the staggered triangular chirality (figure 3.6) and v is a vector that points along

the direction of the nearest MoO4 tetrahedron to the triangle in question [see figure 3.7(b)].

In the convention used here α is equal to +1 if, as one circumscribes the triangle in a certain

sense, the spins rotate in the same sense; or −1 if the spins rotate in the opposite sense.

Since α changes sign from one triangle to the next [figure 3.7(a)], obtaining a uniquely

valued macroscopic quantity over the whole crystal requires the coupling to v [figure 3.7(b)]

which, like α, also alternates sign in adjacent triangles. This definition of σt, while slightly

more cumbersome than similar definitions in materials with only one triangle per unit cell3,

is necessary because of the presence of both ‘up’ and ‘down’ triangles which are joined

3See, for example, the triangular chirality discussed in [66] exhibited by the langasite compound
Ba3NbFe3Si2O14.
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ext

Figure 3.7: (a) A triangular lattice with 120◦ spin structure exhibits both positive and
negative staggered triangular chirality α, depending upon whether the triangle in question
is pointing ‘up’ or ‘down’ the page as depicted here. (b) Invoking a coupling to the vector
v = ±êz allows one to construct a macroscopic triangular chirality.

together to form the lattice. Due to the definition in equation (3.9), σt changes sign under

vext → −vext.

An alternative definition of triangular chirality is given by the expression

σt =
2

3
√

3 S2
(S1 × S2 + S2 × S3 + S3 × S1) · v, (3.10)

where the prefactor ensures that |σt| = 1 and the sense of rotation of the spins is determined

by the cross products.

Polarisation, P

Since P = (0, 0, Pz), this is simply defined as positive if Pz is along +vext, or negative if Pz

is along −vext. It therefore changes sign under vext → −vext.

3.5.2 Symmetric exchange energies

In this part I consider the energies associated with the various symmetric exchange inter-

actions in RFMO. The relevant super-super-exchange paths mediated by the oxygen ions

are shown in figure 3.8 and described in detail below.

• J1 is the in-plane nearest neighbour exchange path. This will be mediated by two

routes, via the pairs of oxygens above and below the plane. Since the tetrahedra on

both routes rotate in the same direction during the axial distortion, the overall effect

is for this exchange path to remain unchanged below Tc = 190 K.

• J2 is the nearest neighbour out-of-plane exchange path. It is mediated by the oxygens

as shown in figure 3.8 (dashed line) and, as with J1, will remain unchanged during

the distortion. This is because the rotation of the lower tetrahedra increases the first
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Figure 3.8: The exchange paths in RbFe(MoO4)2. (a) Three-dimensional view showing in-
plane (J1) and vertical (J2) pathways, as well as the two diagonal paths (Ja and Jb) which
depend on the ferroaxial distortion. (b) The effect of applying the threefold symmetry
on the interactions. (c) to (e) The difference between Ja and Jb paths arising from the
axial distortion. In the high temperature phase (c) the two paths are equal, but in the low
temperature P 3̄ phase (d) they become distinct.

Fe(z = 0)–O distance, but the rotation of the upper one shortens the O–Fe(z = 1)

distance by a corresponding amount.

• Ja and Jb: these are the next-nearest neighbour out-of-plane exchange paths, spanning

the prismatic faces. In the P 3̄m1 structure they are equivalent, as shown in figure

3.8. But in P 3̄ the rotation shortens one path and lengthens the other, so they are

not expected to be equal.

In summary, the ferroaxial distortion will directly affect the difference Ja − Jb (such that

the sign of Ja − Jb depends on the direction of A), but will leave J1 and J2 constant.

3.5.2.1 Energy of the different chiral magnetic structures

The magnetic structure in RFMO consists of the 120◦ structure in-plane, with incommen-

surate propagation along c with qz ≈ 0.44. Therefore the exchange energy per Fe ion is as
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follows:

E = 3J1S
2 cos(2π/3) + J2S

2 cos(2πqz)

+ 3JaS
2 cos [2π(σt/3 + σhqz)] + 3JbS

2 cos [2π(−σt/3 + σhqz)] . (3.11)

Expanding the cosines,

E = −3J1S
2/2 + J2S

2 cos(2πqz)

+ 3JaS
2

[
−1

2
cos(2πqz)− σtσh

√
3

2
sin(2πqz)

]

+ 3JbS
2

[
−1

2
cos(2πqz) + σtσh

√
3

2
sin(2πqz)

]
. (3.12)

So

E = E0 + Ẽ(σt, σh), (3.13)

where

E0 = −3J1S
2/2 + J2S

2 cos(2πqz)−
3(Ja + Jb)

2
S2 cos(2πqz) (3.14)

is the energy common to all chiral configurations, and

Ẽ(σt, σh) = σtσh
3
√

3

2
(Jb − Ja)S2 sin(2πqz) (3.15)

≈ 0.9564× σtσh(Jb − Ja)S2 (3.16)

depends on the product of the two chrialities, and the difference in exchange paths a and

b. This term goes to zero in the (hypothetical) case where there is no ferroaxial distortion.

Using the notation (σt, σh) = (±,±) to denote a pair of chiralities (see figure 3.3 and

the definitions given above), in the absence of an applied electric field either:

• Ja > Jb, implying that (+,+) and (−,−) configurations have lower energy: this will

be referred to as ‘axial domain I’; or

• Ja < Jb, implying that (+,−) and (−,+) configurations have lower energy: this will

be referred to as ‘axial domain II’.

The difference in energy between {(+,+), (−,−)} and {(+,−), (−,+)} is given by

∆EA = 3
√

3(Jb − Ja)S2 sin(2πqz). (3.17)
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3.5.2.2 Helical modulation

Differentiating equation (3.13) with respect to qz results in

∂E

∂qz
= −2πS2J2 sin(2πqz) + 2πS2 3

2
(Ja + Jb) sin(2πqz)

+ 2πS2σtσh
3
√

3

2
(Jb − Ja) cos(2πqz), (3.18)

and setting this to zero for a minimum in the energy gives

cos(2πqz)σtσh3
√

3(Jb − Ja) = sin(2πqz)[2J2 − 3(Ja + Jb)]. (3.19)

Hence

tan(2πqz) =
3
√

3σtσh(Jb − Ja)
2J2 − 3(Ja + Jb)

. (3.20)

This shows that the pitch of the helix is determined by the amplitude of the axial distortion.

However, since the product σtσh(Jb − Ja) does not depend on the chiralities or the sign of

the axial distortion, this gives the same pitch to the helix regardless of the exact magnetic

configuration or structural domain.

3.5.2.3 Approximate size of Ja and Jb

Using the calculated value of J2 = 0.3 K given in [67], it is possible to use equation (3.20) to

determine the approximate sizes of Ja and Jb. Taking σhσt = 1 (i.e. Ja > Jb, axial domain

I) and qz = 0.44 gives:

− 0.0762 =
Jb − Ja

0.6− 3(Ja + Jb)
, (3.21)

i.e.

Ja = 0.0372 + 0.6279Jb. (3.22)

If we take Jb ≈ 0 (assuming that Jb � Ja), this gives Ja ≈ 0.04 K. Thus an approximate

value for the separation in energy of the states in different axial domains is

∆EA ≈ 0.4 K, (3.23)

having used qz = 0.44, S = 5/2, and |Ja − Jb| = 0.04 K.

3.5.2.4 Energy difference between the two polar states

The above calculations suggest that, for axial domain I, the states described by chiralities

{(+,+), (−,−)} should be lower in energy than those with chiralities {(+,−), (−,+)}. An-

ticipating what follows, in zero field cooling through TN axial domain I will contain an equal

population of both (+,+) and (−,−) magnetic domains, since the two configurations are
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Figure 3.9: Energies of the different magnetic configurations. Under zero applied electric
field, the axial distortion separates {(+,+), (−,−)} configurations from {(+,−), (−,+)}
by an amount ∆EA in energy (dashed lines). The effect of the electric field is to further
separate out these pairs of states (solid, coloured lines) by an amount ∆EE � ∆EA. The
minimum energy configuration is therefore determined by the sign of the applied electric
field and the axial domain in question.

degenerate in energy. However, applying an electric field removes this degeneracy (see fig-

ure 3.9) and separates the energies of the two magnetic configurations by an amount ∆EE.

[Similarly, the two magnetic configurations which are at lowest energy in axial domain II,

(+,−) and (−,+), will also be separated by ∆EE in an applied electric field.] It will be

useful to calculate an approximate value for this quantity in order to compare it to the

separation in energy due to the axial distortion, ∆EA.

The approximate polarisation measured at low temperatures is P ≈ 20 µC m−2 [see

figure 3.5(b)]. The sample thickness is ≈ 0.2 mm, and the surface area is 6.27 × 10−6 m2,

so the volume of the sample is ≈ 1.25× 10−9 m3. Since the unit cell volume is 208.65 Å3 =

2.0865 × 10−28 m3, the sample contains ≈ 6.0125 × 1018 unit cells, leading to an electric

dipole moment per spin of

pspin = 4.173× 10−33 C m (3.24)

directed along the c-axis. Such a dipole moment in an applied electric field of E = 7.5 ×
105 V m−1 has energy E = −pspinE = −3.1297× 10−27 J. Hence the energy separation is

∆EE = 3.75× 10−8 eV (3.25)

or, in temperature units, 4.3478 × 10−4 K. We are therefore working in the regime where

∆EE � ∆EA.

3.5.3 The free energy and coupling to an electric field

As mentioned previously, the free energy is allowed to contain terms of the form Fax =

(Aσ) ·P, where σ is a chirality of the magnetic structure and P a polarisation, since these
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terms are invariant under both time reversal (T̂ ) and spatial inversion (Î) operations as

shown in the table below:

T̂ Î

A even even
σ even odd
P even odd

Therefore:

• for axial domain I, {(+,+), (−,−)} structures are favoured, and the sign of E will

select either (+,+) or (−,−) to minimise the free energy; and

• for axial domain II, {(+,−), (−,+)} structures are favoured, and the sign of E will

select either (+,−) or (−,+) to minimise the free energy.

The exact configuration that E favours depends on the precise coupling to the different σ’s.

The most general form for the free energy F , being invariant under time reversal and

spatial inversion, is

F = (ctA+ c1)σtPz + (chA+ c2)σhPz + . . . (3.26)

where A = ±|A| is the axial vector directed along z, Pz is the polarisation along z, c1,2,t,h

are constants, and ‘. . . ’ stands for higher order terms in the order parameters (note that

since σ2t,h = 1 and A ·A = constant these terms will not include any higher powers of these

parameters). Since σt, σh, and Pz change sign under inversion (but A does not), and under

time reversal σt and σh are both invariant, in general all four of the terms in equation (3.26)

are allowed.

However, it is also a requirement that the free energy is invariant under changing the

direction of vext, because this is decided arbitrarily. Since vext → −vext changes the sign

of Pz, σt and A, but leaves σh unchanged, this imposes ct = c2 = 0, so that the free energy

reduces to

F = c1σtPz + chAσhPz. (3.27)

As shown in figure 3.8, a structure in which Ja < Jb requires a left-handed structural

rotation of the tetrahedra (taking vext to be along +c), so axial domain I is assigned

an axiality of A−. Similarly, axial domain II has axiality A+. The four allowed sets of

parameter values (for both axial domains) are as shown in table 3.1, from which it is clear

that σt = −Aσh. The free energy may therefore be written as

F = c̃AσhPz, (3.28)

or, equivalently, as

F = −c̃σtPz, (3.29)
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A σt σh Aσh
+ + − −
+ − + +

− + + −
− − − +

Table 3.1: The four sets of allowed parameters (axiality, triangular chirality, and helical
chirality) in RbFe(MoO4)2.

where c̃ is a new coupling constant. This implies that one cannot determine based on

symmetry (for the present system) whether the dominant coupling is to the helical or

triangular chirality, since they are essentially made equivalent due to the axial distortion.

Both chiralities, when combined together with the axial distortion, result in certain low-

energy configurations of the magnetic spins, to which an applied electric field should couple

and be able to switch.

3.6 Spherical neutron polarimetry

This section presents the details of the neutron scattering work before the results of the

spherical neutron polarimetry experiments undertaken on RFMO are discussed in section

3.7.

3.6.1 Magnetic structure factor

When considering diffraction from a magnetic structure it is useful to exploit the periodicity

inherent in the arrangement of spins and expand the structure as a Fourier series. Thus,

where there exists a single magnetic ion per unit cell (as is the case for RFMO), one may

write the magnetic moment of the lth unit cell as

µl ∝
∑
{q}

Sqe
−iq·Rl , (3.30)

where the Sq are the Fourier coefficients, Rl is the lattice vector for the unit cell containing

the lth moment, and the summation runs over a set of different propagation vectors {q}.
For a simple structure which can be described by a single propagation vector (all that is

necessary here), this expression reduces to

µl ∝ Sqe
−iq·Rl + S−qe

iq·Rl , (3.31)

where, because the moments must be real, we require Sq = S∗−q.

With reference to figure 3.3, we can establish relationships between the propagation

vector and the triangular and helical magnetic chiralities. The convention used here is to
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always take qz to be positive, such that q = (ε/3, ε/3, qz) where qz ≈ 0.44 and ε = ±1. The

types of magnetic structures depicted in figure 3.3 may all be described in the Cartesian

basis [in which Rl = (Rxl , R
y
l , R

z
l )], as

µl =

 cos(q ·Rl)
δ sin(q ·Rl)

0

 =

 cos 2π
[
ε
(
1
3R

x
l + 1

3R
y
l

)
+ qzR

z
l

]
δ sin 2π

[
ε
(
1
3R

x
l + 1

3R
y
l

)
+ qzR

z
l

]
0

 . (3.32)

Here, the two parameters ε = ±1 and δ = ±1 define the helical and triangular chiralities of

the structure (see table 3.3). Thus, a particular magnetic structure may be described by

µl ∝ (êx + δiêy) e
−iq·Rl + (êx − δiêy) eiq·Rl , (3.33)

where êx, êy are orthonormal basis vectors in the plane of the spins (i.e. the ab plane), and

q = q1,2 (respectively for ε = ±1) is the propagation vector of the structure.

It is necessary to calculate the magnetic structure factor, defined as the Fourier transform

of the function M(r), which describes the magnetisation as a function of position r within

the crystal:

M(Q) =

∫
d3r M(r)e−iQ·r. (3.34)

To evaluate this, we take the magnetisation distribution function to be

M(r) ∝
∑
l

µlm(r−Rl), (3.35)

i.e. simply a sum over the lattice points in the crystal, each of which contains a magnetic

moment µl at the origin arising from the Fe ion, and the function m(r−Rl) describes how

the magnetisation varies throughout space in the proximity of this moment. Thus

M(r) ∝
∑
l

[
Sqe

−iq·Rl + S∗qe
iq·Rl

]
m(r−Rl), (3.36)

so that

M(Q) ∝
∫
d3r

∑
l

m(r−Rl)
[
Sqe

−iq·Rl + S∗qe
iq·Rl

]
e−iQ·r. (3.37)

Writing r = Rl+x, where x is a position vector within the unit cell, we have that d3r = d3x

and so

M(Q) ∝
∑
l

[
Sqe

−iq·Rl + S∗qe
iq·Rl

] ∫
d3xm(x)e−iQ·(Rl+x) (3.38)

=
∑
l

[
Sqe

−iq·Rl + S∗qe
iq·Rl

]
e−iQ·Rl

∫
d3xm(x)e−iQ·x (3.39)

=
∑
l

[
Sqe

−iq·Rl + S∗qe
iq·Rl

]
e−iQ·Rlfmag(Q) (3.40)

=
∑
l

[
Sqe

−i(Q+q)·Rl + S∗qe
−i(Q−q)·Rl

]
fmag(Q). (3.41)
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Since the summation runs over all of the lattice points located at Rl, the phase factors in

the above expressions cancel out unless Q + q = G for the first term, or Q−q = G for the

second (G is a reciprocal lattice vector). Hence

M(Q) ∝ Sqδ
(3)(G− [Q + q])fmag(Q) + S∗qδ

(3)(G− [Q− q])fmag(Q), (3.42)

and so M(Q) ∝ Sqf
mag(Q) if Q = G− q, or else M(Q) ∝ S∗qf

mag(Q) if Q = G + q.

Sq is given by equation (3.33), but before one can substitute this into equation (3.42)

it is necessary to change from the Cartesian coordinate system of the crystal (which has

the x-axis parallel to a and the z-axis parallel to c) to that of the experiment (which has

the X-axis parallel to Q and the Z-axis vertical, see figure 3.10). To do this, we act on the

vector Sq = (Sxq, S
y
q, 0) with a series of matrices to obtain

S̃q =

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 √3/2 −1/2 0

1/2
√

3/2 0
0 0 1

 1/4
√

3/4
√

3/2√
3/4 3/4 −1/2

−
√

3/2 1/2 0

 Sxq
Syq
0

 .

(3.43)

In this expression, the matrix on the right rotates the crystal coordinate axes by 90◦ about

the axis

n̂ =

 cos 60◦

sin 60◦

0

 , (3.44)

i.e. parallel to a∗ + b∗, in order to align the z-axes of the two systems; the middle matrix

rotates the crystal x- and y-axes about the z-direction such that the x-axis is now orthogonal

to the plane of the sample; and the left-hand matrix further rotates the axes about the z-

direction by the angle ϕ = θ−ω between the sample surface and the y-axis of the experiment

(figure 3.10). Hence, the final expression for the magnetic structure factor for the Q = G−q

satellite is given by

M(−)(Q) = pfmag(Q)S̃q (3.45)

= pfmag(Q)

 −1
2 sinϕ −

√
3
2 sinϕ cosϕ

1
2 cosϕ

√
3
2 cosϕ sinϕ

−
√

3/2 1/2 0


 1

δi
0

 , (3.46)

or for the Q = G + q satellite by

M(+)(Q) = pfmag(Q)S̃∗q (3.47)

= pfmag(Q)

 −1
2 sinϕ −

√
3
2 sinϕ cosϕ

1
2 cosϕ

√
3
2 cosϕ sinϕ

−
√

3/2 1/2 0


 1
−δi
0

 , (3.48)

where p is a constant.
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



Figure 3.10: Experimental geometry: (a) three-dimensional view (all arrows apart from the
Z-axis lie in the scattering plane); and (b) view with the Z-axis coming out of the page. The
red arrows show directions of reciprocal lattice vectors, and the green show the {X,Y, Z}
directions of the Blume reference frame (the frame of the experiment), in which the Z-axis
is vertical and the X-axis is parallel to the scattering vector Q = k′ − k. A portion of the
gold contacts which were evaporated onto the (0, 0,±1) surfaces is shown in (a). HV: High
voltage.

3.6.1.1 Magnetic form factor

The magnetic form factor associated with a single Fe ion, fmag, depends upon the magneti-

sation associated with the ion as well as the scattering vector Q. It is given by

fmag(Q) =

∫
d3rm(r)e−iQ·r, (3.49)

i.e. it is the Fourier transform of the function m(r) which describes how the magnetisation

varies as a function of position in the ion.

Following [68], one can split the contributions to fmag up into parts originating from

the total spin and orbital angular momenta:

fspin(Q) =
1

MS

2l∑
L=0

iL〈jL(Q)〉
L∑

M=−L
SLMY

L
M (Q̂), (3.50)

and

forbit(Q) =
1

ML

2l∑
L=0,2,...

[〈jL(Q)〉+ 〈jL+2(Q)〉]
L∑

M=−L
BLMY

L
M (Q̂), (3.51)

where the jL are the spherical Bessel functions, Y L
M the spherical harmonics, and the coef-

ficients SLM and BLM can be obtained from the orbital wave function [69]. MS is the total

spin moment and is given by S00, and similarly the total orbital moment ML is given by

B00. For the Fe3+ ions present in RFMO, which have s = j = 5/2 and l = 0, the above
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A a B b C c D

j0(q̃): 0.3972 13.2442 0.6295 4.9034 -0.0314 0.3496 0.0044
j2(q̃): 1.3602 11.9976 1.5188 5.0025 0.4705 1.9914 0.0038

Table 3.2: Coefficients used for the analytical approximations to the Bessel functions in
equations (3.56) and (3.57).

expressions simplify to:

fspin(Q) =
1

MS
〈j0(Q)〉S00Y 0

0 (Q̂) (3.52)

=
1

2
√
π
〈j0(Q)〉, (3.53)

and

forbit(Q) =
1

ML
[〈j0(Q)〉+ 〈j2(Q)〉]B00Y

0
0 (Q̂) (3.54)

=
1

2
√
π

[〈j0(Q)〉+ 〈j2(Q)〉] . (3.55)

The Bessel functions j0 and j2 may be approximated by the following analytical functions

[70]:

〈j0(q̃)〉 = Ae−aq̃
2

+Be−bq̃
2

+ Ce−cq̃
2

+D, (3.56)

〈j2(q̃)〉 =
(
Ae−aq̃

2
+Be−bq̃

2
+ Ce−cq̃

2
+D

)
q̃2, (3.57)

where

q̃ :=
sin θ

λ
(3.58)

is in units of Å−1, and the constant coefficients A, B, C, D, a, b, and c are different for the

two Bessel functions; they are given in table 3.2.

The overall magnetic form factor is then given by fmag(Q) = fspin(Q) + forbit(Q),

although for the present case of Fe3+ (in which the d-shell is half filled) the lack of any

orbital moment will make the orbital contribution to the form factor negligible.

3.6.2 Diffractometer angles

Since the crystal is oriented such that Q will always be a linear combination of the vectors

c∗ and a∗+b∗, the accessible reflections will all be of the form (h, h, l). Imposing the Bragg

condition results in

sin θ =
λ
√

3a∗2h2 + c∗2l2

4π
(3.59)

and, since the angle between Q and c∗ is just ϕ, from the geometry in figure 3.10 we have

cosϕ =
lc∗√

3a∗2h2 + c∗2l2
, (3.60)
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ω =

{
θ − ϕ, h > 0,
θ + ϕ, h < 0.

(3.61)

These equations may be used to calculate the detector angle (2θ) and sample angle (ω)

which should both be set to access a particular (h, h, l) reflection, as well as to calculate the

angle ϕ which is necessary in working out the magnetic interaction vector [equations (3.46)

and (3.48)].

3.6.3 Calculation of the neutron intensities and polarimetry components

For the present case in which the magnetic scattering does not overlap with the nuclear

scattering, the Blume-Maleev equations (using the crystallography convention, Q = k′−k)

give the scattered intensity (see also section 2.4)

I = M⊥M∗
⊥ + iPin · (M⊥ ×M∗

⊥), (3.62)

where

M⊥ ≡M⊥(Q) = Q̂×M(Q)× Q̂ (3.63)

is the magnetic interaction vector [M(Q) is given in equations (3.46) and (3.48)], and Pin

is a unit vector along the direction of the incident neutron beam’s polarisation. The vector

along the direction of the exit polarisation, Pout, is given by

Pout =
1

I

[
−Pin(M⊥ ·M∗

⊥) + M⊥(Pin ·M∗
⊥) + M∗

⊥(Pin ·M⊥)− i(M⊥ ×M∗
⊥)
]
. (3.64)

Therefore, in order to calculate the intensity and exit polarisation for a certain magnetic

reflection, one needs to follow these steps:

• Determine the scattering vector Q for the reflection; determine whether the magnetic

satellite is at a position +q or −q with respect to the closest Bragg peak at G; and

determine the direction of polarisation of the incident beam (i.e. the unit vector Pin).

• Calculate the angle ϕ [equation (3.60)]; calculate the magnetic form factor fmag(Q)

[equations (3.53) and (3.55)]; and use equations (3.46) or (3.48) as appropriate to find

the magnetic structure factor M(Q).

• Find the magnetic interaction vector M⊥(Q); and use equations (3.62) and (3.64) to

determine the scattered intensity (up to a normalisation constant which is the same

for all calculated intensities) and direction of the exit neutron polarisation.
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3.6.4 The polarimetry components

The measured quantities in a spherical neutron polarimetry experiment are the polarimetry

components, Pi→j where i, j = X,Y, Z. Given a fully polarised incident beam along i, the

polarisation measured along j is given by

Pi→j :=
Ii→j − Ii→−j
Ii→j + Ii→−j

, (3.65)

where Ii→j is the intensity measured along the direction j given an incident neutron beam

fully polarised along i. Clearly Pi→j ∈ [−1, 1]. For a given incident polarisation direc-

tion, for example with Pin = (1, 0, 0) (i.e. the incident neutrons are polarised fully along

the +X direction), we may calculate the polarimetry components Px→x, Px→y, and Px→z

directly from equations (3.62) and (3.64), which give Pout = (Px→x, Px→y, Px→z). Simi-

larly, taking Pin = (0, 1, 0) will give Pout = (Py→x, Py→y, Py→z), and Pin = (0, 0, 1) gives

Pout = (Pz→x, Pz→y, Pz→z). Thus, by measuring the polarimetry components, one may then

proceed to gain information about the magnetic interaction vector M⊥(Q), from which one

can infer the magnetic structure(s) present in the sample.

Evaluating the above formulae leads to simplified expressions for the polarimetry com-

ponents. These are:

Px→x = −1, (3.66)

Py→y =
2M⊥yM

∗
⊥y

|M⊥|2
− 1, (3.67)

Pz→z =
2M⊥zM

∗
⊥z

|M⊥|2
− 1, (3.68)

Py→x = Pz→x =
2={M⊥yM∗⊥z}
|M⊥|2

, (3.69)

Px→y = Px→z = Py→z = Pz→y = 0, (3.70)

where M⊥ = (0,M⊥y,M⊥z) (M⊥ by definition has no component along X) and |M⊥|2 =

M⊥ · M∗
⊥. One of the reasons why spherical neutron polarimetry is such a powerful

technique is because of the sensitivity of the ‘off-diagonal’ terms Py→x and Pz→x to the

imaginary part of the magnetic structure factor. It can therefore be used to infer the sign of

δ [see equations (3.46) and (3.48)] which, together with knowledge of the scattering vector

and therefore ε [equation (3.32)], can be used to determine the magnetic chiralities σt and

σh that are present. Table 3.3 summarises how the magnetic chiralities are related to the

particular satellite and the imaginary part of the magnetic structure factor.
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ε = +1 δ = +1 σt = +1 σh = +1 Q = G + q1 M ∼ (1,−δi) = (1,−i)
Q = G− q1 M ∼ (1, δi) = (1, i)

δ = −1 σt = −1 σh = −1 Q = G + q1 M ∼ (1,−δi) = (1, i)
Q = G− q1 M ∼ (1, δi) = (1,−i)

ε = −1 δ = +1 σt = −1 σh = +1 Q = G + q2 M ∼ (1,−δi) = (1,−i)
Q = G− q2 M ∼ (1, δi) = (1, i)

δ = −1 σt = +1 σh = −1 Q = G + q2 M ∼ (1,−δi) = (1, i)
Q = G− q2 M ∼ (1, δi) = (1,−i)

Table 3.3: Relationship between the parameters used in describing the arrangement of
magnetic moments [δ and ε, see equation (3.32)], the triangular and helical chiralities σt
and σh, the magnetic propagation vector q1 = (1/3, 1/3, qz) or q2 = (−1/3,−1/3, qz), and
the magnetic structure factor M. In the above, M is written in terms of two components of
a vector: these refer to the x and y components of the left-most vectors in equations (3.46)
and (3.48). For simplicity the matrix rotating these vectors into the Blume coordinate
system, as well as the factors of p and fmag, are omitted.

3.7 Results

Here, results from the spherical neutron polarimetry experiments, undertaken on RFMO

using the CRYOPAD on beamline D3 at the ILL, are presented.
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(1/3, 1/3, 0.44)
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Figure 3.11: The ferroelectric polarisation, P ‖ c, measured along the c-axis [data from
figure 3.5(b)] and the integrated intensity of the (1/3, 1/3, qz) magnetic reflection (measured
without the spin filter) as a function of temperature.
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Peak position q Satellite Preferred magnetic
chiralities for +E, −E

(1/3, 1/3, 0.44) (1/3, 1/3, qz) +ve (+,+), (−,−)
(1/3, 1/3, 0.56) (−1/3,−1/3, qz) −ve (+,−), (−,+)
(−1/3,−1/3, 0.44) (−1/3,−1/3, qz) +ve (+,−), (−,+)
(−1/3,−1/3, 0.56) (1/3, 1/3, qz) −ve (+,+), (−,−)
(−1/3,−1/3, 1.44) (−1/3,−1/3, qz) +ve (+,−), (−,+)
(−1/3,−1/3,−0.44) (1/3, 1/3, qz) −ve (+,+), (−,−)
(−1/3,−1/3, 0.44) (−1/3,−1/3, qz) +ve (+,−), (−,+)

Table 3.4: A list of the seven magnetic satellites measured in both positive and negative field
coolings. The propagation vector q associated with each peak is given, as is the sign of the
satellite. The final column gives the predominant contribution to the magnetic chiralities
as measured in the positive and negative electric field cooling data respectively.

3.7.1 Temperature dependence of the magnetic peaks

As expected, scattering intensity was observed at reciprocal space positions G± q1,2, con-

sistent with the known magnetic structure (discussed above). The temperature dependence

of the (1/3, 1/3, 0.44) magnetic satellite is shown in figure 3.11. The spin filter, used to

determine the exit beam polarisation, was removed for this measurement and the intensity

is therefore integrated over all exit polarisations. The incident neutron beam was polarised

along Z.

The simultaneous onset of the ferroelectric polarisation with the magnetic scattering

intensity confirms that it is the magnetic structure that is responsible for breaking the

inversion symmetry, and hence that RFMO is indeed a ‘type-II’ multiferroic (this is also

confirmed by measurement of the specific heat in [71], which shows only a single peak with

temperature). The error bars on the integrated intensities show the standard deviation in

the measurements as calculated in the data acquisition software.

3.7.2 Field cooling data

3.7.2.1 General behaviour as a function of electric field

The plots in figure 3.12 show measured vs. calculated values of the polarimetry components

for both positive and negative field cooling. For each field cooling, data were collected from

seven different magnetic peaks, the details of which are in table 3.4.

From the above considerations, we expect one axial domain to contain magnetic struc-

tures with (+,+) and (−,−) chiralities, and these will give rise to satellites at q1 = (1/3, 1/3, qz)

positions. The other axial domain will contain (+,−) and (−,+) chiralities corresponding

to q2 = (−1/3,−1/3, qz) positions. The data presented here clearly demonstrate that an
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Figure 3.12: Comparison between measured and calculated values for the polarimetry com-
ponents Py→y, Pz→z, Py→x, and Pz→x for several different magnetic reflections at 1.5 K.
The calculated values in (a) and (d) are derived from calculations with the same sign of
the imaginary part of the magnetic structure factor, whereas those in (b) and (c) have the
opposite sign. It is clear that the off-diagonal polarimetry components (which are sensitive
to this choice of sign, determined by the magnetic chiralities) switch with the direction of
the applied voltage, whereas the on-diagonal components do not.
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Figure 3.13: Polarimetry components following negative, positive, and zero field coolings
(with field strength 7.5 kV/cm). Solid bars indicate observed values and rectangles show
the calculations.

electric field can be used to preferentially select one of these two chirality ‘states’ in each

axial domain simultaneously (as listed in the final column of table 3.4). For positive E-field

cooling these correspond to magnetic structures with (+,+) (axial domain I) and (+,−)

(axial domain II) chiralities [figure 3.12(a)], and conversely (−,−) and (−,+) chiralities

[figure 3.12(b)] for negative E-field cooling. Figures 3.12(c) and 3.12(d) show calculations

based on the opposite chiralities, which clearly do not agree with the data.

Figure 3.13 compares positive, negative, and zero voltage field coolings for four po-

larimetry components measured on a particular magnetic reflection at base temperature.

It is clear that the off-diagonal components Py→x and Pz→x are highly dependent on the

applied electric field, whereas the other terms (which are not sensitive to the chiralities of

the magnetic structures) remain constant throughout. This demonstrates that an electric

field, in driving the direction of the ferroelectric polarisation P, may couple to the magnetic

structures in both axial domains simultaneously. This is summarised by figure 3.14, which

shows the chiral states of both axial domains for positive and negative field cooling.

Although a reasonable agreement between measured and calculated values of the po-

larimetry components can be obtained by assuming a single magnetic state for each field

cooling, the agreement can be improved by calculations which assume that there is a popu-

lation of both allowed structures in each field cooling: this is the focus of the next section.

3.7.2.2 Fitting the domain populations

In order to quantify the extent to which the calculated polarimetry components agree with

the values measured in experiment, I shall use (and attempt to minimise) the parameter r,
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Figure 3.14: The predominant magnetic structures present in (a) positive, and (b) negative
field cooling, each of which has two contributions (one from each axial domain). The
direction of the ferroelectric polarisation (P) is shown, and the axial distortion is indicated
by the circular arrows which show the sense of rotation of the MoO4 tetrahedra. The
direction of the MoO4 tetrahedron associated with each triangle of spins is shown by the ±
signs.

the average discrepancy between observations and calculations, defined as

r :=
1

N

∑
{Pi→j}

∣∣∣P (measured)
i→j − P (calculated)

i→j

∣∣∣ , (3.71)

where the sum runs over the N different polarimetry components Pi→j in a specific set of

data.

To improve the agreement obtained in the previous section, I now assume that, in

each axial domain, there exists a variable population of the two magnetic domains [either

(+,+) and (−,−) for axial domain I, or (+,−) and (−,+) for axial domain II]. Since the

experiment is sensitive to magnetic structures arising from the two axial domains separately,

the magnetic domain populations are refined separately in each axial domain. The ‘best fit’

domain populations are shown in figure 3.15.

In these calculations, f ∈ [−1, 1] is used to parametrise the magnetic domain popula-

tions, according to the following scheme. For axial domain I, f = 1 corresponds to 100%

(+,+) population, whereas f = −1 means 100% (−,−). For axial domain II, f = 1 means

100% (+,−) and f = −1 means 100% (−,+). Hence, the simple picture of figure 3.14 is

described by f = 1 for positive field cooling, and f = −1 for negative field cooling.

As shown in figure 3.15, for both axial domains under positive field cooling the best

agreement is obtained with 100% population of (+,+) (for axial domain I) or (+,−) (axial

domain II). However, under negative field cooling, the system does not completely populate
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Axial domain II: positive E-field, f = 1; r = 0.085722
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Figure 3.15: Improvement to the fits of figures 3.12(a) and 3.12(b), obtained by introducing
one free parameter, f , which allows the magnetic domain populations to vary from 100%
(see text for details). Data were collected at 1.5 K.

the opposite magnetic domains, and the best fits suggest a population in axial domain I of

94.75% (−,−) with 5.25% remnant (+,+), and a population in axial domain II of 83.75%

(−,+) with 16.25% remnant (+,−). Therefore, although it is not possible to switch the

entire magnetic domain population within the sample, a sizeable majority population can

be controlled by the external electric field.

3.7.3 Zero field cooling data

Figure 3.16 compares the zero field cooled data with a model which is obtained by calculating

polarimetry components for multiple magnetic domains in each axial domain as in the

previous section. The effect of not applying any electric field is that each axial domain

contains approximately equal populations of the two magnetic structures permitted in each
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Figure 3.16: Comparison between calculated and measured polarimetry components for the
zero field cooled data taken at 1.5 K. A good agreement is obtained with approximately
equal populations of the two energetically preferred magnetic domains for each axial domain.
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Figure 3.17: Hysteresis loops in the Pz→x polarimetry component as a function of applied
electric field. (a) Data from the (1/3, 1/3, qz) peak, corresponding to axial domain I, in
which the magnetic structure switches between (+,+) and (−,−) chiralities. (b) Data
from the (−1/3,−1/3, qz) peak, from axial domain II and with (+,−) and (−,+) chirality
switching.
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one. The best fits, which are shown in the figure, assume for axial domain I a magnetic

structure which is 51.25% (+,+) and 48.75% (−,−), and for axial domain II a magnetic

structure which is 51.75% (+,−) and 48.25% (−,+).

3.7.4 Hysteresis measurements

In the final part of the neutron polarimetry experiment, hysteresis loops in the off-diagonal

polarimetry components were measured as a function of electric field. The results for two

magnetic peaks (one belonging to each axial domain) are shown in figure 3.17. In order to

observe hysteresis it was necessary to warm the sample much closer to the magnetic transi-

tion temperature (measurements were made at 3.74 K). These measurements demonstrate

that, for this temperature, one can exercise direct control over the magnetic chiralities and

switch their state by changing the applied electric field.

Also plotted in figure 3.17 are the values of Pz→x corresponding to magnetic domains

fully populated with the same chiral structures; these are indicated by the dashed lines. It

is therefore clear that these hysteresis measurements demonstrate close to 100% switching

in the chiralities, as would be expected close to the transition temperature.

3.8 Conclusion

Having introduced the idea of a ferroaxial coupling in systems supporting a structural axial

vector, I have used the example of the proper screw multiferroic material RbFe(MoO4)2 as

an interesting system with which to test the interplay between magnetism, ferroelectricity,

and axiality. Pyroelectric current measurements were carried out in order to determine how

the ferroelectric polarisation varies as a function of temperature. The structural distortion

that exists in RFMO below 190 K was then examined in detail with respect to the changes it

induces in the exchange pathways. In this way a direct link between the structural distortion

and the energetically preferred magnetic configurations was established, and minimising the

symmetric exchange energy also shows how the pitch of the incommensurate helical spin

structure in RFMO is directly determined by the amplitude of the axial distortion.

I have shown that, in each axial domain, the lowest energy magnetic structures are

doubly degenerate, and may be described by triangular and helical chiralities (σt, σh) =

(+,+) and (−,−) for one axial domain, and (+,−) and (−,+) for the other. By including

a ferroaxial coupling term in the free energy, this degeneracy can be lifted by the application

of an external electric field which drives the ferroelectric polarisation of the crystal. Thus, in

zero electric field, a mixture of both magnetic configurations should be present in each axial

domain, whereas in non-zero field some preference should be shown towards a particular

configuration which is at lowest energy.
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This behaviour was confirmed by spherical neutron polarimetry data collected under

both field cooled and zero field cooled conditions. The polarimetry components, some of

which are sensitive to the chiralities of the magnetic structures, agree well with calculations

based on the magnetic structures predicted by the above reasoning. Moreover, the magnetic

domain populations can be estimated by fitting the polarimetry data. Finally, hysteresis in

the magnetic structure as a function of electric field demonstrates the multiferroic control

(i.e. the power to alter the magnetic ‘state’ of a material with an applied electric field) that

is possible in this class of materials.

The present work has demonstrated that unconventional spin-driven multiferroicity may

be found within those materials possessing a ferroaxial point group: therefore a future

direction in the search for novel multiferroics could be to investigate more closely those

materials which are known to be structurally axial (and that order magnetically), but whose

multiferroic properties have not yet been investigated. In the case of RFMO specifically,

an inelastic neutron scattering experiment could be performed to determine experimental

values for the exchange constants, which would provide direct confirmation of the effect

that the axial distortion has in stabilising the different magnetic structures by coupling to

the sign of Ja − Jb. In addition, a microscopic mechanism for the multiferroic properties

of RFMO is still missing, and further work will be needed in order to fully understand this

phenomenon and its implications for other ferroaxial materials.





Chapter 4

Charge ordering in YbFe2O4

4.1 Introduction

In the RFe2O4 family of compounds (R = Ho–Lu, Y, or In) [72] the average iron valence is

2.5+, meaning that the crystal should contain an equal population of Fe2+ and Fe3+ ions

across the Fe sites to maintain charge neutrality [73]. This system is therefore interesting

from the point of view of multiferroicity, because the Fe ions can both magnetically order,

providing a coupling to an external magnetic field, and may also order with respect to their

electronic valence – a phenomenon known as charge ordering or charge disproportionation

[74] – that could induce a macroscopic polarisation which would couple to an external

electric field. Hence there is potential for a coupling between the magnetic and electric

orderings in these systems, and magnetoelectric behaviour has been widely reported [75–77].

This coupling may make this family of compounds suitable for multiferroic applications,

particularly since they have recently been grown as thin films [78].

A large number of experimental studies have been undertaken on the RFe2O4 com-

pounds, from a wide variety of diffraction techniques using X-rays [79–82], neutrons [83–87]

and electrons [88–91], together with bulk measurements of the dielectric [79, 92–99] and

magnetic [92–94,100,101] properties. A number of optical studies [102–105] have also been

reported. Most of the work published to date has been on LuFe2O4 which has subsequently

become well-established in the field as a typical example of a type-I multiferroic, whose fer-

roelectric properties are due to charge ordering. This is known as ‘improper’ ferroelectricity,

and occurs independently of any magnetic ordering, as opposed to resulting directly from

structural or magnetic transitions [5]. However, the precise nature of the charge ordering

which leads to these effects is still controversial.

In this chapter, I present X-ray scattering data collected on the R = Yb system, which

was found to have more stable oxygen content (to which the properties of the system are very

sensitive [106–109]) than R = Lu [110]. By studying in detail the superstructure satellite

77
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Figure 4.1: Crystal structure of YbFe2O4. The YbO2 (‘U’) layers and Fe2O2 (‘W’) layers
are indicated, and the crystallographic unit cell is shown by the grey box.

peaks in the X-ray data that result from the charge ordering, I show that the charge ordering

in YbFe2O4 is incommensurate and, consequently, incapable of providing a route towards

a non-zero macroscopic ferroelectric polarisation. I develop a simple model of the effect

of the charge ordering on the surrounding oxygen ions, and use this to simulate the X-ray

data obtained in experiment. I also discuss the nature of the transition in which the charge

ordering changes from being two-dimensional to being three-dimensional in character.

4.1.1 Crystal structure and geometrical frustration

The crystal structure of the RFe2O4 compounds is comprised of an alternating stacking of

YbO2 layers and Fe2O2 bilayers (see figure 4.1). These are also respectively referred to as

‘U-layers’ and ‘W-layers’ in the literature [111]. The space group is R3̄m and the lattice

parameters at room temperature are a = 3.455 Å and c = 25.054 Å [112]. The separation

of the Fe2O2 bilayers by the rare earth ions suggests that the system may exhibit two-

dimensional behaviour above a certain temperature, where the interactions between Fe ions

between bilayers are weak but those within the bilayers remain strong.

Key to the behaviour of the system is the triangular lattice upon which the Fe sites

are located. As shown in figure 4.2, the well-known system of Ising spins (Sz = ±1/2)

fixed at the vertices of a triangle with antiferromagnetic interactions between them leads

to ‘frustration’. In this example, the lower left site in figure 4.2(a) is arbitrarily assigned

to an up-spin (coloured red). Therefore, one of the neighbours (here the lower right site)

will prefer to house a down-spin (blue) to minimise the energy cost associated with the
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2+

3+

Figure 4.2: (a) Magnetic spins arranged at the vertices of a triangle are said to be geomet-
rically ‘frustrated’ because it is impossible to satisfy all of the antiferromagnetic exchange
interactions simultaneously. By analogy, a triangular arrangement of Fe2+ and Fe3+ ions in
(b) is unable to satisfy all of the Coulomb interactions and is therefore similarly frustrated.
(See also [91].)

antiferromagnetic exchange interaction. The problem comes in assigning a direction to the

third spin on the upper site: both up and down are equally (un)favourable. This leads

to the absence of a unique ground state configuration. Instead, the ground state is highly

degenerate and the system is said to be ‘frustrated’ because it is impossible to satisfy all

of the interactions simultaneously. As the frustration is due to the arrangement of the ions

on a triangular lattice, this phenomenon is known as geometrical frustration.

Figure 4.2(b) shows how a similar scenario can occur with respect to the Fe valence. The

interactions between different sites are this time electrostatic in nature, but the phenomenon

is very similar to the Heisenberg Sz = 1/2 case in that the system prefers to have different

charge species (either 2+ or 3+) at either end of each edge of the triangle (i.e. opposite

deviations δρ in charge with respect to the average valence). Thus, for RFe2O4, we expect

a high degree of geometrical frustration arising from the charge ordering, and it is this

frustration that drives the interesting properties presented below.

4.1.2 Charge ordering

The Fe ions in YbFe2O4 can form long range charge ordered structures both within the ab

planes (two-dimensional charge ordering) and additionally, at lower temperatures, along the

c direction as adjacent layers become correlated. The likely arrangements of the different

charge species are discussed below.

4.1.2.1 Two-dimensional charge ordering

Focussing on an individual Fe2O2 bilayer, there are a number of possible arrangements that

can be used to tile an equal amount of Fe2+ and Fe3+ onto two triangular lattices stacked

along the c direction. Previous measurements [91] have reported diffraction peaks that occur

at (h, k) = (1/3, 1/3) positions in reciprocal space with respect to the crystallographic unit
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Fe3+Fe2+(a) (b)

a

b

Figure 4.3: Two possible in-plane charge ordered supercells for the W-layers of YbFe2O4.
The colour of each ion indicates its valence, and the large ions are on an adjacent layer to
the small ones, forming the Fe2O2 bilayer. (a) An example of a structure in which equal
numbers of Fe2+ and Fe3+ ions are positioned on each separate layer, leading to a doubling
of the unit cell area (this is known as the CO1/2 structure, see [114]). In (b) a

√
3 ×
√

3
structure is shown, in which each of the layers is differently charged. This arrangement
would lead to a polarisation between the layers, and is consistent with satellite peaks at
(1/3, 1/3) positions. Crystallographic unit cells are pictured with a thin black outline;
charge ordered supercells are the blue shaded areas.

cell. These occur below a transition temperature T2D ≈ 500 K [113]. Such satellites imply

that the charge ordered supercell is three times larger than the crystallographic cell along

the a and b directions, ruling out a structure in which each of the two layers carries an

equal amount of both charge species, as shown in figure 4.3(a).

Instead, in order to construct a model consistent with the positions of the satellites,

it is necessary to consider scenarios in which each of the two layers carries a net charge.

It is then possible to obtain a structure similar to that shown in figure 4.3(b), where the

charge ordering enlarges the cell by a factor of three in each of the a and b directions. The

superstructure unit cell pictured is the
√

3 ×
√

3 cell which is conventionally used in the

literature; its lattice vectors (a′ and b′) are related to those of the crystallographic unit cell

(a and b) by the following transformation:(
a′

b′

)
=

[
2 1
−1 1

](
a
b

)
. (4.1)

In figure 4.3(b), I have arbitrarily positioned the honeycomb structure formed by the

3+ ions on the ‘small’ layer so that they are displaced by (b − a)/3 with respect to the

honeycomb of 2+ ions on the ‘large’ layer. However, this displacement can equivalently

occur along the (2a+b)/3 and −(a+2b)/3 directions, and one can also interchange 2+ and

3+ charges (equivalent to swapping the ‘large’ and ‘small’ ions in the figure), giving a total

of six possible charge ordering arrangements as shown in figure 4.4, where I have numbered

them W1 to W6 for convenience. The conventional unit cell intersects three such W-layers,

and depending on the exact position along the c-axis the supercell will be translated in the
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W1 W2 W3

W4 W5 W6

a

b

Fe3+Fe2+

Figure 4.4: The six W-layers in YbFe2O4. Large ions are on the upper layer (i.e. in the
positive c direction) with respect to the smaller ones on the lower layer. The direction of
the ferroelectric polarisation associated with each layer is shown by the orange arrows in
the plane. In addition, layers W1-W3 have a component of the polarisation along −c, and
W4-W6 along +c. A choice of crystallographic unit cell and charge ordered supercell are
also shown, assuming the layers are positioned between the U-layer at c = 0 and the U-layer
at c = 1/3. If the W-layer was instead placed between two different U-layers then the unit
cells would be translated in accordance with the structure shown in figure 4.1.

ab plane relative to the positions shown in figure 4.4 such that the overall position of the

Fe ions is consistent with the structure in figure 4.1.

The W-layers each have a polarisation pointing in a different direction. Since W1-

W3 contain twice the amount of Fe3+ as Fe2+ on the lower layer, the c-component of

the polarisation will be directed along −c. Similarly, the c-component of the polarisation

for W4-W6 is directed along +c. The direction of the in-plane polarisation is simply the

direction by which the two honeycomb structures are displaced relative to one another.

Therefore it points along (b − a) for W1, −(a + 2b) for W2, (2a + b) for W3, and the

reverse directions for W4, W5, and W6 respectively.

4.1.2.2 Three-dimensional charge order

If the W-layers depicted in figure 4.4 stack in a regular pattern along the c-axis then the

crystal will exhibit three-dimensional charge ordering. The polarity of each W-layer makes

the nature of this stacking key to the ferroelectric properties of the crystal. Thus, if the layers

were to stack like W1-W2-W3-W1-..., the c-axis polarisation components would all point

in the same direction whilst the in-plane components would cancel, and the stacking would

be ferroelectric (in this case there is no enlargement of the unit cell along c). One could
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therefore hope to measure a macroscopic polarisation along the c direction. Alternatively,

the layers can stack like W1-W2-W3-W4-W5-W6-W1-..., in which case the unit cell along

c is doubled and the alternating polarisation direction along c leads to an antiferroelectric

structure, which would provide no macroscopic polarisation to be measured.

Recent results on LuFe2O4 have shown evidence for both a ferroelectric structure with

a
√

3 ×
√

3 supercell and an antiferroelectric structure with a
√

3 ×
√

3 × 2 supercell, as

deduced by the positions of the charge ordered satellite peaks along the c∗ direction which

change with temperature [80]. The transition to a three-dimensional structure is associated

with a sharp anomaly in the specific heat, and occurs at T ∗ ≈ 320 K [80]. Of the (relatively

few) studies that have focussed specifically on the R = Yb compounds, electron diffraction

data on the Mn-doped system have been reported that show satellites at (1/3, 1/3, n)-type

positions (n ∈ Z) at room temperature [94], whereas electron diffraction on the undoped

system at room temperature has satellites at (1/3, 1/3, n + 1/2) [89]. A further electron

diffraction study at T = 130 K observed satellite spots at (1/3, 1/3, 1/2)-type positions [97].

4.1.3 Magnetic ordering

In addition to the charge ordering, RFe2O4 also exhibits a magnetic ordering of the Fe

spins below TN ≈ 240 K. Below this transition the spins align ferrimagnetically along the

±c direction with propagation vector (1/3, 1/3, 0) [85]. There exists a further magnetic

transition to a more complex (incommensurate) structure below TL ≈ 175 K [85], and the

exact magnetic configuration is still controversial [108]. Whilst an understanding of the

magnetic ordering is clearly essential if one is to exploit the multiferroic properties of these

systems, for the present work I shall be concerned only with an investigation of the charge

ordering.

4.1.4 The use of X-ray diffraction in examining charge ordering

Non-resonant X-ray diffraction (the experimental technique of choice for this chapter) is

unable to distinguish between the differently charged Fe species directly1. However, it

is an ideal probe of any periodic atomic displacement patterns that may be propagating

throughout the crystal as a result of the varying charges and ionic radii within a charge

ordered structure. It is through this ‘secondary effect’ that one may use X-ray diffraction

to observe indirectly charge ordering on a macroscopic scale throughout the illuminated

volume of the sample. In the subsequent sections I shall consider the details of the way in

which X-ray diffraction is sensitive to such periodic displacement patterns, present X-ray

1Resonant X-ray diffraction, on the other hand, can be used as a direct probe in the study of charge
ordering. See e.g. [115] and [116].
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diffraction data from both laboratory and synchrotron sources on YbFe2O4, and discuss a

model of the low temperature atomic displacement structure that results from the three-

dimensional charge ordered arrangement.

4.2 Diffraction from periodic atomic displacements

Here I shall calculate the scattering intensity for elastic X-ray diffraction (although what

follows is equally applicable to neutron diffraction) from a structure which has a periodic

atomic displacement pattern, for example resulting from charge ordering as in YbFe2O4.

The scattered intensity is proportional to the modulus squared of the structure factor

[see equation (2.23)], which in turn is given by

F (Q) =
∑
j

fj(Q)eiQ·rj , (4.2)

where the sum runs over the atoms in the crystal (labelled by j), each of which is located at

a position rj with respect to some origin. (Note that the position of the origin has no effect

on the intensity since replacing rj by r0 + rj just gives an extra phase factor multiplying

each term in the sum, which will not alter the modulus.) In this expression, fj(Q) is the

atomic form factor (for X-rays) or the nuclear scattering length (for neutrons).

Consider a lattice with a basis consisting of a single atom, such as that depicted in figure

4.5(a). To this is introduced a periodic modulation in the position of the atoms, by displac-

ing all of them sinusoidally along the z-direction, as shown in figure 4.5(b). The modulation

propagates along the x-direction and can therefore be described by a propagation vector of

the form

q = (τ, 0, 0), (4.3)

where the parameter τ is related to the spatial period la of the modulation (a being the

lattice constant) by τ = 1/l. In figure 4.5(b), the period is clearly 6a and so the propagation

vector is q = (1/6, 0, 0).

Each atom belongs to a unit cell which has lattice vector Rn (n labels the unit cell, and

therefore also each specific atom), and so one may write the displacement of the nth atom

as

dn =

 0
0

d
(
eiRn·q + e−iRn·q

)
,

 (4.4)

where d parametrises the size of the displacement. For the structure depicted in figure

4.5(a), the atomic positions are simply given by rn = Rn, whereas for the modulated



84 Chapter 4. Charge ordering in YbFe2O4

(a) (b) z

x

Figure 4.5: (a) A square lattice with a single-atom basis. In (b) the atomic positions are
sinusoidally modulated.

structure [figure 4.5(b)], the positions are rn = Rn + dn. Thus the structure factor for the

modulated structure is

F (Q) =
∑
n

fn(Q)eiQ·(Rn+dn) (4.5)

=
∑
n

fn(Q)eiQ·RneiQzd[exp(iRn·q)+exp(−iRn·q)] (4.6)

where Q = (Qx, Qy, Qz). The second exponential may be expanded to give

F (Q) =
∑
n

fn(Q)eiQ·Rn

[
1 + iQzd

(
eiRn·q + e−iRn·q)+

i2Q2
zd

2
(
eiRn·q + e−iRn·q

)2
2!

+ . . .

]
.

(4.7)

Since the displacements are expected to be small, one can truncate this series at quadratic

order in d. Thus

F (Q) ≈
∑
n

fn(Q)eiQ·Rn

+
∑
n

fn(Q)eiQ·RniQzd
(
eiRn·q + e−iRn·q)

− 1

2

∑
n

fn(Q)eiQ·RnQ2
zd

2
(
eiRn·2q + e−iRn·2q + 2

)
, (4.8)

and so

F (Q) ≈ (1−Q2
zd

2)
∑
n

fn(Q)eiQ·Rn

+ iQzd
∑
n

fn(Q)ei(Q+q)·Rn + iQzd
∑
n

fn(Q)ei(Q−q)·Rn

− 1

2
Q2
zd

2
∑
n

fn(Q)ei(Q+2q)·Rn − 1

2
Q2
zd

2
∑
n

fn(Q)ei(Q−2q)·Rn . (4.9)

All of the terms in equation (4.9) contain a summation over different phase factors which

are of the form eiQ·Rn . These will cancel out unless the exponent Q · Rn = 2πp, where
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p ∈ Z. This is equivalent to saying that∑
n

eiQ·Rn ∝ δ(3)(Q−G), (4.10)

where G is a reciprocal lattice vector. Hence

F (Q) ∝ [1−Qzd2]f(Q) δ(3)(Q−G)

+ iQzd f(Q) δ(3)(Q + q−G) + iQzd f(Q) δ(3)(Q− q−G)

− 1

2
Q2
zd

2f(Q) δ(3)(Q + 2q−G)− 1

2
Q2
zd

2f(Q) δ(3)(Q− 2q−G), (4.11)

where fn(Q) ≡ f(Q) (all the atoms are the same). The intensity is proportional to |F (Q)|2

and therefore will contain the square of each of the above terms (there are no cross terms

because the delta functions will always multiply to zero for non-zero q).

This shows that, to quadratic order in the displacement amplitude, one expects to see a

strong Bragg peak, weak satellite peaks located at G± q due to the modulation in atomic

displacement (intensity proportional to the square of the displacement magnitude), and

very weak second order satellites at G± 2q (intensity proportional to the fourth power of

the displacement).

4.2.1 Equivalence of the supercell and propagation vector descriptions

In the case of a commensurate propagation vector (i.e. one which describes a modulation

whose period is an integer number of unit cells), it is possible to calculate the scattering

intensity in a different way to above by constructing a supercell (this will be used extensively

later in this chapter). The structure of figure 4.5(b) can be described in two equivalent ways:

1. Using the crystallographic unit cell. The structure consists of a cubic lattice (the y-

direction is not shown in the figure) convoluted with a basis of a single atom, whose

position with respect to the lattice point depends on the unit cell it is in (i.e. the

specific Rn belonging to that atom). The lattice vectors are Rn = n1a + n2b + n3c

(n1,2,3 ∈ Z) where, in the Cartesian basis,

a =

 a
0
0

 , b =

 0
a
0

 , c =

 0
0
a

 . (4.12)

The atomic positions are given as above by rn = Rn + dn, with

dn =

 0
0

d
(
eiRn·q + e−iRn·q

)
 (4.13)

and q = 1
6a∗.
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2. Using the supercell. The structure consists of a tetragonal lattice whose basis vectors

a′, b′, and c′ are defined in terms of the basis vectors of the original cubic lattice by a′

b′

c′

 =

 6 0 0
0 1 0
0 0 1

 a
b
c

 . (4.14)

This defines the superlattice vectors R′n = n1a
′ + n2b

′ + n3c
′ where, as before,

n1,2,3 ∈ Z (and in a similar way one can construct the reciprocal superlattice vectors

G′). The structure is then generated by a convolution between this lattice and a basis

of N atoms, located at

xm = Rm +

 0
0

d
(
eiRm·q + e−iRm·q

)
 , (4.15)

where m = 1, 2, . . . , N . Here N is simply the ratio of the crystallographic unit cell

and supercell volumes:

N =
a′ · (b′ × c′)

a · (b× c)
(4.16)

[also equal to the determinant of the matrix in equation (4.14)] which in the present

case is clearly equal to six, and

Rm = (m− 1)a, m = 1, 2, . . . , 6. (4.17)

Now, using the crystallographic unit cell formulation, one obtains the structure factor

given in equation (4.9). However, if the supercell formulation is used, then the structure

factor given by

F (Q) =
∑

j atoms in crystal

fj(Q)eiQ·rj (4.18)

can be split into two parts by writing rj = R′n + xm. This gives the following lattice and

basis contributions:

F (Q) =
∑

n lattice points

∑
m basis atoms

fm(Q)eiQ·(R
′
n+xm) (4.19)

=
∑
n

eiQ·R
′
n

∑
m

fm(Q)eiQ·xm . (4.20)

As before, the first summation will give zero unless Q ·R′n = 2πp for p ∈ Z, which means

that

F (Q) ∝ δ(3)(Q−G′)
∑
m

fm(Q)eiQ·xm (4.21)

= δ(3)(Q−G′)
N∑
m=1

fm(Q)eiQ·[Rm+êzd exp(iRm·q)+êzd exp(−iRm·q)], (4.22)
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where G′ is a reciprocal lattice vector of the superlattice. Proceeding as before and expand-

ing for small d gives

F (Q) ∝ δ(3)(Q−G′)
[
1−Q2

zd
2
] N∑
m=1

fm(Q)eiQ·Rm

+ δ(3)(Q−G′)iQzd

[
N∑
m=1

fm(Q)ei(Q+q)·Rm +
N∑
m=1

fm(Q)ei(Q−q)·Rm

]

− δ(3)(Q−G′)
1

2
Q2
zd

2

[
N∑
m=1

fm(Q)ei(Q+2q)·Rm +
N∑
m=1

fm(Q)ei(Q−2q)·Rm

]
.

(4.23)

This is clearly zero unless Q = G′. As the summations run over all the crystallographic

unit cells that make up the supercell, the only values of G′ that do not result in the phases

in the first of the above summations cancelling to zero are when G′ = G. Hence the

first summation is proportional to δ(3)(G′ −G). Similarly, the other summations are only

non-zero when Q = G′ = G± q or Q = G′ = G± 2q. Hence

F (Q) ∝
[
1−Q2

zd
2
]
f(Q) δ(3)(Q−G)

+ iQzd f(Q)
[
δ(3)(Q−G + q) + δ(3)(Q−G− q)

]
− 1

2
Q2
zd

2f(Q)
[
δ(3)(Q−G + 2q) + δ(3)(Q−G− 2q)

]
, (4.24)

which is in agreement with the expression for the structure factor calculated using the

crystallographic unit cell formalism.

One can therefore, in principle, approximate the diffracted intensities from any incom-

mensurate displacement pattern to an arbitrary degree of accuracy by building a supercell

corresponding to a commensurate approximation of the structure and calculating the inten-

sities using the above equations. In practice, computational power will limit the accuracy to

which these results can be obtained, because a better approximation to the incommensurate

pattern will clearly require a larger supercell and therefore more computation. However,

one can only ever measure an incommensurate propagation vector to a certain degree of

accuracy, and this level of accuracy can be replicated in constructing commensurate approxi-

mation supercells and evaluating their diffracted intensities using no more than a reasonably

powerful desktop computer.

4.3 X-ray diffraction data

4.3.1 Laboratory measurements

Preliminary measurements on single crystal samples of YbFe2O4 were made on an Agilent

Technologies ‘SuperNova’ molybdenum source diffractometer (λ = 0.71073 Å). The recip-
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h k

direction

direction

Bragg peak, – h + k + l =3n

Superstructure satellite

Figure 4.6: (a) Positions of the scattered intensity in the a∗b∗ plane, assuming a propaga-
tion vector q = (1/3, 1/3) and symmetry equivalents. (b) Intensity map of the (h, k, 12)
plane constructed from a laboratory X-ray measurement at 150 K. Hexagons of satellites
surrounding the Bragg peak positions are seen, confirming the existence of an approximate√

3×
√

3 supercell resulting from charge ordering in the plane. The three satellites enclosed
in a box are shown in figure 4.7 .

rocal space intensity maps (details of how these are generated are provided in section 2.3.1)

show the presence of satellite spots at G ± q, where G = ha∗ + kb∗ + lc∗ is an allowed

reciprocal lattice vector (for R3̄m the rhombohedral setting requires that −h+ k + l = 3n,

n ∈ Z), and q ≈ (1/3, 1/3) in the ab plane. In addition, the three-fold symmetry also allows

satellites at q ≈ (1/3,−2/3) and q ≈ (−2/3, 1/3), resulting in the hexagonal pattern of

Bragg peaks and satellites shown in figure 4.6(a). No second (or higher) order satellites

could be detected above the background. Figure 4.6(b) shows a (h, k, 12) intensity map

where the satellite spots are clearly visible, confirming the existence of a charge ordered

superstructure in the plane.

The view along the c∗ direction gives information about the three-dimensional charge

ordering. In figure 4.7, it can be seen that the satellite peaks are not at commensurate

positions, but appear to oscillate in h and k around these lines, and occur at incommensurate

values of l separated by approximately c∗/3. These oscillations in the peak positions clearly

indicate that the charge ordered superstructures in YbFe2O4 are more complex than a

simple
√

3 ×
√

3 cell would suggest, and this motivated the collection of synchrotron data

before undertaking a full analysis.

4.3.2 Synchrotron radiation measurements

Synchrotron X-ray diffraction experiments on beamline I19 at Diamond were carried out

on single crystals from the same batch as used in the laboratory measurements. Data
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Figure 4.7: Intensity map of the (h,−7/3, l) plane, showing the three satellites marked with
a box in figure 4.6(b).

were taken between 150 K and 360 K, covering both sides of the three-dimensional charge

ordering transition which occurs at T ∗ = 320 K.

4.3.2.1 T < T ∗

Data at 150 K show very similar ‘spotty’ satellite streaks along the c∗ direction to those

found in the laboratory data. The intensity profile of the (1/3,−5/3, l) set of satellites

collected at 150 K is shown in figure 4.8. From this the rapid oscillations separated by

≈ c∗/3 are apparent, together with longer scale modulations in the intensity envelope.

Figure 4.9 shows the fast Fourier Transform (performed by MATLAB software) of the

intensity oscillations shown in figure 4.8, as well as of the intensities of the same satellites

measured at a range of other temperatures. From this one can see that the dominant

oscillatory component in the intensity profile corresponds to a real space periodicity of

≈ 2.8c, i.e. slightly less than the 3c periodicity implied by peaks separated by exactly

c∗/3 in reciprocal space. As one warms towards the transition at T ∗, the size of this

Fourier component clearly diminishes, and above T ∗ it is no longer present as the helices of

scattering become continuous.

By extracting a stack of two-dimensional intensity maps it is possible to reconstruct
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Figure 4.8: Intensity profile of the (1/3,−5/3, l) set of satellites at 150 K. Intensity maxima
separated by ≈ c∗/3 can be clearly seen, as well as longer scale modulations in intensity.

three-dimensional visualisations of the reciprocal space intensity. Such an isointensity sur-

face plot is shown in figure 4.11(a), which shows a portion of the (2/3,−7/3, l) satellite.

This clearly shows that, whilst the intensity is concentrated onto peaks separated along the

c∗ direction, there are small deviations in h and k as a function of l, generating a helical

modulation. There is also a slowly varying modulation in the intensity along the rod. Figure

4.11(e) shows a schematic reciprocal space view showing several of the satellites at 150 K.

The widths of each rod appear to vary since they have different intensities.

A value for the radius of the satellite helices is determined in figure 4.10, which is

made by plotting the position of the maximum intensity pixel for several l = constant

reciprocal space slices (in effect, determining the centre of the satellite intensity). The

three-dimensional plot is fitted with a helix of radius ρ = 5 pixels (red line in figure 4.10),

which corresponds approximately to ρ ≈ 0.015 a∗ in reciprocal lattice units.

4.3.2.2 T > T ∗

Figure 4.11(a) can be directly compared to figure 4.11(b), which shows the same portion of

reciprocal space above the transition at T ∗. It is clear that the spotty structure of the rods

[which indicates that unique mode(s) have been stabilised] is no longer present at high T ,

where one finds a continuous and highly diffuse distribution of intensity along c∗. It should

be noted however that the pitch of the helix in figure 4.11(b) remains very well-defined, and

the loss of coherence is only in the c∗ direction since the intensity maxima still maintain

well-defined boundaries in the a∗b∗ plane.

In figures 4.11(c) and 4.11(d) the phase and handedness belonging to several helices

are examined. The data show simple rules for the phase, ϕ, and handedness of each helix.
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Figure 4.9: Fast Fourier transforms of the intensity profile in figure 4.8, as a function of
sample temperature below T ∗.
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Figure 4.10: Positions of intensity maxima at different values of l for the (2/3,−7/3, l)
satellite rod. The red line is a fit comprising a perfect helix of radius 5 pixels.
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Figure 4.11: Three-dimensional reciprocal space isointensity plots of the satellite helices
arising from the charge ordering. The data in (a) and (b) show a particular satellite below
and above T ∗ = 320 K, clearly showing the transition from a ‘spotty’ to a continuous
distribution of intensity. At low temperatures intensity is concentrated onto peaks separated
by ≈ c∗/3. In (c) three adjacent helices (T = 360 K) are plotted, demonstrating that while
the pitch of each helix remains constant (at 3c∗), the phase varies according to the position
in the a∗b∗ plane. (d) Two helices at T = 360 K, for 24 < l < 10 r.l.u., illustrating the
selection rule for the handedness. (e) Schematic reciprocal space reconstruction of several
satellites at 150 K. The reciprocal lattice is shown at the bottom (white circles) with the
locations of the satellites (red circles) projected downwards.
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Working in a Cartesian reciprocal space basis, the helices are described by reciprocal space

vectors of the form

Q = (Qx + ρ cos θ,Qy + ρ sin θ, l), (4.25)

where

θ = ±2πl

3
+ ϕ (4.26)

and the phase of each helix is given by

ϕ = 2π
(h− k)

3
+ ϕ0, (4.27)

ϕ0 being a constant phase. The ± in equation (4.26) determines the handedness of the

helix, and obeys

h+ k =
3n± 1

3
, (4.28)

where h and k are the commensurate positions of the helix in the plane, and the ± sets

the handedness as left (+) or right (−) [see figure 4.11(d)]. This is as one would expect

given the R3̄m symmetry, in which the handedness of the helices is fixed entirely by the

chiral holohedral axes that are present along c∗ in the rhombohedral reciprocal lattice at

(1/3, 1/3)-type positions (see figure 4.19 for more details). Phase differences between these

chiral axes are also responsible for the form that the phase of the helices takes in equation

(4.27).

4.3.3 Discussion

The striking feature of the low temperature data (below T ∗) is the observation of intensity

maxima separated not by the commensurate c∗/2 as reported by electron diffraction mea-

surements (see section 4.1.2.2), but instead by an incommensurate separation of ≈ c∗/3.

It is also clear that, whichever modes are stabilised, they do not lead to peaks at exactly

(1/3, 1/3) type positions in-plane, but deviate slightly from this commensurate value. This

will be central to the modelling of the low temperature diffraction data I present in section

4.4.

The behaviour as one warms through the transition at T ∗ is intriguing. Typically, if one

had a structure lacking in long range periodicity along the c direction, the expectation would

be to observe diffuse reciprocal lattice rods of scattering (extended along c∗) rather than

well-defined peaks. (This is because the repeat period along c is essentially infinite, leading

to a vanishingly small distance between ‘Bragg peaks’ in the c∗ direction.) However, the

present data do not show this behaviour. Whilst the diffuse element is certainly present, the

helices along c∗ clearly demonstrate strong correlations along the c direction (much greater
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Figure 4.12: Intensity profiles of the (h, 1/3, 12) charge ordering satellite peak at 150 K and
360 K. The data (open circles) are fitted with a Gaussian peak shape (lines). The 150 K fit
has a narrower peak shape, indicating a greater correlation length in the plane compared
to 360 K.

than the interbilayer distance) since they have a very well-defined pitch. The fact that

the isointensity surfaces appear to follow such a helical pattern is indicative of a real space

behaviour in which there exists a progressive population of modes within a quasidegenerate

helical manifold, starting from those that are closest to the ground state, so that the local

coherence is maintained whilst allowing the system to explore states around the minima.

This behaviour is also supported theoretically by the work of Yamada, Harris, and Yildirim

[117,118], who developed a mean field model to describe the Coulomb interactions between

charges that was inspired by an equivalent problem encountered in the magnetic ordering

in solid oxygen [119,120].

Strong correlations in the charge ordering found in the ab plane, which can be quantified

by the width of the diffraction satellite peaks in the a∗ or b∗ directions, are present at all

temperatures including above T ∗ (see figure 4.12). However, the correlation length in the

plane is longer at lower temperatures, as is to be expected.

4.4 The low temperature structure and oxygen displacement model

In this section I shall model the X-ray intensities by considering the effect of the Fe valence

ordering on the different oxygen sites in the unit cell. To begin with I shall introduce a

relatively simple and intuitive oxygen displacement model assuming a commensurate charge

ordering pattern. I shall then calculate the scattered intensities one would expect if such
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Figure 4.13: Part of the commensurate structure, showing the vertical displacement of
apical oxygen ions in the YbO2 layers, and in-plane displacement of the oxygen ions in the
Fe2O2 layers. One third of the crystallographic unit cell is indicated by the box.

a commensurate model were correct. Following this I shall generalise the model to an

incommensurate structure, whose propagation vectors form a better match to the X-ray

scattering data. The final part of this section compares the intensities generated by both

commensurate and incommensurate models to the data.

4.4.1 Oxygen displacements in the commensurate picture

Before attempting to model the incommensurate low temperature structure, I will begin by

assuming that the system orders in a commensurate way as described in section 4.1.2, and

then introduce small deviations following this. The model I use modulates the positions of

all of the oxygen ions in the crystal, both those in the Fe2O2 (‘in-plane’ oxygens) and those

in the YbO2 layers (‘apical’ oxygens).

Figure 4.13 shows a portion of the YbFe2O4 structure, extending in height up to c/3.

Those oxygen ions in the lowest layer are apical, and are displaced vertically following a

sinusoidal envelope. The phase is chosen so that the maximum displacement is towards the

Fe3+ ion on the layer above, and correspondingly away from the Fe2+ ions. The oxygens

in the Fe2O2 bilayers are displaced solely in-plane. The arrangement is such that, for a

(2Fe2+ + Fe3+) layer, the oxygens displace towards the nearest Fe3+, whereas for a (Fe2+ +

2Fe3+) layer, the displacement is away from the nearest Fe2+.

The in-plane arrangement is shown in more detail in figure 4.14. It is clear from this

that the oxygens are either moving towards a ‘central’ Fe3+ and away from the centre of
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Figure 4.14: In-plane commensurate oxygen displacement patterns for (a) a (2Fe2+ + Fe3+)
layer, and (b) a (Fe2+ + 2Fe3+) layer.
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Figure 4.15: The six different types of oxygen tetrahedra in the commensurate displacement
pattern of YbFe2O4. The three on the left form the (2Fe2+ + Fe3+) layer, and the three on
the right the (Fe2+ + 2Fe3+) layer.

mass of two nearest neighbour Fe2+ ions [figure 4.14(a)], or moving away from a central

Fe2+ towards the centre of mass of two nearest neighbour Fe3+’s [figure 4.14(b)]. One way of

visualising the displacement patterns in-plane is in terms of a ‘distortion field’ S originating

from each Fe ion and obeying the Maxwell-like equation

∇ · S = −δρ, (4.29)

where δρ is the deviation of the Fe valence from the average of +2.5. Thus Fe2+ ions are

distortion field ‘sources’ whilst the Fe3+ ions are distortion field ‘sinks’. Each oxygen, which

is sensitive to the distortion field originating from its three nearest neighbour Fe ions, is

displaced according to the total field at its position in the structure. In the commensurate

displacement picture, there are six different resulting types of oxygen tetrahedra (each

surrounding an Fe ion): these are displayed in figure 4.15. It is of interest to draw an analogy

here between the displacement pattern of the in-plane oxygens and the 120◦ magnetic spin

structure on a triangular lattice (see chapter 3).

The first 1/3 of the unit cell along c pictured in figure 4.13 comprises a W6 layer po-

sitioned between the two U-layers. To continue the commensurate ‘starting point’ I shall

take the next W-layer along the c direction to be W5, and the next to be W4 (thereby fully
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defining the crystallographic unit cell in terms of the charge ordering). The following equa-

tions can then be used to generate the oxygen displacements (described by the vector dFe-O

for the in-plane oxygens, and dYb-O for the apical oxygens) directly from the propagation

vector q:

dFe-O = (dx, dy, 0), (4.30)

where

dx ± idy = d1e
iRn·qeiφj , (4.31)

and

dYb-O = (0, 0, dz), (4.32)

where

dz = d2 cos(Rn · q + φj). (4.33)

The index j = 0, . . . , 11 is used to label the ‘layer’ in the ab plane in which the oxygens

are positioned. Thus the oxygens corresponding to j = 0 are at the bottom of the unit

cell and are displaced vertically (see figure 4.13), j = 1 oxygens are at the bottom of the

first W-layer (here a W6), etc. The phases φj are determined by imposing a W6-W5-W4

structure (this would lead to polarisation cancelling out in the plane, but summing to give

a non-zero value along c in the commensurate picture).

In equations (4.30) to (4.33), Rn is the crystallographic unit cell vector of the oxygen

in question, d1 and d2 are displacement amplitudes (respectively for in-plane and apical

oxygens), q is the propagation vector, and dx, dy and dz are the displacements along the

directions of the Cartesian orthonormal basis axes defined by êx ‖ a, êz ‖ c, and êy = êz×êx.

4.4.2 Propagation vectors for the commensurate structure

An immediate problem one encounters in attempting to model the low temperature data

is that the intensity maxima are separated by ≈ c∗/3. For the purposes of the model, this

separation is taken to be exactly equal to c∗/3 (the true value is slightly greater than this: see

section 4.3.2.1). Note first that if a single propagation vector of the form q1 = (1/3, 1/3, 1/3)

were present, then the 3̄ symmetry would generate a set of three symmetry equivalent

domains. This will lead to scattered intensity at the following locations with respect to the

Bragg peaks:

(1/3, 1/3, 1/3), (2/3,−1/3,−1/3), (1/3,−2/3, 1/3),
(−1/3,−1/3,−1/3), (−2/3, 1/3, 1/3), (−1/3, 2/3,−1/3).

The first row may be taken to be the propagation vectors associated with each of the three

domains, and the second row comes from the fact that, for each propagation vector q,

intensity is scattered to positions G ± q. Including now the effect of the mirror planes
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Figure 4.16: Reciprocal space diagram showing the contributions of the different propaga-
tion vectors q = (1/3, 1/3, 1/3) and q = (1/3, 1/3, 0) to the satellites in the commensurate
picture (c∗ is directed out of the page). The reciprocal lattice nodes are indicated by the red
circles, and the blue arrows show the in-plane projection of the propagation vectors. Each
blue arrow actually contributes three satellites to the central position, with qz = +1/3, 0,
and −1/3.

(increasing the symmetry to 3̄m), a further three equivalent propagation vectors are formed

leading to further intensity maxima located at:

(1/3, 1/3,−1/3), (2/3,−1/3, 1/3), (1/3,−2/3,−1/3),
(−1/3,−1/3, 1/3), (−2/3, 1/3,−1/3), (−1/3, 2/3, 1/3).

The problem, therefore, is that with a single propagation vector of this form one will observe

intensity maxima at l = n ± 1/3 (n ∈ Z) positions, but not at the positions l = n. Thus,

in order to obtain peaks uniformly separated by c∗/3 it is necessary to include a second

propagation vector with zero qz component. Such a vector, of the form q2 = (1/3, 1/3, 0),

gives rise to six symmetry equivalent peaks (the mirror planes have no effect since the final

component of q2 is zero) located at:

(1/3, 1/3, 0), (2/3,−1/3, 0), (1/3,−2/3, 0),
(−1/3,−1/3, 0), (−2/3, 1/3, 0), (−1/3, 2/3, 0).

Combining the effect of these domains gives rise to a reciprocal space picture similar to that

depicted in figure 4.16, where a particular satellite rod will have peaks in intensity coming

from propagation vectors attached to the three surrounding Bragg peaks.

4.4.3 Generalisation to an incommensurate model

Having developed a model for the commensurate
√

3 ×
√

3 ordering, it is now straightfor-

ward to generalise the same model to that with an incommensurate propagation vector.
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Figure 4.17: Representation of the in-plane oxygen displacement pattern for an incommen-
surate propagation vector q = (1/3 + δ, 1/3 + δ). Based on the oxygen displacements, an
effective valence is assigned to each Fe ion, as indicated by its colour.

Equations (4.30) to (4.33) are used to generate the oxygen displacements, this time with

an incommensurate value of q. Once an incommensurate oxygen displacement pattern has

been generated, one can assign an ‘effective’ valence to the Fe ions sitting between the oxy-

gens, based on equation (4.29), which provides a formal link between the scalar field of the

Fe charge, and the vector ‘distortion’ field.

By way of example, figure 4.17 shows schematically what such an in-plane incommensu-

rate pattern might look like, with q = (1/3+δ, 1/3+δ), such that the oxygen displacements

rotate slightly further around than the commensurate value of 120◦ between adjacent crys-

tallographic unit cells. Notice that the Fe ion valence is assigned low values (black) when

the surrounding oxygens are predominantly displaced away from it (i.e. the distortion field

is diverging outwards), whereas it is assigned high values (white) when the reverse is true.

In this way, one can see the ‘charge density wave’-like behaviour resulting from the slowly

varying Fe valences propagating along the direction of q. In this incommensurate model,

the apical oxygens would continue to be displaced sinusoidally along the c-axis, although the

period is clearly no longer equal to an integer number of unit cells. One may therefore think

of the incommensurate structure as a slow variation between the configurations depicted in

figure 4.15.

Calculating intensities to model the data first requires determination of the incommen-

surate propagation vector(s) associated with the displacement mode(s). In order to keep

the model manageable I shall continue to take the z-component of the propagation vector

as commensurate, such that peaks appear along the l-direction spaced exactly c∗/3 apart.

I therefore will take two non-equivalent propagation vectors as in the previous section and
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Figure 4.18: View of the a∗b∗ plane in reciprocal space (with c∗ directed out of the page),
showing (a) q1 and the eleven symmetry equivalent positions generated by 3̄m, and (b) q2

and the five symmetry equivalent positions. The various q’s surround the central Bragg
peak (red circle). In (a) the position above or below the page is indicated with + (green
arrows) or − (blue arrows), whereas in (b) qz = 0. The mirror planes contain the c∗ and
either the a∗, b∗, or b∗ − a∗ directions.

proceed in a similar way. The first propagation vector, of the form q1 = (δ1, δ2, 1/3), gen-

erates a set of three equivalent domains due to the 3̄ symmetry, giving scattered intensity

located at:

(δ1, δ2, 1/3), (δ1 + δ2,−δ1,−1/3), (δ2,−δ1 − δ2, 1/3),
(−δ1,−δ2,−1/3), (−δ1 − δ2, δ1, 1/3), (−δ2, δ1 + δ2,−1/3).

The effect of the mirror planes leads to further intensity located at:

(δ2, δ1, 1/3), (−δ1, δ1 + δ2,−1/3), (−δ1 − δ2, δ2, 1/3),
(−δ2,−δ1,−1/3), (δ1,−δ1 − δ2, 1/3), (δ1 + δ2,−δ2,−1/3).

All twelve of these reciprocal space positions are shown in figure 4.18(a). The second

propagation vector, of the form q2 = (ε, ε, 0), gives rise to six symmetry equivalent peaks:

(ε, ε, 0), (2ε,−ε, 0), (ε,−2ε, 0),
(−ε,−ε, 0), (−2ε, ε, 0), (−ε, 2ε, 0),

which are shown in figure 4.18(b).

The combined effect of all domains gives the reciprocal space picture of figure 4.19.

From this it is clear that the resulting satellites will form a helical structure in reciprocal

space, propagating along the l-direction with a pitch of 3c∗. The radius of the helix, ρ, can

be used to fix q1 and q2, according to the following geometrical considerations. As shown

in the inset to figure 4.19, the position of the peak at the end of the q2 vector is given (with

respect to the basis vectors a∗ and b∗ of the reciprocal lattice) by

P2 =

(
1/3
−2/3

)
− α

(
1
1

)
, (4.34)
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Figure 4.19: Contributions of the two propagation vectors q1 = (δ1, δ2, 1/3) and q2 =
(ε, ε, 0) to the satellites (blue circles) (compare with figure 4.16). The coordinates (h, k, l)
and the directions of a∗ and b∗ are indicated. Inset: geometry of two satellite peaks at
points P1 and P2, relative to the centre of the helix at (1/3,−2/3, l) (grey circle).
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where the length of the second part of this vector is |α(a∗ + b∗)| = ρ . This fixes

ε =
1

3
− ρ√

3
. (4.35)

Finding the vector
−−−→
P2P1 will then set the δ1,2. Since triangle P1OP2 is isosceles with angle

P1ÔP2 = 360◦/9 = 40◦, we have:

|
−−−→
P1P2| = ρ sin 40◦/ sin 70◦ = 0.6840ρ, (4.36)

|
−−−→
P3P2| = |

−−−→
P1P2| sin 40◦/ sin 60◦ = 0.5077ρ, (4.37)

|
−−−→
P3P1| = |

−−−→
P1P2| sin 80◦/ sin 60◦ = 0.7779ρ, (4.38)

(note that
−−−→
P3P2 ‖ a∗ and

−−−→
P3P1 ‖ b∗). Hence, in the reciprocal basis,

P1 = P2 +

(
0.7779ρ
−0.5077ρ

)
=

(
0
−1

)
+

(
1
3 + (0.7779− 1√

3
)ρ

1
3 + (−0.5077− 1√

3
)ρ

)
, (4.39)

and so the components of q1 are given by

δ1 =
1

3
+

(
0.7779− 1√

3

)
ρ, (4.40)

δ2 =
1

3
+

(
−0.5077− 1√

3

)
ρ. (4.41)

Inserting a value for the radius ρ ≈ 0.015a∗ (see section 4.3.2.1) results in

δ1 = 0.3363 . . . , δ2 = 0.3171 . . . , and ε = 0.3247 . . . . (4.42)

4.4.4 Intensity calculations

The previous sections developed the formalism needed to generate the oxygen displacement

patterns associated with a general propagation vector. It is now possible to apply these

models to the X-ray data collected on YbFe2O4. For the incommensurate model, one can

make any commensurate approximation to the incommensurate charge ordered structure

(whose propagation vector was calculated in section 4.4.3), calculate the positions of all

the atoms in the commensurate unit cell (typically this will be very large if it is to be a

good approximation to the incommensurate structure), and therefore calculate the scattered

X-ray intensity from an array of such supercells.

The same method may be applied to the commensurate model of section 4.4.2, for which

a calculation of the intensities along a particular satellite rod may be achieved by building

a supercell whose dimensions are 3a × 3b × 3c for the q1 = (1/3, 1/3, 1/3) structure, or

3a × 3b × c for the q2 = (1/3, 1/3, 0) structure. The structure factor would then be given

by

F (Q) =
∑

j atoms in crystal

fj(Q)eiQ·rj (4.43)
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where we can write

rj = R(sup.cell)
n + xl (4.44)

and ∑
j atoms in crystal

=
∑

n supercells

∑
l atoms in supercell

. (4.45)

Note that the xl will be fractional coordinates since they are defined with respect to the

lattice vectors of the supercell (not the crystallographic cell). Thus

F (Q) =
∑

n supercells

∑
l atoms in supercell

fl(Q)eiQ·(R
(sup.cell)
n +xl) (4.46)

=
∑
n

eiQ·R
(sup.cell)
n

∑
l

fl(Q)eiQ·xl . (4.47)

As in section 4.2, the first summation is just the addition of a very large number of phase

factors, which will be zero unless Q is equal to a reciprocal lattice vector of the supercell,

denoted G(sup.cell). Hence

F (Q) ∝ δ(3)
(
Q−G(sup.cell)

)∑
l

fl(Q)eiQ·xl . (4.48)

The places where the delta function at the start of this expression is non-zero mark the

centres of the peak profiles that will be attached to each intensity maximum2.

In the case of the incommensurate model of section 4.4.3, the following commensurate

approximations were made to the propagation vectors:

q1 =

 42/125
38/125

1/3

 =

 0.336
0.304

0.333 . . .

 , (4.49)

q2 =

 8/25
8/25

0

 =

 0.320
0.320

0

 . (4.50)

Thus, for the q1 structure, a supercell of dimensions 125a×125b×3c will contain 42 repeating

units along the a-direction, 38 along b, and 1 along c. Likewise for the q2 structure, a

supercell of dimensions 25a × 25b × c will contain 8 repeating units along the a-direction,

8 along b, and 1 along c. These are the supercell dimensions that were used in the model,

and equation (4.48) is again used to calculate the structure factors.

The calculation of the scattered X-ray intensities (whether from the commensurate or

incommensurate models) proceeds according to the following steps:

2In principle one could attempt to simplify this expression by including the harmonic oxygen displacement
patterns described in the previous section, making explicit the dependence on q. This approach is not
followed however, since ultimately the Yb ions will also be displaced in accordance with the surrounding
oxygen displacements, which complicates the picture somewhat. Thus the scattered intensities are calculated
directly from equation (4.48).
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Generating the supercell

The starting point is the positions of the 21 atoms (3 Yb, 6 Fe, 12 O) in the rhombohedral

crystallographic unit cell which are then converted to Cartesian coordinates. Thus, an atom

with fractional coordinates u, v, w is positioned at r = ua + vb +wc = xaêx + yaêy + zcêz,

where |a| = |b| = a and |c| = c, and the appropriate transformations are x = u − 1
2v, y =

v
√
3
2 . Following this, an ‘empty’ supercell lattice (in Cartesian coordinates) is constructed

with dimensions matching those above (depending on the propagation vector). Finally, this

lattice is convoluted with the basis of 21 atoms to form an ‘undisplaced’ supercell.

Ionic displacements

The oxygen ions are displaced according to equations (4.30) to (4.33) and the appropriate

propagation vector q. The oxygen displacements are a measure of the charge ordering, and

could be estimated, for example, using the bond valence sum method [121] provided that

both the main Bragg peaks and satellite peaks are measured. In the synchrotron experiment,

only the satellite peaks were measured (the Bragg peaks being allowed to saturate on the

detector), so for the purposes of this model I shall use a nominal displacement of 0.1 Å for

both in-plane and apical oxygen positions. Following this, the Yb ions are displaced slightly

such that they are at the centre of mass of the surrounding four3 oxygen ions (imposing

periodic boundary conditions at the edges of the supercell). This is important because, since

Yb is a strong scatterer of X-rays, we expect the intensity pattern to be very sensitive to

the Yb positions. With oxygen displacement amplitudes of 0.1 Å, typical Yb displacements

are around 0.03 to 0.05 Å.

X-ray intensities and comparison to data

The X-ray intensity associated with particular scattering vectors Q = ha∗ + kb∗ + lc∗ is

calculated for a particular plane of the reciprocal lattice, according to

I(Q) = |F (Q)|2, (4.51)

where the structure factor F (Q) is [from equation (4.48)]:

F (Q) ∝ δ(3)(Q−G(sup.cell))
∑
j

fj(|Q|)e2πi(Q1x
j
1+Q2x

j
2+Q3x

j
3). (4.52)

In this expression, Q = (Q1, Q2, Q3) = h′a∗′ + k′b∗′ + l′c∗′, where the primes refer to

the reciprocal lattice vectors of the supercell, and xj = xj1a
′ + xj2b

′ + xj3c
′ represents the

position of the jth atom in the unit supercell. Expressions for the atomic form factor

3There are four nearest neighbour oxygens to each Yb in this system.
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Yb Fe O

a1 28.6641 11.7695 3.04850
b1 1.98890 4.76110 13.2771
a2 15.4345 7.35730 2.28680
b2 0.257119 0.307200 5.70110
a3 15.3087 3.52220 1.54630
b3 10.6647 15.3535 0.323900
a4 2.98963 2.30450 0.867000
b4 100.417 78.8805 32.9089
c 7.56672 1.03690 0.250800

Table 4.1: Coefficients used in the analytic approximation to the X-ray atomic form factors
for Yb, Fe, and O [see equation (4.53)].

fj(|Q|) associated with the jth atom are determined from tables in [27]. The analytic

approximation for each atom’s form factor is given by the following expression:

f(s2) =

4∑
i=1

aie
−bis2 + c, (4.53)

where s2 := sin2 θ/λ2 and the nine coefficients a1,..,4, b1,..,4, c are given in [27], and reproduced

here in table 4.1. From Bragg’s law we have s2 = Q2

16π2 , so if Q = ha∗ + kb∗ + lc∗ then

s2 =
1

16π2
[
(h2 + k2 + hk)a∗2 + l2c∗2

]
(4.54)

=
1

16π2

[
(h2 + k2 + hk)

(
4π√
3a

)2

+ l2
(

2π

c

)2
]
, (4.55)

where a = 3.455 Å and c = 25.054 Å gives s2 in the required units of Å−2.

Intensity maps (slices of reciprocal space that can be compared directly to the data)

are made by multiplying I(Q) with a function P (Q) comprising an array of Gaussian peak

shapes positioned at the intensity maxima (where Q = G(sup.cell)). For a constant k slice

(e.g. one in which h is increasing along the x-axis, and l along the z-axis) this function is

given by

P (h, l) =
∑
m

exp

[
−(h− hmax

m )2

2σ2h
− (l − lmax

m )2

2σ2l

]
, (4.56)

where the summation runs over the intensity maxima (labelled by m) that are present within

the intensity map, having coordinates (hmax
m , lmax

m ), and the widths of the peaks in the h-

and l-directions are given by the respective σh,l. The amplitude of the ‘meandering’ peak

positions in the intensity maps is chosen to be in approximate agreement with the data; this

corresponds to a radius of roughly 0.015 a∗ as used in calculating the propagation vectors.
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Figure 4.20: Combination of scattering due to the (a) q1 and (b) q2 modes to give a single
intensity map (c), for the approximation to the incommensurate structure as detailed in
section 4.4.3.

The two sets of intensities (calculated separately for the q1 and q2 structures4) are

then combined to give a single intensity map, as shown in figure 4.20. For the purposes

of the simple models presented here, the two modes are combined with essentially equal

contribution (i.e. a scale factor is applied between them which allows for the difference

in size of the corresponding supercells upon which the magnitude of the structure factor

depends).

A simple background subtraction algorithm is run on the data before comparison is made

to the calculated intensities, the effect of which is shown in figure 4.21. The algorithm takes

two intensity profiles along l: one on the left-hand side of the rod and one on the right-hand

side. It then averages the two profiles to obtain a background profile as a function of l

which is subtracted from the entire plot. A selection of reciprocal space intensity maps,

comparing calculations (from both commensurate and incommensurate models) with the

data are presented in figures 4.22, 4.23, and 4.24. The intensity cuts chosen for the modelling

comprised data that looked the most ‘clean’ and contained well-separated peaks5. Within

each of these figures, the three sub-plots share the same intensity scale bar (right-hand side

4It is not necessary to calculate separately the intensities for each of the symmetry-equivalent domains
associated with a particular propagation vector, since they all give rise to the same real space structure and
therefore the same scattering pattern.

5Note also that the data are processed in such a way that these intensity slices are integrated over a
distance of ≈ 0.01 r.l.u. orthogonally to the plane: thus, for the purposes of modelling the data, they are
treated as a two-dimensional projection of the helix. Therefore the variation of intensity that one might
expect as the helix moves orthogonally to the plane of the data slice is not taken into account.
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Figure 4.21: An example of (a) data without background subtraction, and (b) the same
data with background subtraction.
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Figure 4.22: Intensity maps for a constant h slice through part of the (1/3,−2/3, l) set of
satellites. (a) Calculated intensity from the commensurate model with q1 = (1/3, 1/3, 1/3)
and q2 = (1/3, 1/3, 0). (b) Intensity calculated by approximating incommensurate modes
with propagation vectors q1 = (0.336, 0.304, 1/3) and q2 = (0.320, 0.320, 0). (c) The back-
ground subtracted synchrotron data collected at 150 K. Normalised intensity is indicated
by the colour bar on the right.
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Figure 4.23: As figure 4.22, for a constant k slice through the (1/3, 1/3, l) set of satellites.
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Figure 4.24: As figure 4.22, for a constant k slice through the (−7/3, 2/3, l) set of satellites.

of each figure). All of these intensities have been normalised to give the maximum intensity

in figure 4.22 a value of 1.

Although the fits are by no means perfect, they succeed in reproducing the qualitative
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behaviour of the intensities as a function of Q. Some of the more subtle features are

different in the data but this is to be expected from what is a relatively simple displacement

model. It is clear that both these models suggest that the low temperature charge ordered

structure can be thought of in terms of the population of two separate modes, presumably

both deep in the energy landscape. In addition to this, the much better fits obtained by

assuming an incommensurate model (this is particularly striking in figure 4.24) provide

compelling evidence for the existence of a population of two incommensurate modes in the

low temperature structure of YbFe2O4.

4.5 Conclusion

I have used high resolution synchrotron X-ray scattering data, taken above and below the

phase transition at T ∗, to explain the nature of the charge ordering present in YbFe2O4. At

low temperatures, the data have been successfully simulated using an oxygen displacement

model, and I have generalised the commensurate
√

3 ×
√

3 pattern to a large supercell

approximation of the observed incommensurate structure. A primary implication of these

results is that theRFe2O4 compounds should not exhibit a ferroelectric polarisation, because

the charge order is incommensurately modulated. This means that a picture similar to that

of figure 4.17 will describe the charges on the Fe2O2 bilayers: therefore a polarisation exists

across the bilayer but its direction will vary slowly with position within the plane. The

effect of this variation will cancel out any net polarisation in the bulk, even though the

bilayers are locally polar. In spite of this, an electrical polarisation has been measured in

RFe2O4 and reported in the literature. A possible explanation is provided in [122], in which

the authors claim that no intrinsic polarisation exists in LuFe2O4, and rather the reported

polarisation is due to the influence of contacts. Recent results that demonstrate that the

bilayers in LuFe2O4 are actually non-polar also appear to support this idea [123].

In addition, the T > T ∗ data confirm theoretical predictions and show a continuous

helix of scattering in reciprocal space. This was previously interpreted in terms of two-

dimensional ordering, but this is incompatible with the helical structure observed here.

Therefore significant c-axis correlations, much greater than the inter-bilayer distance, must

be present in order to explain the diffraction data.

The exact charge ordered arrangement in RFe2O4 is clearly more complex than a simple

commensurate model with a ferroelectric stacking of the bilayers (the model that would give

rise to a bulk ferroelectric polarisation) would suggest. Further research is therefore needed

in order to explain why certain samples of RFe2O4 appear to show bulk ferroelectricity

below T ∗. It would also be interesting to consider in more detail the effect of changing the

rare earth ion, since diffraction data for different R’s appear to show different periodicities
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in the charge ordering along c, although small incommensurate deviations in-plane from

the (1/3, 1/3) position are widely reported. Whilst theoretical considerations support the

existence of continuous helices of scattering in reciprocal space above T ∗, little light has

been shed so far on a corresponding real space structure that could explain this diffraction

pattern. The determination of such a structure would greatly help in understanding the

true nature of the charge ordering in RFe2O4.



Chapter 5

The low field phase diagram of
Ba0.5Sr1.5Zn2Fe12O22 hexaferrite

5.1 Introduction

Barium hexaferrites have been studied with great interest for many years as the different

structural types and the possibility of tuning the behaviour with doping (varying the rel-

ative strengths of the exchange interactions) has lead to great flexibility in the number

of different magnetic phases supported by this class of materials [124, 125]. Their room

temperature magnetism has also given rise to their use in permanent magnets in numerous

applications, and their layered structure makes them suitable for growth by epitaxial meth-

ods [126]. Further exotic magnetic arrangements can typically be induced in these materials

by altering the temperature and applied magnetic field. In particular, there has been sub-

stantial interest recently in the Z-type hexaferrites [formula (Ba,Sr)3M2Fe24O41 where M

is a divalent metal ion], which show the magnetoelectric effect at room temperature [127],

as well as the Y-type hexaferrites. Of the latter, two compositions in particular have been

well-studied: (i) Ba2Mg2Fe12O22 and (ii) Ba2−xSrxZn2Fe12O22. The Mg system displays

helical, conical, and ferrimagnetic arrangements [128, 129] as the applied magnetic field is

varied, and a ferroelectric polarisation appears in the field induced ‘tilted conical’ phase

that can be controlled with the direction of the applied field [130–132]. It was also shown

recently that this system displays signatures of an electric-dipole-active magnetic resonance

(‘electromagnon’) measured by optical techniques [133].

However, it is the equally interesting and diverse system Ba2−xSrxZn2Fe12O22 that is

the focus of this chapter. The various magnetic structures, in contrast to the Mg system,

evolve from a helimagnetic arrangement in zero applied field to various ‘fan’ structures as

the transverse field is increased [134,135]. The discovery by Kimura et al. in 2005 that one of

these fan structures also exhibits ferroelectricity [136] (this has also been reported recently

111
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in aluminium doped systems where a conical component of the magnetic structure develops

[137, 138]) has sparked renewed interest in practical applications since these systems have

been shown to display multiferroic properties at room temperature. Electron diffraction

experiments have also shown that the various magnetic structures induce modulations in

the crystal lattice [139].

Soft X-ray diffraction is an excellent tool with which to study the magnetism in these

hexaferrites because, by tuning the X-ray energy to be resonant with the Fe edge, a large

resonant enhancement in the magnetic scattering can be obtained. This has recently been

used by Mulders et al. [140] where circularly polarised X-rays were used to examine the

zero field helical structure. This technique was subsequently used to great effect in [141]

where the contrast in the diffracted signals from the helical spin arrangement between right

and left circularly polarised X-rays was exploited to map the spatial distribution of chiral

domains present in these materials.

In this chapter I present a soft X-ray diffraction study of the hexaferrite’s magnetism

in the low applied field region of the phase diagram. This technique is very sensitive to

changes in the magnetic propagation vector(s) associated with the different phases of the

material, and is therefore highly suited to studying the complex interactions between the

many different proposed structures. Polarisation analysis is employed to improve sensitivity

to the magnetic signal. Following this is a discussion of the various phases that are observed

in the data, and a construction of the field / temperature phase diagram. One of the

principal findings of this chapter is the suggestion of a new ‘6-fan’ structure that gives rise

to magnetic scattering with propagation vector q = (0, 0, 1), and energy calculations are

carried out to demonstrate that this is a feasible candidate structure for this new phase.

5.1.1 Crystal structure

The magnetoplumbite-related Y-type hexaferrites have a relatively complex crystal struc-

ture with a large unit cell1, as depicted in figure 5.1 (see also [142]). The structure consists

of an alternate stacking of spinel ‘short’ blocks (conventionally referred to as ‘S’ blocks), and

hexagonal ‘long’ blocks (‘L’ blocks). The doping x measures the relative amounts of Ba and

Sr: the system studied here has x = 1.5. The space group is R3̄m and the lattice parame-

ters of the sample used in the synchrotron experiment were measured at room temperature

using a laboratory ‘SuperNova’ X-ray source to be a = 5.852(6) Å and c = 43.54(4) Å. A

further parameter γ is necessary to describe the mixing of Fe and Zn on the 6c sites: γ is

the fraction of Fe on the 6c sites in the L block (which is equal to the fraction of Zn on the

1The correspondingly small size of c∗ makes soft X-ray diffraction (i.e. long X-ray wavelengths) particu-
larly appropriate for the study of this system.
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Figure 5.1: Crystal structure of the Y-type hexaferrite Ba2−xSrxZn2Fe12O22. (a) A per-
spective view of a single unit cell, which is shown in projection in (b). The locations of the
S and L blocks are indicated. The atoms depicted in yellow (labelled Fe / Zn) have mixed
Fe and Zn occupation, parametrised by γ.

6c sites in the S block) [143]. In [134] a value of γ = 0.661 is reported for x close to 1.5,

and this is the value that is used in describing the moments of the spin blocks in section

5.6. However, γ is known to vary between samples of nominally identical composition [143],

so this value may not be exactly correct for the sample studied here. This is of little con-

sequence for the work that follows though, as the only effect will be to adjust slightly the

exchange parameters derived to fit the data.

5.1.2 Magnetic structures

Here I introduce in more detail the various reported magnetic structures, determined by

neutron scattering in [135], that are known to be present in this hexaferrite. These systems

have many different sites containing magnetic ions, and as such the possibility exists for a

large number of complex and varied magnetic structures to appear in the material. However,

a substantial simplification can be made because all of the magnetic moments within each L

or S block can be viewed as being ferromagnetically aligned perpendicularly to c, such that
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Figure 5.2: Plan views (along c) of the various previously reported magnetic phases of the
hexaferrite [135]. Moving from (a) to (d) corresponds to increasing the applied magnetic
field from zero (the direction of B is indicated). The propagation vector(s) qi associated
with each phase are given (see also [135]), along with the labelling used for the angles
between the spin blocks. The blocks stack in the order S1-L1-S2-L2-. . . as one moves along
the positive c direction.

the spin blocks can be treated essentially as separate effective magnetic moments stacked

along c.

The magnetic phases that the material exhibits as a function of increasing applied mag-

netic field are summarised in figure 5.2. In zero field an incommensurate helical structure

is stabilised [figure 5.2(a)], with the L blocks and S blocks out of phase by an angle of

180◦ + φ0/2. Applying a transverse field causes the structure to change such that more

of the moment is aligned with the field: this results in the ‘4-fan’ oscillatory structure of

figure 5.2(b) (this is also known in the literature as the ‘Intermediate-I’ phase), and at

higher fields the ‘2-fan’ structure of figure 5.2(c) (the ‘Intermediate-II’ phase). Note that a

strong antiferromagnetic exchange interaction between nearest neighbour spin blocks tends

to align the S blocks antiparallel to the field. As the field is increased, the system enters the

multiferroic ‘Intermediate-III’ phase in which a ferroelectric polarisation is reported [136].

However, the exact structure of this phase remains controversial, since all of the diffrac-

tion data collected thus far point to a ‘2-fan’ structure [identical to figure 5.2(c)], but this

magnetic arrangement retains inversion symmetry and cannot, therefore, be polar. At still

higher fields all of the moments align (or anti-align) with the field direction producing the

ferrimagnetic configuration depicted in figure 5.2(d). The propagation vectors describing

the different phases can be calculated via the standard Fourier expansion of the collection
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of moments µl from which the structure is generated:

µl ∝
∑
j

(
Sje
−iqj ·rl + S∗je

iqj ·rl
)
, (5.1)

where Sj is the Fourier component for the jth propagation vector, and rl is the position

of the moment µl. The phase diagram summarising the above can be found in [136], and

shows that the system very quickly changes from one phase to another as the applied

field is increased. Thus, the motivation of the present work is to examine the behaviour

of the system in low applied fields, where the energies of the different phases are closely

spaced, and to perform a detailed measurement of the field dependence of the different

phase populations.

5.2 Magnetisation measurements

Before discussing the X-ray scattering measurements it is desirable to examine the behaviour

of the bulk magnetisation of the sample as a function of temperature and applied magnetic

field. These measurements are useful in revealing information about the size of the moment

belonging to a particular magnetic structure.

5.2.1 Experimental details

Magnetometry of the hexaferrite sample used in the X-ray scattering experiment was per-

formed using a Quantum Design Magnetic Property Measurement System (MPMS) XL

Superconducting Quantum Interference Device (a ‘SQUID’ magnetometer). In such an ar-

rangement two Josephson junctions are connected in parallel to create a superconducting

loop, the voltage across which can be used to measure the trapped flux quanta and thereby

the magnetic flux originating from the sample.

Practically speaking, the sample is mounted inside a plastic straw which is then attached

to the end of the MPMS insert. This in turn is connected to a translation stage which enables

the sample to be moved through the detector coils. A small field must be applied in order

to induce a non-zero net magnetisation in the sample. The sample is then moved through

the detectors and the resulting plot of the SQUID’s output against the sample position is

fitted by the software: the amplitude is taken to be the magnetisation of the sample. The

advantage of this technique is that background contributions (for example from the plastic

holding the sample) are largely eliminated.
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Figure 5.3: SQUID magnetisation measurements on the hexaferrite sample used for the
X-ray scattering experiment. (a) The bulk magnetisation as a function of applied magnetic
field for several temperatures. (b) The magnetic field derivatives of the data in (a).

5.2.2 Results

The dependence of the magnetisation on the applied magnetic field (which was oriented

within the plane of the spin blocks, orthogonally to the c direction) was measured at five

separate temperatures ranging from 50 K to room temperature. The data can be seen

in figure 5.3, which also plots the magnetic field derivative of the data. As expected, the

system quickly moves out of its zero field helical phase (which has a very low magnetisation)

when the field is applied and, within the field range measured here2, appears to tend to a

saturation value that is inversely related to the temperature.

As can be seen from the differentiated data, the system displays one main transition

in its magnetisation (only very weakly dependent on the temperature) at ≈ 30 mT: this

signals the onset of a non-helical structure which then saturates close to 90 mT. There

are also some very broad peaks in the differentiated data which indicate a change in the

magnetisation between 80 and 140 mT.

5.3 Resonant X-ray scattering

Resonant magnetic X-ray diffraction was carried out at beamline I10 at Diamond, and

employed the RASOR diffractometer. Details of the setup are given in the following section.

2This field range was chosen as it matches those fields currently obtainable with the X-ray diffraction
setup (section 5.3). At stronger fields it is expected that the data would show a number of further transitions,
ultimately resulting in a ferrimagnetic arrangement being stabilised at which point the magnetisation would
saturate.
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5.3.1 Experimental details

5.3.1.1 Determination of the propagation vectors

When evaluating the magnetic resonant cross section, one finds that the intensity is pro-

portional to the square of the magnetic scattering amplitude [see equation (2.32)]:

Fmag
RES(Q) =

∑
j

fj,RESe
iQ·rj , (5.2)

where the summation runs over the magnetic ions of the crystal3 indexed by j. Thus, since

fj,RES is proportional to the jth magnetic moment (for fixed polarisation and scattering

angle, and for scattering into the first order magnetic satellites), the scattering amplitude

is proportional to ∑
j

∑
n

(
Sne

−iqn·rj + S∗ne
iqn·rj

)
eiQ·rn (5.3)

=
∑
j

∑
n

[
Sne

i(Q−qn)·rj + S∗ne
i(Q+qn)·rj

]
(5.4)

which, when summed over the magnetic moments, is non-zero only at scattering vectors

Q = G ± qn, where G is a reciprocal lattice vector4. Thus one can determine easily the

magnetic propagation vector associated with a particular phase in the experiment, simply

by looking for the position of the magnetic satellite peaks as the scattering vector is varied

(by changing the diffractometer angles) and indexing these peaks appropriately.

5.3.1.2 Sample environment

In order to both apply and accurately measure magnetic fields at the sample position, a

custom designed sample holder was built. The hexaferrite single crystal is attached with

silver paint to a copper holder, which is screwed onto the cryostat cold finger. This holder

(see figure 5.4) allows up to two square neodymium permanent magnets to be housed

underneath the sample, carefully positioned such that their magnetic field lies within the

plane of the sample (the magnets are 1 cm wide so the field is very uniform over the 2 mm

sample width5). The vertical distance between these magnets and the sample position

can be varied by inserting copper spacers: this allows one to make coarse changes to the

magnetic field strength at the sample.

The sample holder also contains an Arepoc HHP-NU Hall sensor, designed to operate

at any temperature between 1.5 K and 350 K and in a magnetic field range up to 5 T,

3Or, in the present case, magnetic spin blocks.
4This can be shown by exploiting the periodicity of the lattice, i.e. by writing rj = Rl + r′p where R is a

lattice vector and r′ is a position vector within the unit cell. See appendix A for a more rigorous treatment.
5This was checked when the sample holder was constructed using a commercial calibrated Gaussmeter.
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Figure 5.4: The RASOR sample mount seen in two different orientations (the êx,y,z direc-
tions, as defined in figure 2.1, are indicated). The electromagnet has two central sections
removed to allow the X-ray beam to access the sample (shown in light orange). The entire
assembly is rigidly attached to the θ arm and rotates with it, the positive sense being de-
picted by the arrow in (b). Therefore the magnetic field at the sample position is the same
regardless of the diffractometer orientation. A fine pin is attached to the end of the mount
to assist in alignment and finding the centre of rotation of the chamber.

sunk into the copper slightly so that the active area is level with the sample and sits

immediately next to it. The Hall sensor was supplied with a constant current of 10 mA

using a Lakeshore model 120 current source, and the Hall voltage was read out by a Keithley

model 182 voltmeter. The sensor was calibrated offline using a calibrated Hirst transverse

probe Gaussmeter. The Hall sensor is an invaluable addition to the sample mount as it

allows precise recording of the applied field throughout the experiment. In addition, a

CernoxTM temperature sensor is also mounted close to the sample position. Cables for the

Hall and temperature sensors are connected via the dedicated feedthroughs on RASOR’s

θ-rotation.

Also attached to the θ-rotation of the instrument is a custom built iron core electro-

magnet, supplied by a high current source, designed to apply a magnetic field directed to

be both within the plane of the sample and within the scattering plane. The poles are large

enough to ensure that the magnetic field is uniform over the width of the sample, but are

shaped with a small indent to allow the incident and exit X-ray beams to pass through un-

obstructed. Preliminary measurements of this electromagnet demonstrate that, combined

with the permanent magnets fixed to the sample mount, one can achieve continuously vari-

able fields in the range 0 to 250 mT (see figure 5.5).
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Figure 5.5: Magnetic field measured at the sample position as a function of electromagnet
current, for various permanent magnet configurations.

5.3.1.3 Polarisation analysis

Here I give further details of how the polarisation analysis employed in the X-ray scattering

experiment works. As explained above, the resonant magnetic scattering amplitude is given

by

Fmag
RES(Q) =

∑
j

fj,RES e
iQ·rj (5.5)

where, from equation (2.33),

fj,RES = −iF (1)

[
0 µj · (êx cos θ − êz sin θ)

−µj · (êz sin θ + êx cos θ) µj · êy sin 2θ

]
(5.6)

describes the polarisation dependence6 in the {σ, π} basis. In this expression the jth mag-

netic moment is written µj , θ is half of the scattering angle, and the basis vectors êx,

êy, and êz are shown in figure 5.4. F (1) is a constant provided the incident wavelength is

unchanged. Since charge scattering does not alter the X-ray polarisation (i.e. the only non-

zero elements would be contained along the diagonal in the above matrix representation),

it is desirable, if one is to measure the magnetic contribution to the scattering with the

greatest sensitivity, to measure one of the off-diagonal components. For the present work,

this is done by measuring in the σ → π channel, and the orientation of the applied magnetic

field ensures that the magnetic moments are aligned in a direction giving a relatively large

cross section. This is because the moments will tend to align along the êx direction, which

6Note that the other term in the resonant magnetic scattering amplitude, which gives rise to second order
magnetic satellites, is not considered here because no such satellites were observed in the diffraction from
the zero field incommensurate spiral structure (this is the only magnetic configuration that could result in
these second order satellites [31]).
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Figure 5.6: Integrated intensities from the direct beam obtained by rocking the PA crystal,
as a function of η (rotation about the beam direction). The red line shows the ideal cos2 η
dependence. Data from [144].

appears (along with a factor of cos θ) in the off-diagonal part. By contrast, placing the

magnetic field orthogonally to this will tend to reduce the êx component of the moment as

the field is increased, lowering the magnetic scattering cross section in σ → π.

The incident X-rays are set to be σ polarised by the soft X-ray APPLE II undulator

and are close7 to 100% polarised [145]. After interacting with the magnetism in the sample,

the polarisation of the scattered beam is analysed by Bragg scattering from a polarisation

analyser (PA). For soft X-rays this is a specifically grown multilayer crystal whose inter-

layer spacing has been chosen such that the Bragg condition is met with scattering angle

θPA = 45◦ at the resonant scattering energy of 706.9 eV (although slight changes in incident

wavelength may require very small deviations from this θPA value in order to maintain the

diffraction condition). The channeltron detector employed within RASOR is positioned

at an angle 2θPA = 90◦ to detect those X-rays that are diffracted from the PA. Whilst

maintaining the scattering condition from the analyser crystal, both the PA crystal and

the detector may be rotated about the direction of the scattered X-ray beam (i.e. the axis

of rotation is along k′) by an angle η. Therefore, as shown in figure 5.6, one is able to

differentiate between the two scattering channels σ → σ, π. This figure shows data collected

with the direct beam diffracting from the PA crystal as a function of η at 706.9 eV [144]. The

leakthrough (i.e. the X-ray intensity scattered into the detector by the PA when η = 90◦)

is 0.1%. Although this energy is not the precise value of the resonance measured from

7In [145] the experimentally determined value of the Stokes parameter P1 for the I10 undulators, measur-
ing the extent to which the polarisation is linear, was found to vary between 100.1% (horizontally polarised)
and −99.3% (vertically polarised).
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the hexaferrite magnetism (see figure 5.8), it is sufficiently close for the leakthrough not to

change significantly from this value.

5.3.1.4 Detectors

The RASOR diffractometer is equipped with two detetors: a photodiode connected to a

current amplifier, and a channeltron (electron multiplier) detector. Whilst the photodiode

is useful for alignment purposes and preliminary measurements as (unlike the channeltron)

it is able to view the direct beam and strong Bragg peaks, the channeltron detector was

found to have less noise and subsequently was used to collect all the data presented from

figure 5.9 onwards.

5.3.2 Results

5.3.2.1 θ-2θ scans

As shown in figure 5.4(b), the hexaferrite crystal was oriented prior to the experiment

and polished such that the c∗ axis was pointing along the êz direction. Thus, a scan that

increases the sample rotation θ at half the rate at which the detector rotation 2θ is increased

will scan along the (0, 0, l) reciprocal space direction8. This is the fundamental type of scan

from which the majority of the data presented in this chapter will be extracted. An example

is shown in figure 5.7, which is a θ-2θ scan taken with the photodiode detector in zero applied

field and at room temperature, in the absence of polarisation anlaysis (i.e. the measurement

is made in σ → σ+π) at the resonant energy. The x-axis has been converted into reciprocal

lattice units via the relation

l =
4π sin

(
2θ
2

)
c∗λ

. (5.7)

In the above c∗ = 2π/c is determined by fitting the (0, 0, 3) Bragg peak, and λ is the X-ray

wavelength.

In the centre of the scan is the very intense (0, 0, 3) charge reflection [note that, due to

the rhombohedral centring, only those Bragg peaks (h, k, l) satisfying −h + k + l = 3n for

n ∈ Z are allowed]. Surrounding this there are two magnetic reflections at l = 2.36 and

l = 3.64 which are due to the helical spin block structure. Further out there are two very

weak peaks positioned at l = 1.5 and l = 4.5, appearing due to a small second harmonic

(i.e twice the energy) contribution to the undulator spectrum: this means that the strong

charge reflections at (0, 0, 3) and (0, 0, 9) have second harmonics positioned at (0, 0, 1.5) and

(0, 0, 4.5) respectively. Finally, at low l (corresponding to low scattering angles) there is a

substantial increase in the background. This is due to the specular geometry employed in

8Offsets in θ have to be determined during the sample alignment and corrected.
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Figure 5.7: (a) l-scan of the hexaferrite sample at room temperature and in zero applied
magnetic field. The full Bragg peak is shown in (b) [the intensity scale is the same as in
(a)].

this experiment and is simply a surface effect that results in reflection of the soft X-ray

beam. The presence of both the second harmonic charge peaks and the specular intensity

can be reduced to below background with polarisation analysis by measuring in the σ → π

channel.

5.3.2.2 Energy dependence

It is important to examine the behaviour of the diffracted intensity as a function of incident

X-ray energy in order to determine where the greatest resonant enhancement in the signal

may be obtained. Figure 5.8 plots the energy dependence of the magnetic peak associated

with the helical phase at room temperature and zero field: a clear enhancement is seen

close to 708.6 eV (the energy at which the remainder of the experiment took place9) and an

additional feature is visible at ≈ 720 eV. These are due, respectively, to the Fe L3 2p3/2 and

Fe L2 2p1/2 atomic transitions, whose elemental binding energies are 706.8 eV and 719.9 eV

respectively [146].

9The energy calibration was checked by fitting a room temperature θ-2θ scan of the (0, 0, 3) peak (taken
at the resonant energy) to determine the centre in 2θ. The room temperature lattice parameter (determined
from laboratory X-ray diffraction) was then used to extract the X-ray wavelength, using equation (5.7). This
gives an accurate value for the energy of the resonance, which is offset with respect to the nominal energy
to which the monochromator is set. Data at non-resonant energies (these only appear in figure 5.8) have
had this offset removed.
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Figure 5.8: Constant Q scan showing the intensity of the (0, 0, 3.64) magnetic satellite as
a function of incident X-ray energy. The data were collected in zero applied field and at
room temperature.

5.3.2.3 l-scans as a function of magnetic field

Here I give an overview of the data and discuss the general trends present within it. Figures

5.9, 5.10, and 5.11 show a detailed magnetic field dependence of the positions and intensities

of the magnetic satellites from the l-scans (on the left of the Bragg peak only) at 298 K,

165 K, and 50 K respectively. The data were all collected in the σ → π channel.

The room temperature data (figure 5.9) show a strong contribution from the helix at

q = (0, 0, qhelix) ≈ (0, 0, 0.65), which diminishes with applied field and is almost entirely

gone by 50 mT. As the helical phase disappears, a peak onsets with q = (0, 0, 1.5) and is

strongest at ≈ 80 mT. At higher fields this peak then also decreases, leaving no magnetic

satellites above 130 mT [although there is a significant increase in the intensity of the

(0, 0, 3) peak as the ferrimagnetic component develops – see figure 5.13]. A transition close

to 130 mT is also visible in the MPMS data of figure 5.3. In addition there are very small

intensities measured at peaks with propagation vectors q = (0, 0, 1) and q = (0, 0, 0.75) to

be found in the room temperature data.

The data taken at 165 K (see figure 5.10) are different from the room temperature data

in three main ways: (i) they show a marked increase in the intensity of the q = (0, 0, 1)

peak over several of the intermediate fields; (ii) the propagation vector of the helix has

changed to be much closer to q = (0, 0, 0.5), making the very small q = (0, 0, 0.75) peak

more obvious; and (iii) within the range of fields studied here there are still satellites present

with q = (0, 0, 1.5), in contrast to the room temperature data.

The 50 K data (figure 5.11) are fairly similar to the data taken at 165 K, although the

peak corresponding to the helical phase appears stronger in low fields, relative to the other
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Figure 5.9: l-scans at various magnetic fields, taken in the σ → π channel at 298 K. Peaks
are labelled with the corresponding propagation vectors q, and the position of the (0, 0, 3)
Bragg peak is indicated.

magnetic satellites, than in the 165 K data set.

5.3.2.4 Further data processing

From the l-scans discussed above, the background regions on both sides of each individual

peak were fitted with a linear intensity profile10 which was then subtracted. The resulting

peak shape was fitted (using either a Gaussian or Lorentzian function in order to obtain

the closest fit) to find the exact position of the peak. Finally the integrated intensities were

determined from the background subtracted peaks.

Following this, it is possible to gain a complete picture of how the magnetic structures

present in the sample depend on both applied field and temperature by constructing a phase

diagram, including in particular information concerning the hitherto unreported phase with

propagation vector q = (0, 0, 1).

10Higher order terms in the polynomial used to generate the background function were not found to be
necessary over the typical width of a peak.
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Figure 5.10: As figure 5.9, with data taken at 165 K.

5.4 Low field phase diagram

Having integrated the peak intensities it is possible to compare the relative sizes of each

peak as a function of applied field and temperature. This comparison is made in figure 5.12,

which shows the sizes of the helical [i.e. (0, 0, qhelix)], (0, 0, 1), and (0, 0, 1.5) propagation

vector peaks as a scatter plot (the size of each data point is scaled relative to the particular

measurement of the peak in question that had the highest integrated intensity). Once this

is done it becomes clear that the phase diagram can be split approximately into four regions

according to the different propagation vectors [the region labelled (0, 0, 0) corresponds to

those fields and temperatures where no satellites are seen and magnetic intensity is observed

purely at the ferrimagnetic position q = (0, 0, 0)]. It should be emphasised that this is very

much a qualitative treatment, the idea being to determine the approximate behaviour of

the system and identify those areas of phase coexistence. Therefore the ‘phase bound-

aries’ indicated in figure 5.12 with the dashed lines are really only suggested (approximate)

positions.



126 Chapter 5. The low field phase diagram of Ba0.5Sr1.5Zn2Fe12O22 hexaferrite

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L along (0, 0, L) / [r.l.u.]

In
te

ns
ity

 /
 [a

rb
. u

ni
ts

]

7.1
17.2
27.3
37.7
48.2
58.8
69.3
80.3
90.8
101.2
111.7
122.3
133.1
142.8

50 K
σ → π

Applied field / [mT]:

q = (0,0,1.5)

q = (0,0,1)

q = (0,0,0.75)

q = (0,0,qhelix)

(0,0,3)
[q = (0,0,0)]

Figure 5.11: As figure 5.9, with data taken at 50 K.

The weak q = (0, 0, 0.75) peaks observed in the data are not considered further in this

treatment because, as can be seen from the 4-fan structure in figure 5.2, the q = (0, 0, 0.75)

component only describes a modulation in the magnetic structure that is orthogonal to

the applied field direction. However, by measuring the intensity scattered into the σ → π

channel one is sensitive only to the components of the magnetic structure along êx and êz

[equation (5.6)], i.e. in effect the X-rays measure only a projection of the magnetic structure

onto the scattering plane. Since the geometry used for this experiment has the scattering

plane aligned with the field direction, in principle any magnetic satellites corresponding

to out-of-scattering-plane modulations [of which the q = (0, 0, 0.75) is one] should not be

observed. The fact that a very small peak is seen here is most likely due to the scattering

plane not being perfectly aligned to the applied field direction. Thus, the 4-fan structure

should only appear to give satellites in the diffraction at q = (0, 0, 1.5) and q = (0, 0, 0). The

same reasoning can be used to infer that, for the 2-fan structure, one should not observe

a peak at q = (0, 0, 1.5), the sole contribution to the magnetic scattering in this phase

appearing at q = (0, 0, 0). This is summarised in table 5.1.
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Phase Magnetic satellites observed in σ → π Propagation vectors, q

Helical (0, 0, 3± qhelix) (0, 0, qhelix)

6-fan (0, 0, 2) and (0, 0, 4) (0, 0, 1)
(0, 0, 3) (0, 0, 0)

4-fan (0, 0, 1.5) and (0, 0, 4.5) (0, 0, 1.5)
(0, 0, 3) (0, 0, 0)

2-fan (0, 0, 3) (0, 0, 0)

Table 5.1: Reciprocal space positions of the magnetic satellites (0, 0, l) observed in diffraction
from the various hexaferrite magnetic structures in σ → π (the ‘6-fan’ phase will be discussed
in section 5.5). The associated propagation vectors are given.

Based upon these considerations, the main findings from figure 5.12 are:

1. As the field is increased at room temperature, the system moves from a helical phase

via the 4-fan phase with q = (0, 0, 1.5) to the 2-fan phase with q = (0, 0, 0). There

is significant phase coexistence between the helical and 4-fan phase, as evidenced by

the small (0, 0, 1.5) peaks that are present at low fields, and the growing q = (0, 0, 0)

contribution with field can be seen at the (0, 0, 3) peak position (figure 5.13). This

contribution does not appear to saturate in the range measured here, indicating that

the angle φ2 of the 2-fan structure is continuing to reduce at the highest measured

fields and that the system has not reached a pure ferrimagnetic phase.

2. At intermediate temperatures (165 K) the system behaves similarly, with the addition

of a new peak at q = (0, 0, 1) that appears close to the region between the helical and

4-fan phases. The phase responsible for this peak has not been previously reported.

3. At lower temperatures, evidence of the new phase with q = (0, 0, 1) is still present,

but the fact that the intensity of the (0, 0, 3) peak levels out above ≈ 70 mT (see figure

5.13), and at a much lower value than is observed in the higher temperature data,

suggests that the 2-fan phase has not been stabilised and one is instead observing the

ferrimagnetic component belonging to the 4-fan structure, whose angle φ4 does not

appear to be changing with field.

4. Generally the measurements show a good deal of phase overlap (due to different parts

of the crystal stabilising into different phases), suggesting that all of the observed

phases are very close in energy.

In the next section I consider a candidate structure that may explain the appearance

of the q = (0, 0, 1) peaks, and I undertake energy calculations to determine which phases

should be the most stable as a function of applied magnetic field.
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Figure 5.12: Low field phase diagram based on the diffraction data of figures 5.9 to 5.11.
The points are coloured according to the propagation vector of the diffraction peak they
represent, and sized according to their relative intensities.

5.5 Energy calculations for the various phases

The energy of a particular magnetic structure may be calculated via

Ej =
∑
i

JijSj · Si − gµBB · Sj , (5.8)

which gives the energy11 of the jth spin block, and the summation is understood to run over

all of the other spin blocks surrounding Sj . For the present work, however, the only non-

zero exchange constants Jij are taken to be between nearest neighbour and second-nearest

neighbour spin blocks (i.e. Si is next to Sj or else is separated from it by one spin block

if it is to contribute to the summation). Once Ej is calculated for each spin block species

(i.e. for j = L and j = S), the average energy per (L + S) block can be determined, and its

behaviour as a function of field calculated.

5.5.1 Helical phase (zero field)

Following [135], one may describe the zero applied magnetic field structure as a simple helix

formed by the S and L blocks, with a turn angle of 180◦ + φ0/2 between adjacent blocks

(i.e. an angle φ0 between next-nearest neighbour blocks which are of the same type – see

figure 5.14 which also shows the exchange interactions). As there are three S and three L

11Note that this convention uses J > 0 to mean an antiferromagnetic coupling, J < 0 to be ferromagnetic,
and that the magnetic moment µj = gµBSj .
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Figure 5.13: Intensities of the (0, 0, 3) peaks, measured in σ → π as a function of applied
magnetic field and at different temperatures.

blocks per unit cell, the angle φ0 is related to the propagation vector of the structure via

qhelix =

(
0, 0,

3φ0
360◦

)
. (5.9)

The energy of a single S block is given by

ES = 2JLSSSSL cos(180◦ + φ0/2) + 2JSSS
2
S cosφ0, (5.10)

and for a single L block by

EL = 2JLSSSSL cos(180◦ + φ0/2) + 2JLLS
2
L cosφ0. (5.11)

Thus, the total energy per (L + S) spin block (of which there are N) is

E

N
= −2JLSSSSL cos(φ0/2) + (JSSS

2
S + JLLS

2
L) cosφ0. (5.12)

Minimising this with respect to φ0 gives

cos

(
φ0
2

)
=

JLSSSSL
2(JSSS2

S + JLLS2
L)
. (5.13)

5.5.2 ‘4-fan’ phase

The 4-fan phase has an angle of φ4 (see figure 5.2) between L blocks, and also between S

blocks. Therefore, proceeding in a similar way to above, the energies per spin block are

given by

ES = JSSS
2
S cosφ4 + JSSS

2
S − 2JLSSLSS cos

(
φ4
2

)
+ gµBSSB cos

(
φ4
2

)
(5.14)
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Figure 5.14: Spin block arrangement in the helical phase, with the exchange interactions
labelled.

and

EL = 2JLLS
2
L cosφ4 − 2JLSSLSS cos

(
φ4
2

)
− 1

2
gµBSSB (1 + cosφ4) . (5.15)

The energy per (L + S) block is therefore

E

N
= JLLS

2
L cosφ4 +

JSS
2
S2
S cosφ4 +

JSS
2
S2
S − 2JLSSLSS cos

(
φ4
2

)
− 1

2
gµBBSL(1 + cosφ4) + gµBBSS cos

(
φ4
2

)
. (5.16)

Minimising with respect to the angle φ4 results in

cos

(
φ4
2

)
=

JLSSLSS − 1
2gµBBSS

2JLLS2
L + JSSS2

S − gµBBSL
. (5.17)

5.5.3 ‘2-fan’ phase

In the 2-fan phase the angle between L blocks is denoted φ2. The energies of the individual

spin blocks may be written

ES = JLSSSSL cos(180◦ − φ2/2) + JLSSSSL cos(180◦ + φ2/2) + 2JSSS
2
S + gµBSSB (5.18)

and

EL = JLSSSSL cos(180◦ − φ2/2) + JLSSSSL cos(180◦ + φ2/2)

+ 2JLLS
2
L cosφ2 − gµBSL cos(φ2/2)B. (5.19)
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Figure 5.15: Plan view of the magnetic structure of the proposed ‘6-fan’ phase (compare to
figure 5.2). The four propagation vectors belonging to this structure are given.

Therefore

E

N
= −2JLSSSSL cos(φ2/2) +JLLS

2
L cosφ2 +JSSS

2
S− gµBBSL cos(φ2/2) + gµBBSS, (5.20)

which is minimised when

cos

(
φ2
2

)
=
JLSSSSL + 1

2gµBSLB

2S2
LJLL

. (5.21)

5.5.4 Ferrimagnetic phase

The ferrimagnetic structure (considered here and in the following for completeness, although

it is not observed in the data because stronger fields are required for it to stabilise) is

equivalent to the ‘2-fan’ structure with the angle φ2 set to zero. Thus, from equation

(5.20), the energy is

E

N
= −2JLSSSSL + JLLS

2
L + JSSS

2
S − gµBBSL + gµBBSS. (5.22)

5.5.5 Possible explanation for the q = (0, 0, 1) peaks: a ‘6-fan’ phase

Finally, a slightly more complex 6-fan phase is proposed (see figure 5.15) which would

include a propagation vector of (0, 0, 1) together with (0, 0, 0.5), (0, 0, 1.5), and (0, 0, 0)

contributions. The angle between the L blocks (and also between the S blocks) is φ6, and

the energies here are:

EL = 2JLLS
2
L cosφ6 − 2JLSSSSL cos

(
φ6
2

)
− gµBBSL

3

[
cos

(
3φ6
2

)
+ 2 cos

(
φ6
2

)]
(5.23)

and

ES =
4

3
JSSS

2
S cosφ6 +

2

3
JSSS

2
S − 2JLSSLSS cos

(
φ6
2

)
+
gµBBSS

3
[1 + 2 cosφ6] . (5.24)
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Therefore

E

N
= JLLS

2
L cosφ6 +

2

3
JSSS

2
S cosφ6 +

1

3
JSSS

2
S − 2JLSSLSS cos

(
φ6
2

)
− gµBBSL

3

[
cos

(
3φ6
2

)
+ 2 cos

(
φ6
2

)]
+
gµBBSS

3
[1 + 2 cosφ6] . (5.25)

The minimum energy value of φ6 must subsequently satisfy

A′ cos2
(
φ6
2

)
+B′ cos

(
φ6
2

)
+ C ′ = 0, (5.26)

where

A′ := 2gµBBSL, (5.27)

B′ := −2JLLS
2
L −

4

3
JSSS

2
S −

4

3
gµBBSS, (5.28)

C ′ := −JLSSLSS −
1

6
gµBBSL. (5.29)

The full Fourier decomposition of this 6-fan structure is given in the appendix, section

A.1. As explained above, the present experiment is sensitive only to modulations in the

component of the moments along êx, so the 6-fan structure will result in satellites located

at q = (0, 0, 1) and q = (0, 0, 0) as observed in the data. Furthermore, it is of interest

to note that a careful examination of the peak shape (as shown in figure 5.16) at l ≈ 3.5

reveals a certain amount of asymmetry, motivating fitting the peak with multiple Gaussian

line shapes. The figure shows that the best fit is obtained when two overlapping peaks, one

centred at l = 3.54 (due to the incommensurate helical structure) and the other commensu-

rate at l = 3.5, both contribute to the intensity profile. This is therefore highly suggestive

of a very weak q = (0, 0, 0.5) contribution which is originating from the 6-fan phase and

which is seen here, as for the q = (0, 0, 0.75) peaks, due to slight misalignment between the

direction of the applied field and the scattering plane.

5.6 Model for the room temperature phase diagram

Before calculating the exchange constants and energies of the various phases it is necessary

to establish the size of the L and S block moments at room temperature. The sizes of these

moments are given by

µL = (3 + 2γ)µFe, (5.30)

µS = (2γ − 1)µFe, (5.31)

where γ = 0.661 for the stoichiometry in question, and µFe is the average moment on the

iron site [134,136,147]. The SQUID data (section 5.2) show, for T = 298 K, a magnetisation
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Figure 5.16: Fits to the peak close to (0, 0, 3.5) (data taken at 165 K and 49 mT). A good
fit (red line) to the data (blue points) is obtained with two Gaussians (black lines), one
centred at l = 3.5 and other at an incommensurate value. The inset demonstrates the best
obtainable fit with a single Gaussian peak shape.

of 5.60 µB f.u.−1 at 200 mT, where the system is in the 2-fan phase. Since one formula unit

is equivalent to a single (L + S) block, this means that

µL cos

(
φ2
2

)
− µS = 5.60µB. (5.32)

Writing |µj | = gµBSj where j = L,S and g = 2 for the pure spin moment of the Fe3+ ion,

this can be related to the exchange constants via equation (5.21) to give

JLSSSSL + 1
2gµBSLB

2SLJLL
=

5.6

g
+ SS, (5.33)

where B = 200 mT and [from equations (5.30) and (5.31)]

µL
µS

=
SL
SS

= 13.422. (5.34)

In addition to this, from the propagation vector qhelix = (0, 0, 0.656) measured in the X-ray

diffraction data at 298 K in zero field, the turn angle of the helix is given by

φ0 =
360◦ × 0.656

3
= 78.72◦, (5.35)

which can be used in equation (5.13) to give another condition on the sizes of the exchange

constants and absolute sizes of the moments.

Two more constraints can also be imposed: namely that the helical and 4-fan phases are

of the same energy at 40 mT (the approximate position of the phase boundary) and that
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Figure 5.17: (a) Energies (in temperature units) of the helical, 4-fan, 2-fan, and ferrimag-
netic structures as a function of field at room temperature (dashed lines indicate phase
boundaries). (b) The angles φ0 (helical phase), φ4 (4-fan phase) and φ2 (2-fan phase) as
a function of field, showing that the amplitude of the fan-like oscillations becomes smaller
(i.e. the spins are bunched more closely around the field direction) as the field is increased,
as expected.

the 4-fan and 2-fan phases are of the same energy at 130 mT. These two conditions, along

with equations (5.13) and (5.33), can be used to determine uniquely the four unknowns JLS,

JLL, JSS and SS. The exchange constants are found to be (in temperature units)

JLS = 6.7 K, JSS = 4.1 K, JLL = 0.3 K, (5.36)

and the block moments are

SL = 3.4014, SS = 0.2534. (5.37)

The positive signs of the exchange constants show that every interaction is antifer-

romagnetic in nature. Figure 5.17 plots the energy of the phases (helix, 4-fan, 2-fan, and

ferrimagnetic), as well as the angles φ0, φ4, and φ2, as a function of field. This clearly shows

that the helical phase is stabilised below 40 mT. Above this field the 4-fan structure has the

lowest energy, but as the field tends towards 130 mT the energy of the 2-fan structure tends

to the same value. The ferrimagnetic structure, by comparison, remains significantly higher

in energy than the other phases, confirming that the ferrimagnetic phase is not stabilised

until fields substantially higher than those used in the present experiment are applied.
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5.7 Model for the phase diagram at low temperatures

I shall now explain the phases that appear at low temperatures, working from the ex-

perimental data collected at 165 K. These data show significant contributions from all of

the propagation vectors (and therefore all of the phases) shown in figures 5.2 and 5.15.

In particular I hope to confirm that the candidate ‘6-fan’ structure, that would explain

the appearance of the q = (0, 0, 1) peaks in the diffraction, is plausible based on energy

considerations.

Firstly, the 165 K data show that the helical phase turn angle has now reduced to

φ0 = 63.6◦, from which (as before) a constraint on the exchange constants can be inferred

from equation (5.13). Since the 6-fan phase exists alongside the other phases, in a simple

model another condition can be obtained by requiring that the minimum energy of the

6-fan phase occurs in the middle of the region it occupies in the phase diagram: this is at

≈ 50 mT. The third condition used here is that the exchange constants JLS and JLL scale

in the same way with temperature (this is reported in [135]) whereas JSS scales differently.

Applying these three conditions gives the following three exchange constants:

JLS = 32.7 K, JSS = 6.6 K, JLL = 1.5 K. (5.38)

Thus, relative to the room temperature values, JLS (and therefore JLL) have increased by

factors of ≈ 5, whereas JSS has increased by a factor of only 1.6. This is consistent with

the findings of [135], in which JLL and JLS are reported to decrease with temperature down

to ≈ 77 K, but JSS remains constant below ≈ 280 K.

Figure 5.18 shows the energies and angles of all the different phases as a function of

applied field. It is clear from this that the 6-fan structure is the minimum energy config-

uration between ≈ 30 mT and 50 mT, after which the competing 4-fan structure becomes

slightly lower in energy. However, in the lowest field regions there is very little difference

between the energies of these phases, so it is reasonable that the diffraction data show a

peak corresponding to the 6-fan structure up until ≈ 75 mT. This analysis also shows that

towards the upper end of the phase diagram, with fields of approximately 200 mT, the 2-fan

phase becomes most stable.

The fact that this model allows for a 6-fan phase to be stabilised confirms that a structure

of this type is a good candidate for the hexaferrite at low fields, in order to give rise to the

observed peaks at q = (0, 0, 1) in the diffraction. In addition, the calculations confirm that,

as in all magnetically frustrated systems, there exist a large number of states which are

all very close in energy to that of the ground state. This explains why the phase diagram

shows large regions of phase coexistence (for example, at 50 mT and 165 K signatures of the
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Figure 5.18: (a) Energies (in temperature units) of the various structures as a function of
field at 165 K. (b) The angles associated with each structure as a function of field. (c)
The low field detail from (a), with the point at which the 6-fan phase reaches its minimum
energy indicated by the dashed line (this value having been extracted from the data in order
to determine the exchange constants).

helical, 6-fan, and 4-fan phases are all present in the diffraction data) and why a striking

variety of different orderings appears in this system.

5.8 Intensity calculations

Now that the lowest energy magnetic configurations are known as a function of field, it is

possible to calculate the scattered intensities and compare these to the values measured in

the experiment (I shall do this for the 165 K data as they show the full range of phases). The

intensities originating from each phase are calculated separately (details of the derivation
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are presented in appendix A). Firstly, the 6-fan structure gives contributions at (0, 0, 3) and

(0, 0, 3 ± 1) positions in reciprocal space, with corresponding intensities I6-fan(0,0,3) [equation

(A.34)] and I6-fan(0,0,3±1) [equations (A.38) and (A.40)]. Similarly, the 4-fan structure gives

intensity at (0, 0, 3) and (0, 0, 3 ± 1.5), denoted I4-fan(0,0,3) [equation (A.43)] and I4-fan(0,0,3±1.5)

[equations (A.45) and (A.47)]. The only contribution from the 2-fan is at (0, 0, 3) and the

intensity is I2-fan(0,0,3) [equation (A.49)]. The integrated intensities of each peak can therefore

be calculated via the following equations:

Icalc.(0,0,3±1) = f6-fanI
6-fan
(0,0,3±1), (5.39)

Icalc.(0,0,3±1.5) = f4-fanI
4-fan
(0,0,3±1.5), (5.40)

Icalc.(0,0,3) = f6-fanI
6-fan
(0,0,3) + f4-fanI

4-fan
(0,0,3) + f2-fanI

2-fan
(0,0,3), (5.41)

where the f ’s are the phase fractions (summing to unity), and a global scaling factor is to

be applied between calculated and measured intensities.

Before comparing these intensities to the data, the background in the measurements

(which appears to increase at high angle) is fitted empirically using a sum of two exponen-

tial functions (these were found to describe the variation in intensity more closely than a

polynomial function). The integrated intensities measured in the data (on the low angle

side of the Bragg peak) are then compared to those given by equations (5.39) to (5.41) and

the phase fractions extracted. The shapes of the magnetic satellites at both high and low

angle are then fitted to the data, subject to their integrated intensities being consistent with

the calculated phase fractions. The results (calculations of the intensity profiles at 165 K

for two separate fields) are shown along with the measured data in figure 5.19. Note that

the data in figure 5.19(a) show small peaks with propagation vectors q = (0, 0, 0.75): as

explained above, these appear because of the modulation associated with the 4-fan phase

which is not precisely out of the scattering plane (due to slight misalignment of the applied

magnetic field). There is also a very weak peak in this plot at l = 2.5: this indicates that

a very small part of the sample remains in the helical phase even at 70.5 mT (this was not

considered in the phase fraction calculations).

The calculated phase fractions give a more detailed picture of how the system as a whole

responds to changes in the applied field. At ≈ 70 mT there is a mixture of all three phases,

although a relatively small part of the sample appears to have stabilised in the 6-fan phase

(this is because, at 70 mT, the 4-fan phase is slightly lower in energy). The majority of the

structure stabilises in the 4-fan phase as expected, although in order to explain the intensity

measured at (0, 0, 3) a significant portion (≈ 30%) of the sample is made up of the higher

energy 2-fan structure. At ≈ 150 mT none of the 6-fan phase remains, and the majority
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Figure 5.19: Measured (blue circles) and calculated (red lines) intensities for two l-scans
at 165 K. Data were obtained in the σ → π channel. In (a) the field is 70.5 mT and
the intensities are calculated for a three-phase model (comprising 6-fan, 4-fan, and 2-fan
structures). The phase fractions are indicated. All three phases contribute intensity to the
(0, 0, 3) peak, and the 4-fan and 6-fan structures result in magnetic satellites as indicated.
In (b) the field is 149.7 mT and only the 4-fan and 2-fan structures remain. The insets
show the full Bragg peak measured in each scan.

of the sample exists in the 2-fan structure. This is due to the ever decreasing difference in

energy between 4-fan and 2-fan structures as the applied field is increased.
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5.9 Conclusion

Having undertaken a detailed soft X-ray diffraction study of this hexaferrite at low fields,

the system appears to explore a multitude of phases which are all close in energy. The

helical phase is shown to exist only for the lowest fields, becoming unstable as the field is

increased and other magnetic fan structures become more favourable energetically. At room

temperature the system rapidly enters the 2-fan phase, whereas at lower temperatures the

4-fan phase is stable up to higher applied fields.

Simple exchange energy arguments have been used to calculate the differences in energy

between competing phases and, in particular, I have found that a new ‘6-fan’ phase, existing

somewhere between the helical and ‘4-fan’ (intermediate-I) structures, is a likely candidate

for the previously unreported peaks in the diffraction data. Based on the calculated inter-

spin-block angles in each of the commensurate magnetic structures, scattering intensities

are calculated and shown to fit the data. Phase fractions are extracted to quantify the

degree of phase coexistence at 165 K. The use of a diffraction technique was crucial for the

discovery of this new phase since its net magnetisation and energy are very similar to the

competing phases: the only real signature of its existence is a change in the periodicity of

the magnetic arrangement to which diffraction is extremely sensitive.

An extension of the current work could be to undertake a similar soft X-ray diffraction

measurement with a greater magnetic field applied across the sample (this will most likely

require the construction of a much larger water-cooled electromagnet), enabling one to enter

the phase in which a ferroelectric polarisation is reported. By undertaking measurements

in both σ → π and π → π channels, one would be sensitive to modulations in the magnetic

structure both within and orthogonally to the scattering plane. In this way any small

deviations from the 2-fan structure that might be responsible for breaking the inversion

symmetry could be uncovered. A more ambitious experiment could also be designed in

which an electric field is applied across the sample in an orthogonal direction to the magnetic

field. With this arrangement one could measure (in the multiferroic phase) any changes that

appear in the magnetic structure as a result of switching the direction of the electric field,

leading to greater insights as to the precise origin of the ferroelectricity in this type of

hexaferrite.





Chapter 6

Nonlinear optical measurements on MnWO4

6.1 Introduction

I present in this chapter the design details and testing of a new optical second harmonic

generation (SHG) experimental setup. Examining multiferroics with SHG is highly desir-

able because, in many cases, it provides complementary information to that obtainable by

diffraction techniques. In particular, the technique is very sensitive to (changes in) the

point symmetry, and the existence or otherwise of several key tensor components is gen-

erally enough to establish the point group of a material. This is in contrast to diffraction

techniques where X-ray or neutron refinements will often converge upon several candidate

space groups with equally good fits. This is important for the study of multiferroics and the

search for new materials, since the point symmetry is intimately related to the allowable

ferroic properties of the system.

I shall begin by examining the technical details of the experimental arrangement, and

then go on to discuss the results of tests undertaken on the multiferroic system MnWO4.

This is a good system with which to optimise and characterise the experimental arrangement

as its non-zero tensor components are well-known, and it also exhibits several different

magnetic phases as a function of temperature that can be measured by SHG. The final

part of this chapter is devoted to time-resolved pump-probe measurements on this system:

this is principally to demonstrate the flexibility of the technique but also to discuss the

observed enhancement of the SHG signal generated by (0, 1, 0) oriented crystals in response

to a perturbation by an optical (800 nm) pulse.

6.2 Design of the experiment

One of the key aims of the work presented in this thesis is to build and test an experiment

to measure SHG in various samples of interest. Here I describe the main components of the

141
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Figure 6.1: Schematic arrangement of the static SHG experiment. OPA: Optical parametric
amplifier; M: Mirror; LP: Long pass; ND: Neutral density filter; BS: Pellicle beam splitter;
WP: Wave plate; BP: Band pass; P: Polariser; PMT: Photomultiplier tube.

experimental setup. Once the light leaves the source (whether that be 800 nm light from

the femtosecond laser, or light at different wavelengths from the OPA – see chapter 2), it is

directed through a number of optical components into the sample, before the SHG light is

detected.

A typical setup for static SHG measurements is shown schematically in figure 6.1,

demonstrating the arrangement used when the OPA is producing light with λsig = 1220 nm.

The light leaves the OPA and immediately encounters a pair of dichroic mirrors which sep-

arate the signal from the idler beam and dump the idler (not shown in the figure). The

beam is then reflected from a pair of gold mirrors which are used to steer it onto a pair

of irises (not shown) that define the path. Between these a long pass (LP) filter removes

the higher frequency harmonics generated by the OPA. The beam then passes through an

optical chopper, and before reaching the variable neutral density (ND) filters that attenuate

the beam to the desired intensity the light passes through a translation stage (not shown)

that can be used to adjust the path length in time-resolved experiments. A beam split-

ter directs some of the beam into a power meter. Next the beam passes through a liquid

crystal retarder, which acts as a variable wave plate (WP), typically of λ/2 to rotate the

incident polarisation with respect to the crystal axes of the sample. A lens (of focal length

f = 17.5 cm) focusses the beam onto the sample, and a further long pass filter removes

any spurious SHG light that may have been generated by the optical components so far.

After exiting the sample, the beam is collimated and passes through a number of band pass

(BP) filters to remove all of the 1220 nm fundamental, leaving only 610 nm SHG light.

Finally the light is analysed with a polariser and passes into a photo multiplier tube (PMT)

where it is detected. Automation and control has been built into the setup to reduce data



Chapter 6. Nonlinear optical measurements on MnWO4 143

collection time and improve precision. Custom designed code has been written in Python

to oversee all of the data acquisition and plot the data in real time.

Optical chopper

The light, upon leaving the OPA, passes through a chopper wheel which has a separate unit

to set and control the frequency of rotation (throughout a chopping frequency of 385 Hz

is used, to avoid chopping at the same frequency as any harmonics of the 1 kHz repetition

rate of the laser). The control unit also provides the reference frequency which is sent to

the lock-in amplifier.

Power meter

After the chopper the light passes through a pellicle beam splitter which diverts a small

fraction (typically around 5%) of the incident beam into a power meter. This provides

a measure of I0, proportional to the fundamental beam intensity incident on the sample,

which can be used to normalise the measured signal. The power meter readings are logged

automatically during data collection.

Liquid crystal retarder

This variable retarder is controlled by an AC voltage which sets the retardance. Hence it

may be made to act like a λ/4 or, more commonly, a λ/2 waveplate for a variety of different

wavelengths simply by changing the voltage applied across it. The retarder is mounted

within a rotation stage to allow the polarisation direction of the light incident onto the

sample to be set arbitrarily (in the case of linearly polarised light). Both the retarder

power supply and rotation stage are computer controlled. The variable retarder must be

calibrated before use to establish the value of the applied AC voltage necessary to make

the retarder behave correctly as a λ/2 waveplate (this voltage depends on the precise value

of the fundamental wavelength). To do this, a series of measurements were carried out

in which light exiting the variable retarder was allowed to pass directly onto the analyser

polariser before being detected by the PMT. Since linearly polarised light incident onto a

λ/2 waveplate leaves with a rotated linear polarisation (rotated by twice the rotation angle

of the waveplate), a series of two-dimensional scans (waveplate angle vs. analyser polariser

angle) were carried out for different voltages, until the correct behaviour was observed.

Sample environment

The sample is housed inside an Oxford Instruments Optistat CF-V liquid-He flow cryostat

which provides two temperature sensors (one mounted onto the heat exchanger and a second
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CernoxTM sensor that can be mounted next to the sample) and a heater. Two Oxford

Instruments ITC503S units are used to control and monitor the temperatures, and these are

interfaced to the control software. The cryostat is mounted onto two heavy-duty translation

stages that can be used to position the sample accurately (the nominal positioning resolution

is 0.1 µm) within the beam, and again can be computer controlled.

Analyser polariser

This is a Glan Thompson polariser which is used to analyse the polarisation of the SHG

beam. It is mounted within a computer controlled rotation stage.

Detection system

The PMT detector has a variable gain set by a small DC voltage supply unit, and is

connected to the lock-in amplifier which is interfaced to the software. This ensures that

the measured SHG signal originates from fundamental light that has passed through the

chopper, vastly reducing the size of the background.

6.3 Static measurements on MnWO4

Static measurements on MnWO4 have already been performed by Meier et al. [148,149], who

reported the existence of several tensor components of both crystallographic and magnetic

origin. Thus, the results obtained in this section (which agree with the previously reported

findings) form a good test of the newly developed experimental setup and a check that

the observed signals are indeed from the second harmonic light, as confirmed by their

temperature dependences.

6.3.1 Introduction to MnWO4

MnWO4 has a monoclinic crystal structure (space group Pc/2) [151] and a view of the

atomic arrangement is given in figure 6.2. The lattice parameters were measured at room

temperature using a ‘SuperNova’ diffractometer and were a = 4.824 Å, b = 5.753 Å, c =

4.995 Å, β = 91.12◦. The magnetic Mn2+ ions stack in chains along the c axis. In the

AF1 phase, below TN1 ≈ 7 K, the system forms a commensurate magnetic structure with

propagation vector qAF1 =
(
±1

4 ,
1
2 ,

1
2

)
, in which the moments are aligned along the easy axis

of magnetisation which lies approximately 36◦ from the a axis and is within the ac plane.

In the AF2 phase, the propagation vector is incommensurate: qAF2 =
(
−0.214, 12 , 0.457

)
.

The structure in this phase is cycloidal. Above TN2 = 12.5 K, the structure maintains the

same incommensurate propagation vector but becomes sinusoidally modulated: this is the
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Figure 6.2: The crystal structure of MnWO4 with constituent species labelled [150].

AF3 phase which lasts up until TN3 = 13.5 K, above which the system is paramagnetic.

Further details can be found in [152].

In 2006 it was reported in [152, 153] that in the AF2 phase the system develops a

ferroelectric polarisation P which can be explained by the cycloidal spin structure via the

‘inverse Dzyaloshinskii-Moriya interaction’ P ∝ r̂ij × (Si × Sj) (see also section 3.1). The

polarisation therefore appears as a consequence of the inversion symmetry breaking by the

cycloid, and this makes MnWO4 a spin driven type-II multiferroic.

From the point of view of SHG, MnWO4 is a very interesting system to study since one

should be sensitive both to the inversion symmetry breaking in the polar AF2 phase, which

will give a large contribution to the susceptibility via χED, and to symmetry breaking by

the magnetic structure which also allows for non-zero components of χMD below TN3. The

symmetry-allowed tensor components have been calculated in [148] and are reproduced here

in table 6.1. The Cartesian coordinate system labelling the tensor components has êy ‖ b,

êz ‖ c, and êx = êy × êz.

One technical challenge that must be overcome in order to measure SHG in the transmis-

sion arrangement described here is that the crystals must be very thin, typically of thickness

50-100 µm [154], as crystals of greater thickness will start to generate second harmonic light

part way through the sample which will be out of phase with that generated at the start:

thus the light will destructively interfere. It is also desirable to have the crystals as thin as

possible to reduce the absorption of the SHG signal by the sample, and the surface needs
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Point group Incident light

2y/my1
′ k ‖ x χMD

yyy χMD
yzz χMD

zyz

(AF1, AF3) k ‖ y
k ‖ z χMD

yyy χMD
yxx χMD

xyx

2y1
′ k ‖ x χMD

yyy χMD
yzz χMD

zyz χED
yyy χED

yzz χED
zyz

(AF2) k ‖ y
k ‖ z χMD

yyy χMD
yxx χMD

xyx χED
yyy χED

yxx χED
xyx

Table 6.1: Non-zero susceptibility tensor elements for MnWO4 in the three magnetic phases
(after [148]).

to be of very high quality.

6.3.2 Results and discussion

Static measurements were made on two separate samples: one with a (0, 1, 0) orientation

(i.e. the incident light has k ‖ y) and one with a (0, 0, 1) orientation (k ‖ z). The static SHG

signal can be plotted as a function of the incident fundamental (set by the waveplate) and

exit second harmonic (set by the analyser polariser) light polarisations simultaneously. The

angle that the incident fundamental light makes relative to the x- (x′-) axis of the crystal

is denoted φω, and the angle made by the exit SHG light relative to the same crystal axis

is φ2ω. Figure 6.3 shows the measured SHG intensity as a function of these two angles for

the two sample orientations, both collected at a temperature of 10.5 K.

In both cases there is a single tensor element that dominates all other effects (the plots

show a single peak). In the case of k ‖ z [figure 6.3(a)], the χED,MD
yxx component is clearly

seen. However, if the incident (fundamental frequency) photons are absorbed in ED-type

transitions, the χMD tensor components are not allowed since the associated magnetisation

Mi ∝ χMD
ijk EjEk changes sign under time reversal, whereas Ej,k do not (χMD

ijk also cannot

change sign as the magnetic point group contains 1′). Therefore their inclusion in table

6.1 is only for completeness: in principle these components can be non-zero should an

MD-type transition occur when the incident photons are absorbed, but this is a higher

order contribution and therefore the χMD are expected to be very small (none of the χMD

components were observed in the data).

The existence of a signal with k ‖ y [figure 6.3(b)] seems more puzzling since there

should be no contribution here at all according to the symmetry analysis. The reason for

this signal (as proposed by Meier et al. [148]) is a result of the incommensurate modulation in

the magnetic structure of the material, which is responsible for breaking the 2y symmetry

locally (on the order of the wavelength of the fundamental light), giving rise to a weak
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Figure 6.3: Static intensity plots of two susceptibility tensor components as a function of
the incident (ω) and exit (2ω) polarisation angles. The angles are arranged in (a) such that
φ = 0◦ ‖ x, φ = 90◦ ‖ y; and in (b) such that φ = 0◦ ‖ x′, φ = 90◦ ‖ z′. Note that the
intensities are in arbitrary units and are not scaled in the same way. Both sets of data were
collected in the AF2 phase at T = 10.5 K.

SHG signal along the x′ direction for fundamental light polarised along z′ (the primed

coordinates are related to the direction of the incommensurate propagation vector of the

magnetic structure, such that x′ is within the plane of the AF2 cycloid: for details see [148]).

The fact that both of these components are clearly seen is an encouraging confirmation

that the setup is working and that it can be used to identify the non-zero second order

susceptibility components. Further confirmation is provided by the temperature dependence

of the two peaks, which is shown in figure 6.4. The temperature dependence of the SHG

signal is essentially flat in the AF1, AF3, and paramagnetic regions, but grows linearly

with cooling in the AF2 region. This is in good agreement with the data published in [148],

including the ratio of the SHG intensities at the AF1-AF2 phase boundary which is ≈ 45.

6.4 Pump-probe measurements on MnWO4

Having tested the experimental setup by measuring the static SHG response of MnWO4,

I now move on to discuss the time-resolved measurements I have undertaken on the same

system.

6.4.1 The pump-probe setup

Fundamentally, the idea of a pump-probe experiment is that one introduces a large per-

turbation to the sample in the form of a strong optical pulse (the pump), which is then
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Figure 6.4: Temperature dependence of (a) the χyxx, and (b) the χx′z′z′ susceptibility
components. The linear increase in intensity during the AF2 phase can easily be seen. Note
that both (a) and (b) use the same arbitrary scale.

followed some time ∆t after this by the probe pulse and the signal resulting from the probe

measured. By using a translation stage in the setup it becomes possible to vary the time

delay ∆t and this enables one to examine the dynamics of the system in response the pump

pulse on ultrafast time scales.

A diagram of the setup is shown in figure 6.5. The probe branch is very similar to that

used in the static experiments presented in the previous section, with the addition of a delay

stage that is used to vary the path length of the branch. In addition there is a pump branch,

which takes the ‘raw’ 800 nm light from the laser, sets its polarisation with an 800 nm λ/2

waveplate (followed by a polariser, not shown in the figure) and then directs it at a slight

angle to the probe beam (approximately 10◦) onto the sample. The pump beam that has

passed through the sample is dumped. Filters are again used to reduce contamination of

the SHG signal by anything that is generated by the upstream optics. The band pass filters

positioned in front of the PMT are now crucial, since they are responsible for removing any

potential sum-frequency-generated signal between pump and probe beams [the wavelength

of such a sum frequency signal being λpumpλprobe/(λpump + λprobe) = 483 nm] and any

second harmonic signal arising purely from the pump beam (of wavelength 400 nm).

It is necessary to ensure that the two beams, pump and probe, are overlapped both

in space and (for an appropriate position of the translation stage) in time. The latter is

achieved by ensuring that the total path length of both branches are equal. The spatial
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Figure 6.5: Schematic of the pump-probe experimental arrangement (abbreviations as figure
6.1).

overlap is ensured by aligning both beams through a pinhole mounted just above the sample

position. Once this alignment is complete then the sample is simply translated into the

position of the pinhole. In addition, the spot size of the probe at the sample position

should be smaller than that of the pump, since one only wants to examine the volume of

the crystal that is perturbed by the pump beam. To this end, the probe beam is strongly

focussed at the sample position with a spot size of ≈ 120 µm, whereas the pump beam is

slightly defocussed to give a spot size of ≈ 250 µm.

The aim of this experiment is to use the 800 nm light to pump the (0, 1, 0) oriented

sample in the AF2 phase where there is a relatively large χx′z′z′ contribution to the SHG.

This component arises from the incommensurate modulation in the crystal structure that

is derived from the incommensurate magnetism in this phase. The effect that this optical

pumping has on the crystal structure can then be measured by probing with the SHG

technique developed above.

6.4.2 Results

Figure 6.6 plots a typical pump-probe trace for the measured SHG intensity as a function

of time delay ∆t between pump and probe, with the pump polarised along the x′ direction,

and the probe branch waveplate and polariser set to examine the χx′z′z′ tensor component

as measured in the static scans. In this plot, the zero on the x-axis has been positioned

to coincide with the peak of the data, and the shaded bar gives an approximate indication
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Figure 6.6: Pump-probe trace of the SHG intensity from the χx′z′z′ susceptibility compo-
nent, with the pump polarised along x′. The shaded area gives an indication of the pump
pulse duration.

of the full width at half maximum of the pulse duration of the laser (120 fs). At negative

times (i.e. a measurement of the static SHG signal before the pump pulse has arrived) the

signal is very flat. The pump pulse then appears to cause an enhancement of roughly an

order of magnitude in the SHG signal. This enhancement lasts for an amount of time equal

to several pulse durations before it has completely decayed back to the static signal.

In order to confirm that the observed signal close to t = 0 really is an enhancement

in the SHG from the probe, as opposed to an extra signal due to sum frequency mixing

or SHG from the pump beam, a dependence was measured on the incident probe power

whilst keeping the pump power constant (a time delay scan similar to figure 6.6 having

been collected for each power). The results of this can be seen in figure 6.7 (data were

collected at 10.5 K). Figure 6.7(a) plots the size of the t = 0 peak as a function of the

incident normalising power, I0, as measured by the power meter, for five different probe

intensities. Linear and quadratic fits are both shown: the behaviour shows a distinctly

quadratic dependence which suggests the enhancement must really be in SHG as generated

by the probe beam. By way of further confirmation, figure 6.7(b) plots the size of the static

SHG response (measured far from t = 0) vs. the t = 0 response. The linear behaviour again

confirms that the signal measured in this experiment is true SHG from the 1220 nm probe

beam, and is not contaminated by light originating from any other nonlinear process in the

sample.

Finally, figure 6.8 shows SHG intensity plots as a function of the incident probe polari-

sation angle (φω) and the exit SHG polarisation angle (φ2ω), both collected at 10.5 K (note
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Figure 6.7: Data derived from similar pump-probe traces to that shown in figure 6.6, with
various probe intensities. (a) The size of the t = 0 peak plotted against I0 (which is
proportional to the incident probe intensity), with quadratic (red) and linear (black) fits.
(b) The linear relationship between the static SHG response and the height of the t = 0
peak.

that the arbitrary scale is not the same as before). In figure 6.8(a), the pump is polarised

along the z′ direction, and a clear peak in the t = 0 data is present at the χx′z′z′ position

(note though that the time trace shows that the enhancement with this pump polarisation

is only by a factor of ≈ 2, rather than the factor of ≈ 10 observed with the orthogonal

polarisation). Figure 6.8(b) shows the equivalent dependence on the probe polarisation

with the pump now polarised along the x′ direction. Here one can see a small contribution

at (φ2ω, φω) = (0◦, 90◦), i.e. from the χx′z′z′ component whose time delay dependence was

discussed above (note that the SHG intensity scale is not the same as in figure 6.6), but

much more significant is a very large contribution at (φ2ω, φω) = (90◦, 0◦) which I shall refer

to as the χz′x′x′ component.

6.4.3 Discussion

As far as the χx′z′z′ component is concerned, it seems that the pump induces an enhancement

in this component regardless of whether it is polarised along the z′ or x′ direction, although

when polarised along x′ the enhancement is ≈ 5 times larger than when it is polarised

along z′. However, a much larger contribution to the SHG that appears only when the

pump is polarised along x′ is also observed: the χz′x′x′ component (this is not present in

the static measurements). For such an enhancement to exist, the point symmetry must

be lowered in some way (this is a necessary condition for new tensor elements to appear).

One possibility may be that the effect of the pump beam, in introducing disorder, locally
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SCAN 6777; SHG intensity map; Tb = 10.6183 K; delay = 13.5917 mm
SCAN 6775; SHG intensity map; Tb = 10.6184 K; delay = 13.5917 mm
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Figure 6.8: Pump-probe intensity maps taken at t = 0, for two different pump polarisations
(the angle of which is indicated by a white line on each plot). In (a) the pump is polarised
along z′ (perpendicular to the spin cycloid), whereas in (b) the polarisation is along x′

(within the plane of the cycloid). The corresponding tensor components giving rise to the
strongest signal are indicated.

distorts the crystal lattice to a greater extent than the incommensurate magnetic structure

does alone. If these local perturbations are connected spatially to the direction of the pump

beam polarisation then this ‘extra’ local distortion would appear within the plane of the

spin cycloid for the pump polarised along x′, and out of the plane for the pump polarised

along z′. This may explain why the largest enhancements in the SHG are observed with

the pump polarised along x′, when the pump can distort the lattice within the same plane

as those distortions caused by the magnetic structure, as opposed to along z′ where the

distortions are orthogonal to this. However, as remarked in [148] in relation to SHG by

relaxor ferroelectrics (which contain randomly distributed polar clusters [155]), one would

expect that these local distortions would lead to the second harmonic signal they generate

summing incoherently across the crystal.

6.5 Conclusion and further work

In this chapter I have explained the design of a new second harmonic generation experiment,

set up to assist in determining the point symmetry of multiferroic crystals. The system

allows one to probe all non-zero susceptibility tensor elements providing that two orthogonal

thin crystal cuts are available. Temperature dependent studies are also possible, and the

entire cryostat/sample setup is mounted on a pair of high-precision translation stages which
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can be used to scan the sample surface whilst measuring the SHG efficiency: this may be

of future use in imaging magnetic domains in cases where a contrast exists in the second

harmonic light they radiate.

The system has been thoroughly tested with two samples of the multiferroic MnWO4.

Static measurements reveal an easily measurable signal whose temperature dependence

agrees with the published literature. In addition, the setup has been adjusted to carry out

time-resolved measurements with optical pumping. Data using 800 nm pump / 610 nm SHG

probe collected on MnWO4 show a large enhancement in the SHG signal generated by a

sample in the (0, 1, 0) orientation. The enhancement is dependent on the pump polarisation

and is greatest when the polarisation is within the plane of the spin cycloid. This suggests

that an incoherent SHG signal, resulting from the local distortions of the crystal caused by

the pump beam, may be responsible for the observed enhancement, although further work

will be needed to fully understand this effect.





Appendix A

Calculation of the hexaferrite scattering
intensities

In this appendix I shall derive expressions for the scattered X-ray intensities originating

from the 6-fan, 4-fan, and 2-fan phases of the hexaferrite, as used in calculating the intensity

profiles in section 5.8 [equations (5.39) to (5.41)].

A.1 Fourier descriptions of the commensurate magnetic structures

Before calculating the intensities it is necessary to obtain the Fourier descriptions of the

magnetic phases: these are given below for the three commensurate fan structures.

For the 6-fan phase, splitting each moment µL,S into components along êx and êy (figure

5.15), one has for the L blocks:

µxL(r) = AxL +Bx
L cos [(0, 0, 1) · r + φxL] , (A.1)

µyL(r) = AyL cos
[
(0, 0, 0.5) · r + φyL

]
+By

L cos
[
(0, 0, 1.5) · r + ϕyL

]
, (A.2)

where r = 0, c3 ,
2c
3 , . . . is the position of the (L + S) block belonging to the moment, the

row vectors are defined with respect to the reciprocal lattice basis vectors, the constants

Ax,yL and Bx,y
L depend on the angles of the magnetic structure in the following way:

AxL =
SL
3

cos

(
φ6
2

)
(1 + 2 cosφ6) , (A.3)

Bx
L =

4SL
3

cos

(
φ6
2

)
(1− cosφ6) , (A.4)

AyL =
4SL

3
sin

(
φ6
2

)
(cosφ6 + 1) , (A.5)

By
L =

2SL
3

sin

(
φ6
2

)(
cosφ6 −

1

2

)
, (A.6)
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and the phase angles are

φxL =
π

3
, φyL = −π

3
, ϕyL = π. (A.7)

Similarly, the S blocks may be described by

µxS(r) = AxS +Bx
S cos [(0, 0, 1) · r + φxS] , (A.8)

µyS(r) = AyS cos
[
(0, 0, 0.5) · r + φyS

]
, (A.9)

with

AxS = −SS
3

(1 + 2 cosφ6) , (A.10)

Bx
S =

2SS
3

(cosφ6 − 1) , (A.11)

AyS =
2SS√

3
sinφ6, (A.12)

and

φxS = 0, φyS =
π

2
. (A.13)

In the 4-fan magnetic structure, the L block moments are

µxL(r) = CxL +Dx
L cos [(0, 0, 1.5) · r] , (A.14)

µyL(r) = CyL cos
[
(0, 0, 0.75) · r− π

2

]
, (A.15)

where

CxL =
SL
2

(1 + cosφ4), (A.16)

Dx
L =

SL
2

(1− cosφ4), (A.17)

CyL = −SL sinφ4. (A.18)

The S block moments are given by

µxS = −SS cos

(
φ4
2

)
, (A.19)

µyS(r) = Dy
S cos

[
(0, 0, 0.75) · r− 3π

4

]
, (A.20)

where

Dy
S =
√

2SS sin

(
φ4
2

)
. (A.21)
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For the 2-fan structure, the moments are described by:

µxL = SL cos

(
φ2
2

)
, (A.22)

µyL(r) = SL sin

(
φ2
2

)
cos [(0, 0, 1.5) · r + π] , (A.23)

µxS = −SS, (A.24)

µyS = 0. (A.25)

A.2 X-ray intensities

The intensities may be calculated from the square of the resonant magnetic structure factor

[see equation (2.32)], given by

Fmag(Q) =
∑
j

fj,RESe
iQ·rj , (A.26)

where the sum runs over the magnetic blocks in the sample (labelled by j), and for scattering

into the σ → π channel the resonant magnetic form factor is given by [using equation (2.33)]:

fj,RES = −iF (1)µxj cos θ, (A.27)

where F (1) is a constant (the wavelength of the incident X-rays being fixed), θ is half of the

scattering angle, and I have neglected the contribution from µzj because there is no moment

in this direction. Since everything will be scaled by an overall constant from here onwards

I shall take F (1) = 1 .

In order to calculate the structure factors for the commensurate magnetic fan structures

described above, it will be necessary to work with a supercell that contains six (L + S)

blocks, which will contain two periods of the q = (0, 0, 1) modulation, and three periods of

the q = (0, 0, 1.5) modulation. Thus, the structure factor can be written

Fmag(Q) = −i cos θ
∑
n

6∑
p=1

[
µxL(rp)e

iQ·(Rn+rp) + µxS(rp)e
iQ·(Rn+rp− c

6
)
]
, (A.28)

where I have replaced the summation over j by two summations over n and p (both ∈ Z),

and have written rj = Rn+rp. Here, Rn = 2nc and rp = (p−1)c/3. There is an extra −c/6

appearing in the second exponential in equation (A.28) because the S blocks are displaced

along the c direction by this amount relative to the L blocks. Therefore

Fmag(Q) = −i cos θ
∑
n

eiQ·Rn

6∑
p=1

[
µxL(rp)e

iQ·rp + µxS(rp)e
iQ·rpe−

iπl
3

]
, (A.29)
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where Q = lc∗. Finally, the summation over n will be zero unless Q ·Rn = 2π × integer.

This restricts l to half-integer values, and so this summation can be rewritten as∑
n

eiQ·Rn = α δ(l −m/2), m ∈ Z, (A.30)

where α is a constant.

A.2.1 6-fan structure

The structure factor for the 6-fan arrangement is

F 6-fan
mag = −i cos θ α δ(l −m/2)

6∑
p=1

{
AxL +

Bx
L

2

[
ei(q·rp+φ

x
L) + e−i(q·rp+φ

x
L)
]}

eiQ·rp

− i cos θ α δ(l −m/2)

6∑
p=1

{
AxS +

Bx
S

2

[
eiq·rp + e−iq·rp

]}
eiQ·rpe−

iπl
3 , (A.31)

where q = (0, 0, 1). This can be split into three contributions, the first of which does not

depend on q and is given by

F 6-fan(1)
mag = −i cos θ α δ(l −m/2)

6∑
p=1

[
AxL +AxSe

− iπl
3

]
eiQ·rp (A.32)

= −i cos θ α δ(l −m/2)
[
AxL +AxSe

− iπl
3

] (
1 + e2πi

l
3 + e2πi

2l
3 + e2πi

3l
3 + e2πi

4l
3 + e2πi

5l
3

)
.

(A.33)

Given that one must have l = m/2, the term in round brackets will go to zero whenever l is

odd-half integer, and also for other integers unless l = 3m (in which case the term is equal

to 6). Thus this piece of the structure factor will lead to scattering at l = 3m (i.e. Bragg

peak) positions, with an intensity given by

I6-fan(0,0,3m) ∝
∣∣−i cos θ 6α

(
AxL +AxSe

−iπm)∣∣2 . (A.34)

The second contribution to the structure factor is given by

F 6-fan(2)
mag = −i cos θ α δ(l −m/2)

6∑
p=1

(
Bx

L

2
eiφ

x
L +

Bx
S

2
e−

iπl
3

)
ei(Q+q)·rp (A.35)

= −i cos θ α δ(l −m/2)

(
Bx

L

2
eiφ

x
L +

Bx
S

2
e−

iπl
3

) 6∑
p=1

ei(Q+q)·rp . (A.36)

Since q = (0, 0, 1), expanding the summation will give

1 + e2πi
(l+1)

3 + e2πi
2(l+1)

3 + e2πi
3(l+1)

3 + e2πi
4(l+1)

3 + e2πi
5(l+1)

3 , (A.37)
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which is the same as before except that l has been replaced by l+ 1. Thus this summation

is zero unless l + 1 = 3m, and this will lead to intensity on the low angle side of the Bragg

peaks. Therefore

I6-fan(0,0,3m−1) ∝
∣∣∣∣−i cos θ 6α

[
Bx

L

2
eiφ

x
L +

Bx
S

2
e−

iπ(3m−1)
3

]∣∣∣∣2 . (A.38)

The final contribution to the structure factor is

F 6-fan(3)
mag = −i cos θ α δ(l −m/2)

[
Bx

L

2
e−iφ

x
L +

Bx
S

2
e−

iπl
3

] 6∑
p=1

ei(Q−q)·rp , (A.39)

which will correspondingly lead to peaks at l − 1 = 3m. Therefore

I6-fan(0,0,3m+1) ∝
∣∣∣∣−i cos θ 6α

[
Bx

L

2
e−iφ

x
L +

Bx
S

2
e−

iπ(3m+1)
3

]∣∣∣∣2 . (A.40)

A.2.2 4-fan structure

The 4-fan structure factor is

F 4-fan
mag = −i cos θ α δ(l −m/2)

6∑
p=1

[
CxL +

Dx
L

2

(
eiq·rp + e−iq·rp

)]
eiQ·rp

− i cos θ α δ(l −m/2)

6∑
p=1

[
−SS cos

(
φ4
2

)]
eiQ·rpe−

iπl
3 , (A.41)

where now q = (0, 0, 1.5). Proceeding in a similar way to before, the first part of the

structure factor is

F 4-fan(1)
mag = −i cos θ α δ(l −m/2)

[
CxL − SS cos

(
φ4
2

)
e−

iπl
3

] 6∑
p=1

eiQ·rp , (A.42)

leading to intensity at the Bragg peak positions given by

I4-fan(0,0,3m) ∝
∣∣∣∣−i cos θ 6α

[
CxL − SS cos

(
φ4
2

)
e−iπm

]∣∣∣∣2 . (A.43)

The second part is

F 4-fan(2)
mag = −i cos θ α δ(l −m/2)

Dx
L

2

6∑
p=1

ei(Q+q)·rp , (A.44)

which gives intensity in the first magnetic satellite equal to

I4-fan(0,0,3m−1.5) ∝
∣∣∣∣−i cos θ 6α

Dx
L

2

∣∣∣∣2 . (A.45)
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The final part is

F 4-fan(3)
mag = −i cos θ α δ(l −m/2)

Dx
L

2

6∑
p=1

ei(Q−q)·rp , (A.46)

giving an intensity in the second satellite equal to

I4-fan(0,0,3m+1.5) ∝
∣∣∣∣−i cos θ 6α

Dx
L

2

∣∣∣∣2 . (A.47)

A.2.3 2-fan structure

The 2-fan structure factor is

F 2-fan
mag = −i cos θ α δ(l −m/2)

6∑
p=1

[
SL cos

(
φ2
2

)
− SSe−

iπl
3

]
eiQ·rp . (A.48)

This results in intensity at the Bragg peak positions, given by

I2-fan(0,0,3m) ∝
∣∣∣∣−i cos θ 6α

[
SL cos

(
φ2
2

)
− SSe−iπm

]∣∣∣∣2 . (A.49)
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