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This thesis describes research on three different projects using the experimental techniques of
resonant X-ray and elastic and inelastic neutron scattering. The first project focused on synchrotron
X-ray measurements on the hexagonal metallic magnetic AgNiO2 to explore the spontaneous tran-
sition below 365 K to a supercell crystal structure with periodic arrangements of expanded and
contracted NiO6 octahedra. The electronic energy levels of the Ni sites were probed by varying the
X-ray energy through the Ni K-edge resonance (1s-4p) and a large enhancement of the supercell
peak intensity was observed. An empirical model for the anomalous atomic scattering factors was
developed to account quantitatively for all feature observed in the rich spectral linewidth (in abso-
lute units) taking into account Kramers-Kronig relations between real and imaginary parts and a
full modeling of the energy-dependent absorption effects. The empirically extracted form factors
show an energy shift of ∼ 2.5 eV in the resonance for the different Ni sites. Comparison with
LDA calculations that include quantitative shifts in the 4p-levels due to the structural hybridization
with the surrounding oxygens, indicate a large contribution to the resonance energy shift due to
a change in the 1s core level, a characteristic signature of different number of electrons between
crystallographically different Ni sites. Measurements thus provide the first direct experimental
evidence for spontaneous honeycomb charge order in triangular Ni lattice. The second project
concerned the development of a microscopic model of the spin and orbital moment contributions
to the magnetic ground state of Co2+ ions in the Ising magnet CoNb2O6, where field induced-Ising
quantum critically was recently observed experimentally. The 28 fold degenerate energy levels for
Co2+ were calculated in the presence of crystal-field, spin-orbit coupling and exchange mean-
field. The crystal field effects were described by Steven’s operator equivalent method including
all terms allowed by the low local symmetry (monoclinic) at the Co sites. Crystal field parameters
calculated theoretically using a point charge model, further refined to include hybridization effects
were used as starting values in the empirical fits to the time-of-flight inelastic neutron scattering
measurements of transitions to crystal field levels up to 800 meV. The fits were further constrained
to reproduce the orientation of the easy-axis determined by neutron diffraction. A consistent de-
scription of all the data was obtained, including transitions to higher crystal field levels up to ∼
1700 meV measured by optical experiments. The third project focused on time-of-flight neutron
scattering measurements of the magnetic order and spin excitations near the field-induced quantum
phase transition from spontaneous magnetic order to paramagnetic in the quasi-one dimensional
spin 1/2 easy-plane antiferromagnet Cs2CoCl4. Neutron diffraction measurements observed that
upon approaching the critical field the collinear antiferromagnetic structure stable at low field was
replaced in a 1st order transition by an unexpected incommensurate spin-density-wave like order.
This is stable over only a very narrow field range of 0.32(4) T and is suppressed in a continuous
transition at 2.36 T. At much higher fields deep in the paramagnetic phase inelastic neutron scat-
tering measurements reveal sharp and strongly dispersive magnon peaks as expected in this limit
where spin are nearly ferromagnetically aligned. Detailed measurements of the dispersion relations
along several non-equivalent directions in the bc-plane were quantitatively parameterized by a
spin-wave model for an exchange Hamiltonian which confirmed the predominant one-dimensional
interactions along b-axis and frustrated interchain interactions along c. Upon lowering the field to
approach the critical point from above, in addition to the one-magnon signal a broad continuum
scattering becomes visible already at 2.5 T and grows upon approaching BC. This is attributed
to multi particles scattering process which are allowed as quantum fluctuations are present in the
paramagnetic phase due to strong easy-plane anisotropy effects in the region just above BC.
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Chapter 1

Introduction

The behaviour of electrons in solids is responsible for many of the technologically-important prop-

erties of materials. A prominent example is superconductivity observed in certain materials where

electrical current flows with no resistance below a certain critical temperature. Superconductivity

is the result of the cooperative behaviour of all electrons correlating their motion with one an-

other and acting in unison to avoid scattering by the crystal lattice and this phenomenon cannot

be understood in terms of properties of un-correlated, independently moving electrons. Supercon-

ducting materials already have applications in the generation of high magnetic fields for medical

research (magnetic resonance imaging-MRI), highly-sensitive magnetic sensors (Superconducting

Quantum Interference Devices-SQUID), superconducting generators or motors, and might in the

future also have further applications for energy storage or transport of electricity without energy

loss. Effects of electron correlations leading to new material properties are abundant. Another im-

portant example is the colossal magneto-resistance (CMR) effect, discovered in transition metals

oxides whereby the electrical resistance changes by several orders of magnitude upon the applica-

tion of a modest magnetic field. This effect can be exploited in magnetic field sensors and might

replace the giant magneto-resistance field sensors in the read heads of computer magnetic hard

discs for data storage. The multiferroic effect describes the simultaneous occurrence of various

1



2 Chapter 1 Introduction

ferroic orders in certain materials, such as ferromagnetism and ferroelectricity (spontaneous elec-

trical polarization). In certain multiferroic materials, the application of a magnetic field can switch

the ferroelectric polarization or the application of an electric field can switch the magnetization of

the material. Possible applications of multiferroic materials are in magnetic/electric switches and

computer data storage. Metal-insulator transitions are also due to the strong electron correlations

and could be exploited in electronic switches. The cooperative magnetic behaviour of electrons can

also lead to important effects, such as a large temperature change in response to the application

of a magnetic field (magneto-caloric effect); this could be used for magnetic refrigeration without

moving parts or a cooling fluid.

The reason electrons act together in unison and correlate their motion and spin with one another

is of course the result of inter-electron interactions, for the charges originating in the long-range

Coulomb forces and for the spins originating in various forms of magnetic exchange interactions.

In some materials electron correlation effects are rather weak, and can be treated as a small pertur-

bation on the properties of essentially independent electrons. However, in other materials interac-

tions are very strong and stabilize entirely new forms of electronic order with new properties, for

example superconductivity is an emergent property of all electrons acting together and not simply

the "sum of the parts". Often the cooperative behaviour cannot be easily anticipated from the local

interactions among the electrons, and between the electrons and the lattice, and needs new con-

cepts, as exemplified by the history of superconductivity, discovered experimentally in 1911 but

only explained theoretically in a major tour de force culminating in 1957 after introducing the ideas

of Cooper pairing of electrons mediated via exchange of lattice vibrations, with superconductivity

arising from condensation of Cooper pair bosons. High-temperature superconductivity discovered

in the layered copper-oxides in 1987 cannot be accounted for using the standard phonon-mediated

mechanism and is still not yet theoretically explained! What makes strongly-correlated electron

systems a research field at the very forefront of condensed matter research is the fact that properties
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cannot be reliably predicted in particular if many degrees of freedom are involved, spins, charges

and orbitals, with a large potential to discover novel forms of electronic order.

In order to study microscopically the electronic order and dynamics in correlated electron ma-

terials we need probes with atomic resolution which interact with the spins and charges. Both

neutron and x-ray scattering are natural probes of the crystal structure, whereas neutrons are also

scattered by the electron spins and can image magnetic structures (elastic scattering) and also

probe the cooperative dynamics of spin fluctuations (via inelastic neutron scattering) and map the

full dispersion relations in the three-dimensional Brillouin zone. X-rays are scattered by the elec-

tron cloud and by tuning the x-ray energy to resonance (to excite an internal electronic transition)

the atomic scattering factor acquires an anomalous contribution which can provide detailed in-

formation about the electronic orbital and/or charge order, which are not accessible via neutron

scattering. The experimental technology has benefited from significant advances over the recent

years (new high-brilliance Diamond synchrotron in the UK and new suite of neutron instruments

at the ISIS Target Station 2 in UK), and this is anticipated will lead to even more opportunities for

detailed investigation of electronic order in the years to come.

The subject of this thesis is the investigation of electronic order and dynamics in three different

correlated electron systems using synchrotron resonant X-ray and neutron scattering techniques.

In the first system to be investigated, spontaneous charge order of electrons in a triangular lattice is

probed using resonant x-ray scattering using the recently-commissioned magnetism beamline I16

at the Diamond synchrotron. The second system to be investigated is the Ising magnet CoNb2O6

where the spin and orbital components of the magnetic ground state are analysed in detail tak-

ing into account crystal field effects and the spin-orbit interaction and compared to transitions

between energy levels observed via inelastic neutron scattering. The third project concerns the

quantum easy-plane magnet Cs2CoCl4 where strong applied magnetic fields can suppress the tran-

sition temperature to spontaneous magnetic order all the way to essentially zero temperature thus
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realizing a quantum phase transition between spontaneous magnetic order and paramagnetic, and

experiments focused on changes to the magnetic structure and collective spin fluctuations upon

crossing the critical point.

This thesis presents studies of the magnetic and structural properties of the low dimensional

magnets AgNiO2, CoNb2O6 and Cs2CoCl4 using x-ray resonant scattering and elastic (and in-

elastic) neutron scattering. The work presented here involves experimental results and theoretical

calculations for AgNiO2, only theoretical calculations for CoNb2O6 and experimental results for

Cs2CoCl4.

This thesis has six chapters, starting with the introduction in Chapter 1. In the second and third

chapter, I describe the x-ray and neutron scattering theory. The chapters 4, 5, and 6, describe the

results on AgNiO2, CoNb2O6 and Cs2CoCl4 respectively.

Each one of Chapters 4, 5, 6 is a comprehensive project, which includes detailed information

about the studied system, concepts and phenomena which are useful for the reader to better un-

derstand the physics presented in that chapter. In the sections within each chapter, I will discuss

the relevant experimental details, then I will present the data analysis followed by results and con-

clusions. The thesis ends with the references section, followed by the appendices, which contain

information about the theoretical calculations done for CoNb2O6.

Chapter 4 presents single crystal x-ray resonant scattering measurements on the orbitally de-

generate triangular metal AgNiO2. Experimentally it is observed that this system has a structural

transition which is accompanied by charge disproportionation at the Ni sites. From band structure

calculations we learn that the the orbital degeneracy is lifted by charge disproportionation at the

Ni sites. The aim of this project was to probe directly, using x-ray resonant scattering measure-

ments, the proposed model for the charge disproportionation. If the system is in a state with charge

disproportionation, different occupancy is expected for the d orbital of the Ni ions at inequivalent

sites. This is turn would affect the energy position of the 1s-core level state with respect to the
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Fermi level. To probe the charge disproportionation state, we performed an experiment where the

energy difference between the 1s and 4p states, for different Ni ions, was directly measured (this

energy difference is usually called edge energy). Charge disproportionation could exist, if there is

a difference in the edge energy for inequivalent Ni ions. We can obtain the empirical edge energy

for the Ni ions using a quantity called atomic scattering factor which is usually extracted from res-

onant scattering experiments. X-ray resonant scattering experiments were performed to measure

supercell reflections which are related to atomic scattering factor for different inequivalent ions.

The empirical edge energy difference for the inequivalent Ni ions in AgNiO2, is 2.5 eV. Com-

parison of this value, with the energy shifts of the edge for Ni ions in oxides, suggest that there

might be charge disproportion between the inequivalent Ni ions in AgNiO2. The edge energy is

a result of two effects: position in energy with respect to the Fermi energy of the 1s level (due to

the occupancy of the d orbital) and the position in energy of the 4p states (due to the hybridization

of the 3d(Ni) - 2p(O) states). The empirical edge energy difference is obtained because different

Ni ions will have different edge energies. This is a consequence of different occupancies of the

d orbital and different hybridizations effects with the neighbors. To understand how much of the

edge shift is due the effects of the charge disproportionation and how much to the effects of the

hybridization, I calculated the edge energy for the Ni ions in charge ordered state (using band

structure calculations in the LDA approximation). I found that both charge disproportionation and

structural distortions, contributes to the observed edge energy difference.

Chapter 4, contains a description of: the crystal structure and the structural transition; the

proposed model for the charge disproportionation at the Ni sites; the possible mechanisms to lift

the orbital degeneracy in insulating materials and the mechanism to lift the orbital degeneracy in

AgNiO2 ( mechanism proposed by the band structure calculations). The structure factors in ab-

solute units of electrons squared were extracted from the data corrected for absorption effects. A

model was developed in order to extract the empirical atomic scattering factors for inequivalent
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Ni ions. In addition I performed band structure calculations and the tensor analysis of the atomic

scattering factors. We also present temperature dependent measurements of the resonant scat-

tering, which show a strong correlation between the charge disproportionation and the structural

transition.

Chapter 5 reports a study of the magnetic ground state and excited crystal field energy levels of

Co2+ ions in the strong easy-axis magnet CoNb2O6. The aim of this chapter is to understand from

a microscopic point of view the origin of the strong Ising-like anisotropy of the Co2+ ions and to

determine the spin and orbital component of the magnetic ground state and of the excited levels

taking into account spin-orbit interactions and crystal field effects from the distorted O6 octahedron

surrounding the Co2+ ions. The theoretical calculations give a quantitative description of the origin

of the strong Ising anisotropy of Co2+ ions, attributed to the combined effect of crystal field from

a largely-distorted octahedral ligand environment and a comparable spin-orbit coupling.

The challenging problem in this project was to find the "crystal field parameters" (CFP); these

parameters take into account the interactions between the 3d electrons of the magnetic ion with

the neighboring ligand. Due to the very low symmetry of the Co2+ local environment, there is

a large number of unknown CFP in the expansion of the crystal field Hamiltonian (8 in total).

Obtaining the CFP from direct fits to the experimental data, without having any starting parameters,

is impossible due to the large search space spanned by them. In this chapter, I will describe a

method to overcome this problem. The calculated CFP using a very simple model where the

ligands are considered to be point charges fails to reproduce the energy scale found experimentally

from time-of-flight inelastic neutron scattering measurements. To improve the method, the CFP

are calculated including hybridization effects between the orbitals of the transition metal and the

orbitals of the ligands. This new set of CFP gives a good agreement between the calculated and

experimental excited crystal field energy levels, but fails to explain the two possible directions

of the easy axis, obtained experimentally from neutron diffraction. Using the CFP (calculated
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by including hybridization effects) as starting parameters, I performed fits to the data in order to

obtain empirical CFP that can explain the direction of the easy axis. Two sets of the CFP were

obtained from the fits to the data, which give a consistent description of the easy axis directions.

In addition, they can also explain the low energy excited crystal field levels measured by time-of-

flight inelastic neutron scattering and the high energy excited crystal field levels extracted from

optical measurements.

Chapter 5, starts with an introduction presenting the importance of this project, followed by a

detailed description of the crystal and magnetic structure of CoNb2O6 found using neutron diffrac-

tion. In the same section, there are discussions of the possibilities for the easy axis directions,

which are indistinguishable to neutron diffraction experiments. The following sections describe:

experimental details and extraction of the crystal field transition energies from the raw data; the

total Hamiltonian for the magnetic ion, which includes effects such as electron-nucleus interaction,

electron-electron interaction, spin-orbit interactions, crystal field interactions and interactions with

an internal (molecular) and external magnetic field; phenomenologically the crystal field hamil-

tonian and the calculated CFP, using a simple point charge model and a more complicated model

where hybridization effects are taken into account; comparison between the calculated and experi-

mental quantities obtained using the calculated CFP; the fitting procedure which was used to obtain

empirical CFP.

Chapter 6 reports elastic and inelastic time-of-flight single crystal neutron scattering exper-

iments to explore the magnetic order and spin dynamics in the quasi-one-dimensional spin-1/2

easy-plane anisotropy antiferromagnet Cs2CoCl4 in a magnetic field applied close to the easy-

plane. The scenario we investigate experimentally is that of spin-1/2 easy-plane anisotropy an-

tiferromagnet chains in a magnetic field applied perpendicularly to the direction of the magnetic

moments, a scenario which has not been explored experimentally before. Theoretical calculations

predict that a transverse magnetic field introduces quantum fluctuations into the system, which
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will destroy the long range order. The particular aim of this project was to test what happens to

the magnetic order and spin excitations as the system undergoes a phase transition at high field

where the antiferromagnetic order disappears. The main result is the observation of a new incom-

mensurate magnetic phase which was not seen experimentally prior to this work and was also not

predicted theoretically. The new phase is stable over a small field range just before the transition to

the high field paramagnetic phase. The magnetic structure in this incommensurate phase at 2.1 T

is a spin density wave, stabilized by the frustrated interchain exchange interactions. Sharp magnon

modes were observed in the inelastic scattering data collected in a field of 4 T which is deep in

the paramagnetic phase, where the spins are expected to be nearly ferromagnetically aligned along

the field direction. Spin-wave theory was used to model the experimental dispersion and empirical

exchange parameters were extracted, which confirmed the one-dimensional nature of this material.

The excitation gap vs. field shows that the gap is closing at the paramagnet-incommensurate phase

transition (within the experimental errors) which is consistent with a second order phase transition.

At higher energies above the one-magnon dispersion, evidence for broad continuum scattering was

observed in the paramagnetic phase for a finite field range above the critical field. Theoretical

calculations of the accessible phase space for two and three magnon scattering processes suggest

that the continuum scattering could be due to three magnon scattering processes.

Chapter 6 describes the crystal and magnetic structure in zero field and the necessary correc-

tions performed to the data in order to obtain the magnetic moments on absolute scale. The follow-

ing sections describe: the steps required to obtain the order parameters for the commensurate (anti-

ferromagnetic) and incommensurate phase which were further used to obtain the temperature-field

phase diagram; the results of the group theory which were used to determine the magnetic structure

in the incommensurate phase; the results of the inelastic scattering; the quantitative parametriza-

tion of the hamiltonian in order to extract the empirical exchange parameters; the evolution of the

excitation gap vs. field and the continuum scattering.



Chapter 2

Neutron scattering

Neutron scattering is a powerful tool to study the properties of matter [1] and it is based on the

interaction between neutrons and matter. The advantages of using neutrons for studying matter

are: they are neutral particles and can penetrate deep into matter, they are heavy particles whose

changes in energy may be easily measured by changes in velocity and they possess a magnetic

moment which interacts with unpaired electrons in solids, allowing the details of microscopic

magnetism to be examined. Neutrons can interact with the matter in two ways: first, the interaction

with the atomic nucleus via the so-called strong force, and secondly via magnetic forces.

The interaction via the strong force, extends only over distances of the size of the atomic nu-

cleus and the mean free path of a thermal neutron is of the order of 1 cm. The neutron can be

scattered either coherently or incoherently or it can be absorbed by the nucleus. The coherent scat-

tering results from interference effects between the nuclei, and the observed elastic Bragg scatter-

ing in a neutron scattering experiment, allows one to obtain information about the crystal structure.

The incoherent scattering is observed as an isotropic background, and is usually subtracted out of

the coherent scattering before analyzing it. The incoherent scattering can also be very useful, for

example incoherent scattering from a vanadium sample is used to obtain the detector efficiencies.

Neutron diffraction experiments use neutrons with energies in the region of about 25 meV (thermal

9
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neutrons) which is much less than the energy necessary to create nuclear excitations so the nucleus

will be in the same quantum state during the scattering process. The reason why thermal neutrons

are used in experiments is that they have energies similar to the energies of elementary excitations

in solids [1].

In magnetic solids, there are unpaired electrons with magnetic moments that will interact with

the neutron’s magnetic moment. This interaction is weaker than the nuclear interaction, but extends

over larger distances and the net result of this interaction gives rise to a similar mean free path of 1

cm as in the case of strong force. The importance of the mean free path (MFP) is that it gives the

number of collisions (NC) experienced by a neutron along a path of length L, and thus by definition

of the MFP, the average NC experienced by a neutron along a path of length L is L/MEP.

The neutron scattering processes can be quantitatively described by the partial differential

cross section, differential cross section and total cross section (usually labeled by σ ) [2, 3]. In

order to define these quantities, one can use the schematic diagram of a scattering process shown

in Figure 2.1. We assume a parallel neutron beam of flux I0 (neutrons per unit area per second) and

energy ε0, incident on a sample with a very small cross-sectional area. In this case, the probability

of scattering of a neutron by the sample is small (taking into account the MFP of neutron this

approximation is valid). If some neutrons are scattered, then at large distances from the sample we

detect neutrons with energies ε f scattered in the solid angle covered by the detectors. The partial

differential cross section is defined as the number of neutrons that are scattered per second into a

certain direction with a certain range of energy values centered at the nominal value ε f :

d2σs

dΩdε f
=

(
number of neutrons scattered per second into the solid angle dΩ

with final energies between ε f and ε f + dε f

)
I0 dΩdε f

(2.1)

The partial differential cross section d2σ

d Ωdε f
is the basic quantity that is measured during a neutron

scattering experiment and depends on the details of the interaction between the neutron and the

sample; this is the quantity which can be related to theoretical model. Since the interaction of the
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Figure 2.1 Schematic representation of the scattering process; a neutron beam with flux
I0 is incident on the sample. Neutrons with the initial wavevector ki and energy ε0 are
scattered into the solid angle dΩ with the final wavevector k f and energy ε f .

neutron with the sample can be through the strong-force or through the magnetic-force, one can

examine the form of the cross section for both nuclear and magnetic scattering. If the detector has

an efficiency η , then the number of neutrons detected per second (counting rate) is:

η I0
d2σs

dΩdε f
dΩdε f (2.2)

Integrating d2σs
d Ωdε f

over dε f , we obtain the number of neutrons per second scattered into the solid

angle dΩ (regardless of energy ε f ) to be:

I0 dΩ

∫
∞

0

d2σs

dΩdε f
dε f = I0

dσs

dΩ
dΩ (2.3)

where dσs
dΩ

is called the differential cross section and is defined as:

dσs

dΩ
=

number of neutron scattered per second into the solid angle dΩ

I0 dΩ
(2.4)

Integrating over the solid angle we find the number of neutrons scattered per second in any direc-

tion:

I0

∫ dσs

dΩ
dΩ = I0σs (2.5)



12 Chapter 2 Neutron scattering

where σs is known as the scattering cross section. Neutrons can be either scattered or absorbed,

and one can define the number of neutrons absorbed by the sample per second as I0σa ( where σa is

the absorption cross section). Finally the number of neutrons per second that have their momentum

changed in the sample is I0σt ( where σt = σs +σa, is the total cross section). The cross section

has the dimension of area and is usually quoted in barns (1 barn = 10−28 m2).

2.1 Neutron scattering cross-sections

The scattering cross section of the target can be calculated by quantum scattering theory. The

Hamiltonian H of the system (neutron plus the sample) is:

H = H0 +
p2

2m
+V (2.6)

where H0 is the Hamiltonian of the sample, ε = p2

2m is the kinetic energy of the neutron and V is

the Hamiltonian representing the interaction between the neutron and the sample (V is treated

as a small perturbation). Without the interaction, the states of the system can be written as,

|k(ε),s,Ψ(E)〉 = |k(ε)〉 |s〉 |Ψ(E)〉, where k is the wavevector of the neutron with energy ε , s

the spin of the neutron and |Ψ(E)〉 is a state of the sample corresponding to the energy E. Using

Fermi’s Golden Rule, one can calculate the probability of a transition, W1 per second from the

initial state of the system |k0(ε0),s0,Ψ0(E0)〉 to the final state of the system |k(ε f ),s,Ψ f (E f )〉 as:

W1(|k0(ε0),s0,Ψ0(E0)〉 → |k(ε f ),s,Ψ f (E f )〉) =
2π

h̄
|〈k(ε f ),s,Ψ f (E f )|V|k0(ε0),s0,Ψ0(E0)〉|2 δ (E f −E0− ε0 + ε f )

(2.7)

where the δ function express the conservation of energy. Because the initial and final states of the

sample can not be measured, the number of transitions per second, WN , going from |k0(ε0),s0,Ψ0(E0)〉
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to |k f (ε f ),s f ,Ψ f (E f )〉 is given by:

WN(|k0(ε0),s0,Ψ0(E0)〉 → |k(ε f ),s,Ψ f (E f )〉) =

∑
|Ψ0(E0)〉

p(|Ψ0〉) ∑
|Ψ f (E f )〉

W1(|k0(ε0),s0,Ψ0(E0)>→ |k(ε f ),s,Ψ f (E f )〉)
(2.8)

Eq. 2.8 is averaged over all initial states |Ψ0(E0)〉 with their distribution p(|Ψ0(E0)〉) and summed

over all final states |Ψ f (E f )〉 allowed by the δ function. The number of transitions, WN , per second

from the initial state |k0(ε0),s0,Ψ0(E0)〉 to the final state |k(ε f ),s,Ψ0(E0)〉 is given by:

WN(|k0(ε0),s0,Ψ0(E0)〉 → |k(ε f ),s,Ψ f (E f )〉) =
2π

h̄
|〈k(ε f ),s,Ψ f (E f )|V|k0(ε0),s0,Ψ0(E0)〉|2 ρ(ε f )

(2.9)

where ρ(ε f ) is the density of final scattering states defined such that ρ(ε f )dε f is the number of

final states with energy in the interval dε f centered around ε f . By combining Eqs. 2.4 and 2.9, we

observe that the differential cross section is given by:

dσs

dΩ
=

WN(|k0(ε0),s0,Ψ0(E0)〉 → |k(ε f ),s,Ψ f (E f )〉)(dΩ)

I0 dΩ
(2.10)

where WN(|k0(ε0),s0,Ψ0(E0)〉 → |k(ε f ),s,Ψ f (E f )〉)(dΩ) is the number of transition per second

in dΩ.

Using Eq. 2.10 one can calculate the partial differential cross section for scattering from

|k0(ε0),s0,Ψ0(E0)〉 to |k(ε f ),s,Ψ f (E f )〉 as follows [1–3]:

d2σs

dΩdε f
=

|k|
|k0|

( m
2π h̄

)
|〈k(ε f ),s,Ψ f (E f )|V|k0(ε0),s0,Ψ0(E0)〉|2 δ (E f −E0− ε0 + ε f )

(2.11)

In order to obtain practical formulae one has to know the interaction potential V. For example, the

interaction potential for nuclear scattering is given by:

V =
2π h̄
m

bδ (r−R) (2.12)
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where R is the nuclear position and r is the neutron’s position. The quantity b has dimensions of

length and is known as the scattering length. By calculating the scattering cross sections for the

case of a single atom held fixed such that its quantum state does not change |Ψ0(E0)〉 = |Ψ f (E f )〉

(equivalent with E0 = E f ), we obtain [1]:

d2σs

dΩdε f
=
|k|
|k0|

b2
δ (ε f − ε0) (2.13)

dσs

dΩ
=
∫ d2σs

dΩdε f
dε f = b2 (2.14)

σs =
∫ dσs

dΩ
dΩ = 4πb2 (2.15)

Using similar arguments but tedious calculations, the nuclear coherent elastic scattering cross-

section, magnetic elastic scattering cross-section and magnetic inelastic scattering cross-section

have been calculated in [1–3]. In this section, I will give only the final formulae which will be used

throughout this thesis in order to convert the raw intensities into quantities that can be used in data

analysis.

1) Nuclear coherent elastic scattering cross-section:(
d2σs

dΩdε f

)
nuclear-elastic

=δ (h̄ω)
dσnuc

dΩ
(Q) =

N (2π)3

V0
|Fnuc (Q) |2 δ (Q− τnuc)δ (h̄ω)

(2.16)

with

Fnuc (Q) = ∑
j

b jeiQ·R j (2.17)

where Fnuc is the nuclear structure factor (the sum is over all the atoms j in the unit cell at positions

R j), b j is the scattering length for atom j and Q is the scattering wavevector (see Figure 2.1).

Nuclear coherent elastic scattering occurs when the scattering vector Q coincides with a reciprocal

lattice vector τnuc.

2) Magnetic coherent elastic scattering cross-section: In magnetically ordered systems, mag-

netic coherent elastic scattering is observed as magnetic Bragg peaks (in an analogous way to
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nuclear Bragg peaks). Magnetic Bragg peaks arise due to scattering from the average magnetic

lattice, occurring when the scattering vector Q coincides with a reciprocal magnetic lattice vector

τmag. (
d2σs

dΩdε f

)
magnetic-elastic

= δ (h̄ω)
dσmag

dΩ
(Q) =

Nm (2π)3

V0m

(
γr0

2

)2
∑
αβ

(
δα,β −

Qα ·Qβ

|Q|2

)
Fα(Q)Fβ∗(Q) δ (Q− τmag)δ (h̄ω)

(2.18)

with

Fα(Q = τmag) = ∑
j

µ
α
j f j(Q)eiQ·R j (2.19)

where Fα is the magnetic structure factor (the sum is over all the magnetic ions j in the unit cell at

positions R j), f j(Q) is the magnetic form factor [4] and µα
j is the α-component of the magnetic

moment of the j ion.

3) Magnetic coherent inelastic scattering cross-section:(
d2σs

dΩdε f

)
magnetic-inelastic

=
(

γr0

2
)2 f 2(Q

) |k|
|k0|

S(Q,ω) (2.20)

with S(Q,ω) known as the response function:

S(Q,ω) = ∑
αβ

(
δα,β −

Qα ·Qβ

|Q|2

)
Sαβ (Q,ω) (2.21)

where Sαβ (Q,ω) are the space and time Fourier transforms of the time-dependent spin-spin corre-

lation functions, for non-localized magnetic excitations measured at low temperatures ( 0), where

only the ground state |GS〉 with energy EGS is populated:

Sαα(Q,ω) = ∑
|EX〉
|〈EX |Sα(Q)|GS〉|2δ (h̄ω +EGS−EEX) (2.22)

where the sum is over all the excited states |EX〉 of the system with energy EEX . Sα(Q) is the

Fourier transform of the α-component of the spin density, Sα .
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Since in Chapter 5 we present studies of the crystal field excitations, it is useful to write the

response function for localized excitations in the following form:

S(Q,ω) = ∑
|ex〉
|〈ex|µ⊥|gs〉|2δ (Egs + h̄ω−Eex) (2.23)

where µ⊥ is the component of the magnetic moment perpendicular to Q; |gs〉 and |ex〉 are the

ground and excited crystal field states.

2.2 Neutron scattering instruments: OSIRIS

To define the neutron momentum and energy transfer we assume an incident neutron of well-

defined wavevector k0, momentum h̄k0 and energy E0 = h̄2k2
0

2mN
that scatters from a sample, changing

its momentum to h̄k and energy to E = h̄2k2

2mN
in the process (see Figure 2.1). Then the neutron

momentum and energy transfers h̄Q and h̄ω are given by:

h̄Q = h̄k0− h̄k

h̄ω =
h̄2k2

0
2mN

− h̄2k2

2mN

(2.24)

2.2.1 Elastic scattering

To introduce the idea of time-of-flight neutron scattering, only the particular case of elastic scat-

tering h̄ω = 0, will be discussed in this section. In Figure 2.2 a) we show a hypothetical scattering

experiment, where a monochromatic flux I0 of neutrons with momentum k0 is incident on the

sample. Neutrons transfer momentum h̄Q = h̄k0− h̄k to the sample and scatter through an angle

2θ towards a detector bank with 13 detector elements (labeled from 1 to 13 using the following

notation: n = 1, ...,13 ). Each detector element is placed at an angle 2θn and subtends a solid angle

dΩn. Eq. 2.16 is telling us, that we have coherent scattering only when δ (Q− τnuc) =1, which is

equivalent to Q = τ . The condition, Q = τ can also be written in the form: 2 d sin θ = λ . Each
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angle 2θn corresponds to a wavevector transfer Qn. In this experiment one can probe 13 points in

the sample reciprocal space. If any of these points satisfy the condition Qn=τ , then for that partic-

ular detector, one will observe coherent scattering. In Figure 2.2 b) we show a hypothetical plot of

the differential cross section vs. 2θn, where it is assumed that for the 2θn angles corresponding to

the detector elements n = 4 and 6, the condition Q = τ is satisfied. For both detectors we observe

coherent scattering. In conclusion, with this type of experiment one can probe lines in the recipro-

cal space. A detailed description of elastic and inelastic time-of-flight neutron scattering is found

in [5–7].
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Figure 2.2 (a) Schematic diagram of a hypothetical diffraction experiment. Monochro-
matic neutrons of I0, wavevector k0 and energy E0 emanating from a source. The incident
neutrons transfer momentum h̄Q = h̄k0− h̄k (h̄ω = 0) to the sample and are scattered
through an angle 2θ towards the detector bank. (b) Plot of the differential cross section
vs. 2θn, where it is assumed that for the 2θn angles corresponding to the detector elements
n = 4 and 6, Q = τ is satisfied.

In the experiment described above, the incident flux used is monochromatic and constant in
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time. Next we will assume the same experiment as the one in Figure 2.2 a), but this time we will

assume a pulsed flux, where each pulse will have neutrons with energies in a range E to E+∆E.

Each neutron will have a different wavelength λi = 9.044
√

Ei, where Ei is the energy of neutron i.

If we assume the case of only one detector element but a pulsed incident flux, one can observe using

the relation, |Q| = 4 π sinθ/λ , that in this special case, lines in the reciprocal space are probed. If

all detectors are used with an incident pulse flux, one can probe surfaces in the reciprocal space.

For real instruments, pulses of neutrons with different energies are emanated at the same time t0.

Recording the arrival time t of the neutron at the detector, one can calculate the wavevector transfer.

The advantages of the time-of-flight neutron scattering technique, compared with the one described

above where the incident flux was monochromatic, is that for the same instrument setting one can

probe surfaces in the reciprocal space.

2.2.2 OSIRIS - ISIS pulsed neutron source

A schematic diagram of the OSIRIS instrument at ISIS pulsed neutron source, used for the single

crystal elastic and inelastic time-of-flight neutron scattering experiment is shown in Figure 2.3.

Details about the instrument can be found in Ref. [8].
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Figure 2.3 Schematic diagram of the instrument used for the elastic and inelastic time-
of-flight neutron scattering experiment.
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Chapter 3

X-ray scattering

This chapter presents a brief description of the classical and quantum-mechanical formalism used

to describe the interaction of X-ray radiation (XR) with matter. The detailed derivation of all the

formula given in this section can be found in many books [9–14]. XR is a transverse electromag-

netic radiation with the electric and magnetic fields, E and B, perpendicular to each other and to

the direction of propagation k. XR is described classically by using plane waves for the electric

and magnetic fields, E(r,t) and B(r,t), and the flux of a classical X-ray beam is proportional to

the square of the electric field amplitude. In quantum mechanics, a monochromatic X-ray beam is

viewed as being quantized into photons, each having a well defined energy and momentum; in this

case the flux of the beam is given by the number of photons passing through a given area per unit

time. The XR can be scattered by matter (X-ray scattering - XS) or can be absorbed (X-ray ab-

sorption - XA); both XS and XA will be discussed in the following sections. Before a microscopic

description of the interaction between XR and matter, I will give a brief description of quantities

that we actually measure during the experiments, such as the scattered intensity Isc, differential

cross-section, (dσ/dΩ) and total cross-section, σtot (these concepts were explained for the case

of neutron scattering in Chapter 2).

Assuming that an X-ray beam, of flux Φ0 is incident on a sample with a smaller cross-sectional

21
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area, one wants to calculate the intensity of the scattered beam Isc in a direction defined by the unit

vector u. Here, Isc is defined as the number of X-ray photons scattered per second into a detector

that subtends a solid angle ∆Ω(u). Isc will be proportional to Φ0, to the solid angle ∆Ω(u), to the

total number of particles in the sample, N, and most importantly, it is proportional to the differential

cross-section, (dσ/dΩ)(u) (which describes how efficiently an atom from the sample scatters the

XR). So we can write for the scattered intensity [11]:

Isc = Φ0 N ∆Ω

(
dσ

dΩ

)
(u) (3.1)

Thus the differential cross-section per scattering particle is defined by:(
dσ

dΩ

)
(u) =

No. of X-ray photons per second into ∆Ω(u)
Φ0 N ∆Ω(u)

(3.2)

In quantum mechanics the scattering process is described by time-dependent perturbation theory.

The interaction between the XR and the sample is specified by the interaction Hamiltonian Hint ,

which produces transitions between the initial |i〉 and final | f 〉 states. Here, |i〉 and | f 〉 refer to

the combined states of the XR and the electrons from the system. The number of transitions, W,

per second between |i〉 and | f 〉 is given in the first-order perturbation theory by Fermi’s Golden

Rule [3]:

W =
2π

h̄
|Mi f |2 ρ(ε f ) (3.3)

where the matrix elements are defined as Mi f = 〈 f |Hint |i〉 and ρ(ε f ) is the density of states, defined

such that ρ(ε f )dε f is the number of final states with energy in the interval dε f centered around

ε f . In order to evaluate the differential cross-section,
( dσ

dΩ

)
we have to calculate the number of

transitions per second, Isc, into the solid angle ∆Ω using Eq. (3.3). From the calculations of

the differential cross-section using Eq. (3.3) [10], it is observed that it is more convenient to

define a new quantity called scattering length b, which characterizes the scattering power of the

atom, with b being the only quantity that can be determined experimentally for any atom. Usually

b is a complex number and it becomes real only when the XR absorbtion effects in the atom
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are negligible. The differential cross-section is equal with the square of the scattering-length:

(dσ/dΩ)(u) = |b(u)|2. We defined the total scattering cross-section per particle σscatt−tot as the

total number of photons scattered per second, normalized to Φ0 and N, σscatt−tot =
∫
( dσ

dΩ
)(u)dΩ,

where the integration is carried out over all the directions defined by unit vector u. In terms of

scattering length, σscatt−tot = 4π |b|2. Because any atom absorbs parts of the XR without scattering

it, we also have to define the absorption cross-section, σabs. The sum of cross-section of all

the interaction processes (absorption, elastic and inelastic scattering) gives the total cross-section,

σtot = σscatt−tot +σabs [10, 11].

3.1 Classical treatment of X-ray scattering

In a first approximation, we can describe the electric component of the monochromatic XR by a

plane-wave with an electric field E that has constant modulus |E| everywhere in a plane perpendicu-

lar to the direction of propagation. For example, the spatial and temporal variation of a plane-wave,

propagating along the z-axis (one-dimensional case) can be described by a simple expression, such

as E0 ei(ω t−k z), where E0 is the amplitude of the electric field wave. In the three-dimensional case

if we write the polarization of the electric field as a unit column vector, ε , and the wavevector along

the direction of propagation as k, then the electric field plane-wave is described by:

E(R, t) = ε E0 ei(ω t−k ·r) (3.4)

When the electric field described by the Eq. (3.4) falls on a charged particle with charge q, a force

F = Eq will act on the particle producing accelerations of the charged particle. From classical

electromagnetic theory, we know that an accelerated charge radiates. This radiation which spreads

out in all directions from the atoms, has the same frequency as the primary beam and it is called

scattered radiation. In the classical theory of scattering atoms are considered to scatter as dipole

oscillators with definite characteristic atomic angular frequencies ω0, which are identified with the
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absorption angular frequencies of the atoms. The bound electrons of the atoms undergo harmonic

oscillations when the incident XR falls on them and will emit XR as a result of the oscillations.

The scattering process is modeled by considering that the atom is a single harmonic oscillator.

The equation of motion for a single harmonic oscillator of mass m, restoring constant κ and

damping coefficient Γ is given by [9, 11, 12]:

mr̈+Γ ṙ+κr = 0 (3.5)

where r̈ (ṙ) is the second (first) time derivative of the displacement r. When the oscillator, ap-

proximated by a particle with an effective charge (-e) and mass m (vibrating about a massive

positive charge which we may consider at rest), is exposed to an oscillating electric field of angular

frequency ω , whose electric vector at the time t0 and at the position of the electron is given by

Ein = ε in E0 eiω t0 , the equation of motion becomes [9, 11, 12]:

mr̈+Γ ṙ+κr = (−e)ε in E0 eiω t0 (3.6)

The restoring force and damping coefficient Γ are used to model the binding energy of the electron

to the atom. The damping is the result of the radiation which is emitted by the electron, or of

the energy transferred to other electrons. We will first consider the scattering from a single free

electron, which is simple, and presents the main characteristics of the scattering by an atom.

Let us assume that we have a free electron of mass m, which we may consider at rest. This is

equivalent with setting Γ and κ to zero in Eq. (3.6). When the electron is exposed to the oscillating

electric field, it will be forced to oscillate and will act as a source that will radiate as a small dipole

antenna. The radiated electric field at large distances (k · r » 1) is given by [9, 11, 12]:

Esc(R, t = t0 + |r|/c) =−b(εsc,ε in)E0εsc
ei(ω t−k·r)

|r|
(3.7)

with the scattering-length b defined as [10]:

b(εsc,ε in) = r0ε
∗
sc · ε in (3.8)
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where r0 = e2/(4πε0mc2) = 2.8210−5 Å is known as the classical electron radius; P = ε∗sc · ε in is

a polarization factor which depends on the X-ray source; ε∗sc is the transpose of εsc; all the other

quantities have their usual meaning. If the incident polarization is normal (or parallel) to the plane

of scattering, the outgoing one is also normal (parallel) to the plane. These polarization modes are

called sigma (labeled σ ), when perpendicular to the plane of scattering, and pi (labeled π) when

parallel, see Figure - 3.1. The process described above is the so-called Thomson scattering. The

k
in

k
sc

ε
in

ε
sc

k
in

k
sc

ε
in

ε
sc

electron electron

2θ 2θ

a) b)σ  −  σ π − π

Figure 3.1 Directions of incident and scattered polarizations for a) σ -σ mode and b) the
π-π mode. The polarization factor P of the scattering length is 1 for σ -σ scattering and
cos2θ for for π-π scattering, where θ is the scattering angle.

simple result of the Thomson scattering is a good approximation even for the bound electrons of an

atom, as far as the frequency of the XR is large compared to the characteristic atomic frequencies,

ω0. In order to calculate the scattering from an atom, it is necessary to take into account both the

number of electrons and their position in the electronic cloud. Every point of the electronic cloud

is considered to scatter independently from the others and the scattered amplitudes add coherently.

As in any interference calculation within the Born approximation, one obtains the total scattering

length by the Fourier transform of the electron density ρ(r) [10]:

b(εsc,ε in) = r0ε
∗
sc · ε in f T homson(|Q|) (3.9)

where Q is the scattering vector and the quantity f T homson(|Q|) is called the Thomson scattering

factor and is given by:

f T homson(|Q|) =
∫

ρ(r) · eiQr dV (r) (3.10)
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For forward scattering, the integral of ρ(r) over all r values must be equal to the number of elec-

trons in the atom, f T homson(|Q| = 0) = Z. Values of the Thomson scattering factors have been

numerically calculated for most of the chemical elements. Analytical functions of the form given

by Eq. (3.11), which reproduce the numerical calculations, are used to calculate the atomic Thom-

son scattering factors; the coefficients ai, bi and c are given in Ref. [15]:

f T homson(|Q|) =
4

∑
i=1

aie−bi (|Q|/4π)2
+ c (3.11)

We want to mention that throughout this chapter Thomson scattering factors refer to the values

calculated using Eq.(3.11), with the appropriate coefficients.

We can improve our model for X-ray scattering by considering the full classical model, Eq.

(3.6). This model yields the following scattering length [10]:

b(εsc,ε in) = r0
ω2

ω2−ω2
0 − iΓω /m

ε
∗
sc · ε in (3.12)

where ω2
0 = κ/m. We observe from Eq. (3.12), that when we consider the classical model for an

atom, the scattering length is a complex number; we can separate b into real and imaginary parts

by multiplication of both the numerator and the denominator by ω2−ω2
0 + iΓω /m. The result is:

b(εsc,ε in) = r0
ω2 · (ω2−ω2

0 )

(ω2−ω2
0 )

2 +(Γω /m)2 ε
∗
sc · ε in + r0

i(Γ/m)ω3

(ω2−ω2
0 )

2 +(Γω /m)2 ε
∗
sc · ε in (3.13)

The anomalous contribution to the real part of the scattering length can be separated by subtraction

of the classical Thomson scattering, r0 from the first term of Eq. (3.13). Then the anomalous

contributions to the scattering length are given by:

b(εsc,ε in)
resonant
real = r0

ω2
0 · (ω2−ω2

0 )− (Γ/m)2 ω2

(ω2−ω2
0 )

2 +(Γω /m)2 ε
∗
sc · ε in ≈ r0 (

ω0

ω−ω0
) Γ

m→small ε
∗
sc · ε in (3.14)

and

b(εsc,ε in)
resonant
imaginary = r0

(Γ/m)ω3

(ω2−ω2
0 )

2 +(Γω /m)2 ε
∗
sc · ε in (3.15)
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Further we will call the anomalous contribution as resonant contributions due to the that fact that

the anomalous contributions become significant only when the angular frequency ω of the incom-

ing XR is close to the characteristic angular frequency of the oscillator ω0. From Eqs. (3.14) and

(3.15), we see that for an atom which is modeled as a single harmonic oscillator, the real part of the

resonant scattering length of an oscillator is negative below the absorption edge, where ω < ω0,

and positive above the edge, while the imaginary part of the resonant scattering length is positive

everywhere. We define the resonant atomic scattering factors as the scattering length divided by

r0:

f ′ =
ω2

0 · (ω2−ω2
0 )− (Γ/m)2 ω2

(ω2−ω2
0 )

2 +(Γω /m)2 ε
∗
sc · ε in (3.16)

and

f ′′ = r0
(Γ/m)ω3

(ω2−ω2
0 )

2 +(Γω /m)2 ε
∗
sc · ε in (3.17)

Now we can write down the total atomic scattering factor, f (including resonance effects) for an

atom as [10, 11]:

f (E,Q) = ( f T homson(|Q|)+ f ′(ω)+ i f ′′(ω) ) ε
∗
sc · ε in (3.18)

We mentioned earlier that during the interaction process between XR and matter part of the ra-

diations is not scattered but absorbed. The absorption cross-section for a single oscillator model

is [11]:

σabs = 4πr0c
(Γ/m)ω2

(ω2−ω2
0 )

2 +(Γω /m)2 (3.19)

We stop at this point to anticipate one of the limitations of the single-oscillator model. The imag-

inary part of the resonant scattering represents the dissipation in the system or in other words the

absorption. f ′′ and σabs for a forced harmonic oscillator display a resonance when the driving

angular frequency ω is close to the characteristic angular frequency ω0, with the width of this

resonance being proportional to the damping constant Γ. It follows from Eqs. (3.17) and (3.19)

that the single oscillator model can be expected to yield at best a peak in f ′′ and σabs. Far away
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from the resonance, at frequencies ω much larger then the resonance frequency ω0, according to

Eq. (3.19), σabs ∼ ω−2 [11]. This result doesn’t resemble the experimentally determined absorp-

tion cross sections which have a discontinuous jump at an absorption edge, followed by an ω−3

fall-off [11]. In order to model this behavior for an atom one must instead assume a superposition

of oscillators with relative weights, called oscillator strengths, g(ω0)∼ σabs(ω = ω0). In this case

the resonant scattering factors become [9, 11]:

f ′(ω) = ∑
ω0

g(ω0)
ω2 · (ω2−ω2

0 )

(ω2−ω2
0 )

2 +(Γω /m)2 (3.20)

and

f ′′(ω) = ∑
ω0

g(ω0)
(Γ/m)ω3

(ω2−ω2
0 )

2 +(Γω /m)2 (3.21)

This classical model, although simple, can describe most of the phenomena. Nevertheless, the

values of the resonance frequencies and of the damping coefficient are not calculable within this

framework and are left arbitrary. This theory does not give much indication about the Q depen-

dence of the scattering factor at resonance. Therefore the only coherent and completely exact

description is given by the quantum theory of the interaction between the radiation and atoms,

summarized in the following section.

3.2 Quantum mechanical treatment of X-ray scattering

From a quantum mechanical perspective, a monochromatic X-ray beam is viewed as being quan-

tized into photons, each having an energy h̄ω and momentum h̄k. In the absence of any interaction

between the XR and the electrons in the atom, the Hamiltonian of the system is given by [11]:

H0 = Helectron +Hradiation (3.22)

where Helectron and Hradiation refer to the electrons and XR respectively.
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Classically it is shown that the interaction between an electromagnetic field and a charge q is

allowed by replacing the momentum operator p by p-q A, where A is the vector potential operator

of the radiation. To obtain the interaction Hamiltonian we consider first the case of a free electron

for which Helectron = p2/2m. This allows us to write down the Hamiltonian of the interacting

system as [11, 12]:

H0 =
(p+ eA)2

2m
+Hradiation =

p2

2m
+

eA ·p
m

+
e2A2

2m
= Helectron +Hint +Hradiation (3.23)

where Hint is the interaction Hamiltonian:

Hint =
e2A2

2m
+

eA ·p
m

(3.24)

The vector potential operator of XR is linear in photon creation and annihilation operators [11].

Keeping this in mind and observing that the second term in Hint is linear in A, we conclude that

first order in perturbation theory, Eq. (3.3), can either create or destroy a photon, but not both.

This term gives rise to the photoelectric absorption
(
σPE

abs

)
. The first term in Hint is quadratic in A

and we conclude that in first order perturbation theory it can first destroy and then create a photon,

while leaving the electron in the same atomic state |Ψ0〉 (we want to mention here that |Ψ0〉 is

the ground state of the electron, while |i〉 is the ground state of the combined system, photon plus

electron). This term therefore describes elastic Thomson scattering. To obtain resonant scattering

terms it is necessary to take the calculations to higher order. In second order perturbation theory

the transition probability from Eq. 3.3 is described as [11]:

W =
2π

h̄

∣∣∣∣∣〈 f |Hint |i〉 +
∞

∑
n=1

〈 f |Hint |n〉〈n|Hint |i〉
εi− εn

∣∣∣∣∣
2

ρ(ε f ) (3.25)

where the sum is over all possible excited states with energy εn. Using Eq. (3.25) it can be shown

that the A·p term from the interaction Hamiltonian, Eq. (3.24), which is linear in creation and an-

nihilation operators, can produce scattering via an intermediate state. Reading the matrix element

that appears in the numerator of the second term in Eq. (3.25), from right to left the scattering pro-

cess can be described in the following way: the incident photon is first absorbed and the electron
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makes a transition from the ground state, |Ψ0〉, to an intermediate state, |Ψn〉. Then the electron

makes a transition from |Ψn〉 back to |Ψ0〉 giving away its excess energy to a photon. The resonant

behaviour arises when the denominator in Eq. 3.25 tends to zero. This occurs when the total en-

ergy, εi = h̄ωin +E0, is equal to the energy of the electron in the intermediate state, εn. Here, h̄ωin

is the energy of the incident photon, E0 is the energy of the electron in the atomic ground state

|Ψ0〉, and εn = En is the energy of the electron in the atomic excited state |Ψn〉.

Ψ

t=t1 t=t
2

Ψ
o Ψo

k
f 
,k i ,

abs orption emis s ion

εfεiin
scin sc

Figure 3.2 Schematic diagram of the resonant process where an incident photon with
(kin, ε in) is absorbed by a core electron Ψ0 which is promoted to the intermediate state
Ψ f and after a short time is reemitted with (ksc, εsc) when the electron and core-hole
recombine.

The resonant scattering process to the intermediate states is controlled by two considerations.

The Pauli exclusion principle requires that only unoccupied intermediate states can be accessed,

while the usual quantum mechanical selection rules imply that electric dipole transitions dominate.

Quantum theory predicts that in solids the resonant corrections become dependent on the polariza-

tion of the incoming and scattered photons, when the symmetry of the intermediate state |Ψn〉 is

lowered due to its involvement in chemical bonding. It also predicts that resonant scattering be-

comes a probe of magnetic order in the solids, when the intermediate state is split by magnetic

interactions. The two terms described above in the interaction Hamiltonian, Eq. (3.24), give rise
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to terms bdisp1 and bdisp2 in the scattering length expression [10]:

b(~εsc,~εin) =r0 〈Ψ0|ε∗sce+iksc·r · ε ine−ikin·r|Ψ0〉−

− r0 ∑
c

〈Ψ0|ε∗sc ·p · e+iksc·r|Ψn〈〉Ψn|ε∗in ·p · e+ikin·r|Ψ0〉
m(En−E0− h̄ωin + iΓn/2)

−

− r0 ∑
c

〈Ψ0|ε∗in ·p · e−ikin·r|Ψn〈〉Ψn|ε∗sc ·p · e+iksc·r|Ψ0〉
m(En−E0 + h̄ωin)

=

= bT homson +bdisp1 +bdisp2

(3.26)

Here |Ψ0〉 and |Ψn〉 stand for the ground and excited electron states. For elastic scattering the states

|i〉 and | f 〉 in Eq. (3.25) are identical. p and r are the electron momentum and position operator.

In the last two terms from Eq. (3.26) the sum is taken over all excited states |Ψn〉 (empty bound

or continuous states). En−E0 represents the energy of the excitation and h̄ωin (h̄ωsc) is the energy

of the incident (scattered) photon. In elastic scattering h̄ωin = h̄ωsc. Here 2π h̄/Γn is the life time

of the |Ψn〉, and Γn is the quantum counterpart of the damping factor Γ, Eqs. (3.5)-(3.6), in the

classical theory.

The first term in Eq. (3.26) will give rise to Thomson scattering, also found in the classical

theory of XR scattering, Eq. (3.10). The last two terms, bdisp1 and bdisp2, define the dispersive part

of the scattering. As mentioned earlier, the numerator in the second term of (3.26) suggests that the

incoming photon transfers momentum to the electron in the ground state, |Ψ0〉, and promotes the

electron from its ground state into the excited state, |Ψn〉. We can say that the scattering bdisp1 is

obtained by the excitation, |Ψ0〉 -> |Ψn〉, then de-xcitation, |Ψn〉 -> |Ψ0〉. This order is reversed in

bdisp2 since the |Ψn〉 state, which is virtual, is destroyed before being created. From Eq. (3.26) we

observe that close to resonance, the denominator of the dispersion term bdisp1 becomes very small

compared to the denominator of the dispersion term, bdisp2, leading to the conclusion that the most

significant term close to resonance is bdisp1. In order to calculate the resonant scattering factors we

will only consider bdisp1 from Eq. (3.26). Scattering operators of the form e∓ik·r, as occuring in
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Eq. (3.26), can be developed in a power series [12]:

e∓ik·r = 1 ∓ ik · r − (k · r)2/2 ∓ ... (3.27)

The approximation in which only the leading term in the Eq.(3.27) is retained is referred to as the

dipolar approximation. The dipolar approximation works very well for the case where |k|= 2π/λ

is small (longer wavelengths as visible light) and for the case where the scattering object is compact

relative to the wavelength used (that is, if either the initial state or the final state has a compact

core-type wave function). The dipolar approximation (only the first term is retained in Eq.(3.27),

e∓ik·r = 1) works very well in case of K-edge, where an electron from the core 1s level is promoted

to the empty 4p states above the Fermi energy. For the K-edge, |Ψ0〉= |Ψ1s〉, |Ψn〉= |Ψ4p〉, E0 =

E1s, En = E4p and Γn = Γ4p.

We obtain the resonant scattering factor (in units of classical electron scattering, r0) in the

dipolar approximation using the first dispersive term bdisp1 in Eq. (3.26), by replacing e∓ik·r = 1,

using pα = −ih̄ d
dα

, where α = x,y,z, for the components of the momentum operator p and using
pα

m = i
h̄ [Helectron,α]; the resonant scattering factor becomes [12]:

f ′(E)+ i f ′′(E) =−m
h̄2 ∑

4p
(E4p−E1s)

2
[
〈Ψ1s | ε∗sc · r |Ψ4p〉〈Ψ4p | ε inr |Ψ1s〉

E4p−E1s− h̄ωin + iΓ4p/2

]
(3.28)

We can separate the real and imaginary parts of the quantum resonant scattering factor, Eq.(3.28)

using the same steps used to separate the real and imaginary parts of the classical resonant scatter-

ing , Eqs.(3.16)-(3.17).

f ′(E) =−m
h̄2 ∑

4p
(E4p−E1s)

2(E4p−E1s− h̄ωin)
〈Ψ1s | ε∗sc · r |Ψ4p〉〈Ψ4p | ε in · r |Ψ1s〉

(E4p−E1s− h̄ωin)2 +Γ2
4p/4

(3.29)

f ′′(E) =
m
h̄2 ∑

4p
(E4p−E1s)

2(Γ4p/2)
〉Ψ1s | ε∗sc · r |Ψ4p〉〉Ψ4p | ε in · r |Ψ1s〉

(E4p−E1s− h̄ωin)2 +Γ2
4p/4

(3.30)

When the 4p states are isotropic, the quantum mechanical form of the resonant scattering factors

depends on the incident and scattered polarization directions through a unique factor, ε∗sc · ε in, and
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the total atomic scattering factor is independent of the orientation of the scattering object, with

respect to the incident and scattered polarization directions. This result is equivalent to the one

obtained by classical methods, Eq.(3.18), and we can represent the atomic scattering factor by a

scalar. In the case when the 4p states are anisotropic due to the interaction with the neighboring

atoms, the resonant atomic scattering factor will be dependent on the orientation of the scattering

object with respect to the incident and scattered polarization directions, and in this case the atomic

scattering factor is represented by a second-rank tensor (3x3 matrix) [12–14]. We are writing this

tensor using a reference frame (x,y,z) attached to the crystal:

f =(εx
sc ε

y
sc ε

z
sc) · f̂atomic ·


εx

in

ε
y
in

ε
z
in

= f T homson(|Q|) ·


1 0 0

0 1 0

0 0 1

(εx
sc ε

y
sc ε

z
sc) ·


εx

in

ε
y
in

ε
z
in



+(εx
sc ε

y
sc ε

z
sc) ·


f ′xx f ′xy f ′xz

f ′xy f ′yy f ′yz

f ′xz f ′yz f ′zz

 ·


εx
in

ε
y
in

ε
z
in



+ i · (εx
sc ε

y
sc ε

z
sc) ·


f ′′xx f ′′xy f ′′xz

f ′′xy f ′′yy f ′′yz

f ′′xz f ′′yz f ′′zz

 ·


εx
in

ε
y
in

ε
z
in



(3.31)

where (εx
scε

y
scεz

sc) and


εx

in

ε
y
in

ε
z
in

 are the projections of the scattered, ε∗sc and incident, ε in polariza-

tions in the (x,y,z) reference frame; the tensor components are defined as:

f ′
αβ

(E) =−m
h̄2 (E4p−E1s)

2(E4p−E1s− h̄ωin)[
〈Ψ1s | rα |Ψ4p〉〈Ψ4p | rβ |Ψ1s〉
(E4p−E1s− h̄ωin)2 +Γ2

4p/4
] (3.32)

and respectively

f ′′
αβ

(E) =
m
h̄2 (E4p−E1s)

2(Γ4p/2)[
〈Ψ1s | rα |Ψ4p〉〈Ψ4p | rβ |Ψ1s〉
(E4p−E1s− h̄ωin)2 +Γ2

4p/4
], (3.33)
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with α,β = x,y,z. The (x,y,z) reference frame is chosen such that z||c-axis (parallel with the 3-fold

axis), x||a-axis and y orthogonal to x and z. In the most general case, the resonant scattering tensor

is a second-order tensor with nine independent components, see Eq. (3.31). In order to obtain the

form of the resonant scattering tensors at the Ni sites, we are taking into account the fact that the

scattering tensor should be invariant under all symmetry transformations which belong to the space

group of the crystal. Using only the local symmetry of the Ni ions in AgNiO2, we learn that all

the off diagonal terms of the resonant scattering tensor are zero and that f ′(xx) = f ′(yy) 6= f ′(zz) and

f ′′(xx) = f ′′(yy) 6= f ′′(zz). In the given space group the atomic scattering tensor for the Ni ions have the

following diagonal form:

f̂atomic =


f⊥ 0 0

0 f⊥ 0

0 0 f‖

 (3.34)

where f‖ and f⊥ are the eigenvalues of f̂atomic in the direction parallel to the z-axis and perpendicu-

lar to the z-axis, respectively f‖ = f T homson(|Q|)+ f ′zz+ i f ′′zz and f⊥ = f T homson(|Q|)+ f ′xx+ i f ′′xx =

f T homson(|Q|)+ f ′yy + i f ′′yy. To simplify we will write the atomic scattering tensor as the sum be-

tween an isotropic and an anisotropic part:

f̂atomic =


f⊥ 0 0

0 f⊥ 0

0 0 f⊥

+


0 0 0

0 0 0

0 0 f‖− f⊥

= f⊥


1 0 0

0 1 0

0 0 1

+


0 0 0

0 0 0

0 0 ∆ fanis


(3.35)

We observe from Eq. (3.35), that when the anisotropy component of the atomic scattering tensor is

very small or the geometry of experiment is such that the polarizations of the incident and scattered

XR don’t see the anisotropic component, the atomic scattering tensor reduces to a scalar as in the

classical theory, Eq. (3.18), with f = f⊥.

During the interaction process called absorption, the radiation is absorbed instead of being scat-

tered (the photon completely disappears). As we discussed in the previous paragraphs, this process
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is modeled by the first order perturbation theory using the linear term in A from the interaction

Hamiltonian, Eq. (3.24). This process is called photoelectric absorption. The photoelectric ab-

sorption cross-section derived from the interaction Hamiltonian at the lowest level of perturbation

theory is given by [10]:

σ
PE
abs =

constants
h̄ωin

∑
4p
(E4p−E1s)

2(Γ4p/2)
〈Ψ1s | ε∗sc · r |Ψ4p〉〈Ψ4p | ε in · r |Ψ1s〉

(E4p−E1s− h̄ωin)2 +Γ2
4p/4

(3.36)

From equations Eqs. (3.19) and (3.36) we observe that the imaginary part of the resonant scattering

factors, calculated for forward scattering (Q = 0), is related to the photoelectric absorption cross-

section σPE
abs at the photon energy E = h̄ω by [16]:

f ′′(|Q|= 0) =
EσPE

abs(E)
2hcre

(3.37)

The absorption cross section per atom, σabs, is an easy quantity to measure. When a monochro-

matic X-ray beam with incident intensity, I0, passes through a homogeneous plate of uniform

thickness, z, the transmitted intensity (I) can be modelled using the Lambert-Beer law, which

states that [17]:

Ae f f =
I
I0

= e−µ(E)z (3.38)

where µ(E) is the energy dependent linear absorption coefficient. For a homogenous material

made of a single element the absorption coefficient µ(E) is related to σabs(E) through [17]:

µ(E) = (
ρ NA

A
)σabs(E) (3.39)

where NA, ρ and A are Avogadro’s number, the mass density and the atomic mass number respec-

tively. We want to mention here that during the transmission experiments, most of the beam is lost

due to the photoelectric effects (σPE
abs), but a small part of the beam is lost due to coherent(σcoh)

and incoherent scattering (σinc). In the vicinity of the absorption edge, the σcoh and σinc are less

than two percent of
(
σPE

abs

)
and we can approximate σabs = σPE

abs .
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In practice we are interested in obtaining the mass absorption coefficient µ/ρ from which we

can obtain f ′′(|Q|= 0) through the following relation [12]:

µ/ρ =
4.20784 ·107 f ′′

AE
(3.40)

Theoretical values of the mass absorption coefficients, µ/ρ , and resonant scattering factor, f ′′,

were calculated and tabulated in [16] for energies away from the resonance. To a reasonable

approximation, the mass absorption coefficient is independent of the physical state of the absorber

and (µ/ρ)compound for a compound is additive with respect to the (µ/ρ)i of its elements [17, 18]:

(
µ

ρ
)compound =

1
MW

Σ j(
µ

ρ
) jA j (3.41)

where MW = ∑ j x jA j is the molecular weight of the compound and x j is the number of atoms of

type j per formula unit.

3.3 Practical formulas used for the data analysis

In the most general case the atomic scattering factor is a tensor, Eq. (3.35), dependent on the

scattering wavevector, Q, and on the photon energy, E = h̄ω . In the dipolar approximation the Q

dependence comes from the Thomson scattering factor, Eq. (3.11), and the energy dependence, E,

comes from the resonant scattering factors, Eqs. (3.20), (3.21), (3.28). Further in our calculations

we will ignore the anisotropic part, ∆ fanis, of the scattering tensor in Eqs. (3.35) and we consider

that the atomic scattering factors for Ni ions are scalars (verifications for this approximation will be

given in Section 4.8). The real and imaginary part of the resonant atomic scattering factors, f ′ and

f ′′, are not independent quantities but (at constant Q) are related by their mutual Kramers-Kronig

relationships [12, 19]:

f ′(E0) =
2
π

P
∫

∞

0

E f ′′(E)
E2

0 −E2 dE f ′′(E0) =−
2E0

π
P
∫

∞

0

f ′(E)
E2

0 −E2 dE, (3.42)
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where P indicates principal part, which means that the term for which E2
0 = E2 is excluded from

the integrals. By performing RXD experiments we aim to obtained experimentally the resonant

scattering factors which are crystallographically site-selective, can be used to contrast oxidation

states in mixed-valence materials and can be also used to learn about the local environment of

the ions. Empirical determination of the distribution of valence states in compounds containing

ions with two different oxidation states relies upon the rapid change in the shape of f ′′ close to

the absorption edge for the two distinct ions; f ′′ also shifts to higher energies by a few eV per

oxidation state unit (see Fig. 4.11). Thus, close to the resonance, the shape of f ′′ will vary

significantly between ions with different oxidation states. One would also expect differences in

the shape of f ′′ for elements in a single oxidation state but with markedly dissimilar coordination

environment [20]. The intensity of XR diffracted by crystals depends on the structure factor F(E,Q)

and thus on the atomic scattering factors, f j:

F(E,Q) = ∑
j

f j(E, |Q|) Tj(|Q|) eiQ·R j , (3.43)

The sum extends over all atoms at position R j in the unit cell. T j(|Q|)= e−
1
2U j|Q| is the temperature

Debye-Waller factor for the j atom and U j is the temperature dependent isotropic atomic displace-

ment. In order to extract f j(|Q|,E) for each atom from the measured structure factors F(E, |Q|),

the structure R j, the temperature factor T j and the Thomson scattering factor f T homson
j (|Q|) have to

be known. In our calculations we used the crystal structure determined by earlier neutron diffrac-

tion, the Thomson scattering factors calculated using Eq. (3.11) and Debye-Waller factors calcu-

lated using the isotropic atomic displacement U j from [21]. In addition, a number of corrections

have to be applied to the measured intensities:

I(E,Q) =C |F(Q,E)|2 Abs(S,µ(E),O) L(E,2θ) Extin, (3.44)

where C is a scaling constant including constant terms like the sample mass, incident flux, etc.;

Abs is the absorption coefficient of the beam through the sample, µ is the energy-depended lin-
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ear absorption coefficient for AgNiO2, the terms S and O characterize the sample shape and the

orientation of the sample in the laboratory reference frame, 2θ is the total scattering angle, and

the last term L(E,2θ) is the Lorentz factor which, for the particular instrument geometry of the

instrument used to perform the experiment, is ∼ 1
E3 sin2θ

[22]. Extin is called extinction factor and

for this particular experiment is approximated with 1; we neglect the extinction due to the fact that

our crystal is very small.

To understand the extinction effects we define two type of crystals: perfect crystal (as the

crystal without lattice defects) and the imperfect crystal (which is usually viewed as one comprised

of very small mosaic blocks). The integrated intensity of a reflection from a small perfect crystal is

|F|2 [23]. The integrated intensity of a reflection from a large perfect crystal is |F| (derivation of this

proportionality is called dynamical theory of diffraction), and the integrated intensity of a reflection

from an imperfect large crystal is |F|2 (derivation of this proportionality is called kinematical

theory of diffraction) [23]. In general, the integrated intensity of a reflection is appreciably larger

for the ideally imperfect crystal than for one which is ideally perfect. The experimentally measured

values fall between these two extremes, depending upon the state of imperfection in the crystal.

Because most crystals are rather imperfect, it is customary to interpret the integrated intensity

measurements using the imperfect crystal approximation (which state that the integrated intensity

|F|2). Usually the crystals are imperfect but not ideally imperfect, therefore the measured integrated

intensity is somewhat less than the value predicted by the ideally imperfect approximation. We

describe the situation by saying that there is extinction in the crystal, the term extinction meaning

that the integrated intensity is less than predicted by the ideally imperfect crystal approximation.

In our case due to the fact that the crystal is very small, we work in the approximation where the

integrated intensity |F|2 and the extinction is negligible, Extin =1.

We mentioned earlier in section 3.2 that the attenuation of transmitted XR beam through a

homogenous polycrystalline sample of given thickness is given by the Beer’s law, Eq. (3.38).
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Thus if the sample has a non-uniform thickness across its area, the measured absorption, Ae f f , will

differ from the nominal value. Defining P(z) as the fraction of the sample area that is of thickness

z, where
∫ zmax

0 P(z)dz = 1, the effective absorption factor becomes Ae f f =
∫

P(z)e−µ(E) zdz [24]. In

our case the absorption is affected by regions of the sample with zero thickness and by a distribution

of thicknesses. In a first approximation we assume that we have a leakage (zero thickness) fraction

f, together with a Gaussian distribution in thicknesses centered around a nominal values z0 with

width γ; then

P(z) = f δ (z)+(1− f )
1

γ
√

2π
e
− (z−z0)

2

2γ2 (3.45)

for which the effective absorption factor becomes [25]:

Ae f f = f +(1− f )e(−µ(E) z0+
µ(E)2 γ2

2 ) (3.46)

The formula we are using to calculate the linear absorption coefficient for AgNiO2 at energies away

from the resonance energy was calculated using Eq. (3.41):

µ
AgNiO2 =

ρAgNiO2

MW
(

µAg

ρAg
AAg +

µNi

ρNi
ANi +2

µO

ρO
AO) =

= 0.036238 ( 10.274 µAg + 6.5944 µNi + 22535 µO)

(3.47)

Using Eq. (3.47) and Eq. (3.40) we derived the relation between the linear absorption coefficient

and the total imaginary part of the resonant scattering factor:

µ
AgNiO2[cm−1] =

1.5249106

E[eV ]
f ′′total (3.48)

where

f ′′total = f ′′Ag +2 f ′′O +
f ′′Ni1 + f ′′Ni2 + f ′′Ni3

3
(3.49)

is the total contribution for one formula unit. These formulas are used for the data analysis in

Chapter 4.



40 Chapter 3 X-ray scattering

3.4 X-ray scattering instruments: I16

3.4.1 I16 - Diamond Light Source

A schematic diagram of the I16 instrument at Diamond Light Source used for the single crystal

x-ray resonant scattering experiment is shown in Figure 3.3. Experiments on this instrument are

performed using monochromatic incident flux. Some advantages of this instrument are that the

wavelength of the incident photons can be tuned and the fact that the sample can be oriented in any

direction with respect to the laboratory reference frame, such that we can probe a large region of

the reciprocal space. Details about this instrument can be found in Ref. [26].

Figure 3.3 Schematic diagram of the instrument used for the x-ray resonant scattering
experiment where delta, Keta, etc. are variable angles.

.



Chapter 4

Honeycomb Charge order in triangular

metallic AgNiO2 probed by single crystal

resonant X-ray scattering

The layered hexagonal magnet AgNiO2 realizes a rare example of a triangular antiferromagnetic

metal with orbital degeneracy. It undergoes a structural transition below 365 K to a supercell crys-

tal structure with a periodic arrangement of expanded and contracted NiO6 octahedra, see Figure

- 4.1, proposed to indicate spontaneous charge order at the Ni sites into electron-rich and local-

ized sites arranged in a triangular lattice, surrounded by a honeycomb of itinerant Ni sites [27].

This chapter reports synchrotron single-crystal resonant x-ray scattering measurements to probe

the Ni electronic states. A strong resonant enhancement of the scattering intensity is observed

for supercell reflections as the x-ray energy is tuned through the Ni K-edge. A rich structure with

multiple peaks is observed as a function of x-ray energy, attributed to interference scattering from

the distinct (expanded/contracted) Ni sites. The empirically extracted atomic resonant scattering

factors show an edge shift of 2.5 eV between the crystallographically distinct sites which is in very

41
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good quantitative agreement with the expected shift in the presence charge order estimated using

band structure calculations in the LDA approximation. Order parameter measurements show a

strong correlation between the spontaneous charge order and the structural response in tempera-

ture of oxygen displacements which indicate that the charge order and the structural distortion are

strongly linked.

4.1 Introduction

The presence of orbital degrees of freedom in addition to spin opens up rich and largely unexplored

possibilities for complex electronic order patterns. If the electrons are mobile, even richer possibil-

ities exist as the tendency to lift the orbital degeneracy via the symmetry-lowering local Jahn-Teller

(JT) distortions competes with the tendency to remove the degeneracy by charge transfer between

sites and therefore more complex order patterns can occur [28]. Recent studies of the hexagonal

antiferromagnetic metal 2H-AgNiO2 with orbitally-degenerate Ni3+ (t6
2ge1

g) ions arranged in trian-

gular layers revealed no JT distortions, but an unexpected oxygen order pattern below TS=365 K,

consisting of a periodic arrangement of expanded and contracted NiO6 octahedra, see Figure - 4.1.

The oxygen order pattern was proposed to be a consequence of charge disproportionation (CD) at

the Ni sites of the form 3e1
g → e2

g + 2e0.5
g [27]. This is in sharp contrast to the related nickelate

NaNiO2 [29], where the NiO2 layers are essentially identical with only subtle differences in the

interlayer bonding along c axis (mediated by Na+ trigonal bonds with 3 Oxygens below and 3

above as opposed to linear O-Ag+-O bonds). Despite the similarities, NaNiO2 is an insulator with

a charge gap estimated at ∼ 0.6 eV [30] and at TS = 480 K undergoes a structural transition to

a monoclinic structure due to cooperative JT ferro-orbital order [29]. The very different behavior

between Na- and Ag-nickelates is not well understood and may be ultimately due to the subtly dif-

ferent inter-layer bonding which stabilizes an insulating state in Na-nickelate (where subsequently
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a) 

    

b) 

Figure 4.1 Schematic diagram of the NiO2 layers in the low symmetry phase of the
hexagonal 2H-AgNiO2 system. a) schematic diagram of a NiO2 layer at z = 1/4 showing
how the displacements (small arrows) of the oxygen ions (small balls) lead to a periodic
arrangement of expanded (large circle, Ni1) and contracted (small circles, Ni2,3) NiO6
octahedra. Thick hexagonal contour shows the honeycomb network of contracted sites.
The origin of the coordinate system is at the circled Ni2 site. b) The expanded site Ni1
has a staggered zigzag arrangement between even and odd layers stacked along the c axis.
Layer 2 in the unit cell (z = 3/4 and -1/4) is obtained from layer 1 by 180◦ rotation around
the central (1/2, 1/2, z) axis followed by a c/2 translation. The different Ni-O distances
have been proposed to occur as a consequence of a net electron transfer between the
contracted sites to the expanded sites, leading to electron-rich Ni13−δ expanded sites and
electron-depleted Ni2,33+δ/2 contracted sites, where 0<δ≤1 is the net amount of charge
transfer.
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orbital degeneracy is lifted by JT distortions) whereas a metallic state persists in Ag-nickelate.

Band-structure calculations proposed that this metallic screening is key in reducing the energy cost

for charge transfer and this combined with the gain in Hund’s rule coupling for the doubly occu-

pied Ni sites, gain in covalency effects from closer proximity Ni-O and gain in kinetic energy for

the itinerant electrons on the contracted Ni sites favor CD as the preferred mechanism to lift orbital

degeneracy as opposed to conventional JT distortions [27].

In order to test if the oxygen displacements are accompanied by CD at the Ni sites, we used

resonant x-ray diffraction (RXD) and x-ray absorption spectroscopy (XAS) techniques to probe

directly the oxidation state of Ni ions. Both techniques were successfully used before to probe

charge disproportionation patterns [31,32] and oxidation states [20,33] of resonant ions, in transi-

tion metals and their oxides. RXD and XAS rely on the measurement of the energy difference (also

called edge energy, EK−edge) between a core state and a continuous energy band of empty states

above the Fermi energy. In the process of RXD and XAS at the K-edge, the core level state is 1s

and the empty states above the Fermi level are the 4p states. The different edge-energies for the Ni

ions (ENi1
K−edge 6= ENi2

K−edge), are a result of different positions in energy (with respect to the Fermi

energy) of the 1s states (ENi1
1s 6=ENi2

1s but ENi1
4p =ENi2

4p ) , or of the 4p states (ENi1
4p 6=ENi2

4p but ENi1
1s =ENi2

1s )

or of both 1s and 4p states (ENi1
1s 6=ENi2

1s and ENi1
4p 6=ENi2

4p ) [34, 35].

A schematic description of the changes expected at the Ni K-edge when the structural transition

occur in AgNiO2 is given in Figure - 4.2. In the high temperature phase all the Ni sites are equiva-

lent and they have the same edge-energy EK−edge, see Figure 4.2 a). As a consequence the intensity

for all the supercell reflections which are dependent on the edge-energy difference, ∆EK−edge is

zero. This is not the case in the low temperature phase where Ni ions sits in three crystallographi-

cally inequivalent sites; each site has different Ni - O bond lengths and because of that the energy

position of the 4p states will be different due to different hybridizations (ENi1
4p 6=ENi2

4p 6=ENi3
4p ). As

a result the edge-energy EK−edge for Ni1,2,3 ions will be different; if at the structural transition
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a charge disproportionation occurs in the system, the position in energy of the 1s states will also

be different for the Ni1,2,3 ions. If we combine the changes in energy of the 4p and 1s states,

due to the hybridization effects and charge disproportionation, we expect a large difference in the

edge-energies for Ni1 and Ni2,3 ions, see Figure 4.2 b) ( we assume that Ni2 and Ni3 ions are in

a similar electronic state because the local enviroment is equivalent). In this case the intensity of

all the supercell reflections which are dependent on the edge-energy difference ∆EK−edge (between

Ni1 and Ni2,3 ions) will have a finite intensity. If at the structural transition there is no charge dis-

proportionation (only oxygen displacements), then there will be an energy difference between the

edges only due to shift of the 4p states, which comes as a result of different hybridizations between

the Ni4p states and O2p states (different Ni-O bond lengths), see Figure 4.2 c). Hypothetically, if

at the structural transition the hybridizations due to oxygen distortions are so small that the energy

shifts of 4p states are very small (≈ 0), but there is a charge disproportionation, then there will

be an energy difference between the edges due only to the shift of the 1s states, which comes as a

result of different effective valences states for Ni ions, see Figure 4.2 d).

Our aim is to test experimentally the proposed charge disproportionation model; we are doing

this by determining from (RXD) and (XAS) measurements the edge energy shift between Ni ions

inside the contracted (Ni1) and expanded (Ni2,3) octahedra and comparing it with the calculated

edge energy shift for the charged order state in the LDA approximation.

This chapter is organized as follows: section 4.2 presents the crystal structure above and below

the TS; section 4.3 discusses possible mechanisms to lift the orbital degeneracy of Ni3+ sites;

section 4.4 explain the experimental details and how the raw intensities were obtained; section 4.5

presents the steps taken in order to extract the structure factors squared in absolute units; section

4.6 discusses the steps taken to extract experimentally the edge energies for the different Ni ions;

section 4.7 presents the experimental results; section 4.8 shows theoretical calculations of the

edge energies and a comparison with the experimentally extracted values; section 4.9 presents the
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a)

1s

4p

high symmetry phase
T > TS

EK-edge EFermiNi1(2+) Ni2,3(3.5+)

b)

low symmetry phase
T < TS

oxygen displacements +
charge disproportionation

EK-edge
EFermi

Ni1(3+) Ni2,3(3+)

c) EK-edge EFermi

Ni1(2+) Ni2,3(3.5+)

d) EK-edge
low symmetry phase

T < TS
oxygen displacements only low symmetry phase

T < TS
charge disproportionation only

Figure 4.2 Schematic diagram of the atomic energy levels probed by RXD process (the
red rectangular shapes represents the 4p density of states and the thick lines the positions
of the 1s energy levels): a) energy level scheme of the 1s and 4p states in the high sym-
metry phase (T > TS), where all the Ni ions are equivalent (Ni ions are in the 3+ effective
valence state); b) energy level scheme in the low symmetry phase (T > TS), where the Ni
ions have different effective valence states (2+ and 3.5+) in crystallographically inequiv-
alent positions. Hypothetical scenarios: c) no CO but only oxygen displacements; d) CO
but no oxygen displacements.
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temperature dependence of the charge disproportionation and order parameter for the structural

distortions; the conclusions are summarized in the last section.

4.2 Crystal structure

Both high- and low- temperatures crystal structure of AgNiO2 have been measured by neutron

diffraction [36]. The high temperatures, T > TS, crystal structure is shown in Figure - 4.3 a);

each unit cell contains two identical NiO2 layers which are related by a mirror plane reflection

through the Ag layer; within each individual layer Ni ions are arranged in a triangular lattice.

In Figure - 4.3 b) we show the tripling of the unit cell in the distorted phase, using schematic

projections of the unit cell in the ab-plane. The local environment of Ni ions is a distorted O6

octahedra and octahedra from different layers are connected through a O-Ag-O linear bond. From

considerations of charge neutrality in the system we conclude that the ions are in the following

effective oxidation states Ag1+, O2− and Ni3+ (we mention these values here because the effective

oxidation state of Ni ions is important when Ni3+ ions are placed inside an ideal octahedra; ions

with the 3d7 configuration placed inside an ideal octahedra leads to orbital degeneracy due to the

fact that there is only one electron in the eg double degenerate orbital, see - Figure 4.4).

If one asks the question: "What is the nature of the oxygen distortions with respect to an ideal

octahedra for the Ni3+ ion?", one the answer can be found using Figures - 4.3 c) d), e) and f).

Figure - 4.3 c) shows the local environment of the Ni3+ ions (distorted O6 octahedra) in the crystal

reference frame; Figures - 4.3 d), e) and f) show schematically how can one (starting from an ideal

octahedra) obtain a distorted octahedra with the same local symmetry as the one of the Ni3+ ions

in AgNiO2. The symmetry of the local environment of the Ni3+ ions in AgNiO2 is such that even

with the distortions from an ideal octahedra present, the orbital degeneracy of the eg orbital is not

lifted and Ni3+ ions with the 3d7 configuration are orbitally degenerate, see Figure - 4.5. In the
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low temperatures crystal structure, changes will occur in the Ni environment due to the oxygen

distortions; due to the distortions, there will be 3 distinct Ni sites in the unit cell, see Figure -

4.1. At the structural transition, the small distortions of the oxygen ions occurring in the crystal,

are found only in the ab-plane. Each three identical octahedra in the high temperature phase will

correspond to, one expanded - (Ni1) and two contracted - (Ni2,3) octahedra, see Figure - 4.1.

4.3 Mechanisms to lift the orbital degeneracy

When a free transition metal (TM) ion with the d1 configuration is placed in a crystal, the orbital

degeneracy will be lifted due to the interaction of the electron in the d-orbitals with the ligand ions

from the environment of the TM ion [37]. Depending on the symmetry of the environment the

orbital degeneracy can be completely or partially lifted. When there is more then one electron in

the d-orbitals the electron-electron interactions have to be taken into account to determine ground

state and the orbital degeneracy. The ground state of a free TM ion with the d7 configuration is

schematically shown in Figure 4.4 d). When this ion is placed inside an octahedra (we assume

the strong crystal field approximation), the interaction between the d electrons and the ligand ions

from the corners of the octahedra will split the d-orbitals into a triplet (tg) and doublet (eg) state,

see Figure 4.4 e). To minimize the energy of the system, six electrons will occupy the triplet state

and one electron will occupy the doublet state. In the case when an ion with the d7 configuration is

placed inside an octahedra the ion will be in an orbitally degenerate state due to the fact that there

is only one electron in the doublet state. The well known mechanism to lift the orbital degeneracy

in insulating materials is the Jahn-Teller distortion [38].

When an ion with the d7 configuration is placed inside an ideal octahedra, see Figure 4.4 b),

in order to lift the orbital degeneracy, the ions on the Zcubic-axis will distort in opposite direction,

see Figure 4.4 c). This distortion of the environment will create a crystal field which will lift the
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Figure 4.3 (a) Crystal structure of AgNiO2 at high temperatures, T > TS. (b) Basal
plane showing the triangular network of Ni ions (red balls) coordinated by oxygens (blue
balls). The thick solid line contour shows the unit cell and the dashed line shows the unit
cell tripling in the distorted structure. (c) schematic view of the O6 distorted octahedra
in the crystal axis; this environment preserves the double degeneracy of the eg state, see
Figure - 4.5 (the degeneracy could be lifted by lowering the point group symmetry of
the environment which means the three fold rotation C3 || c is broken). (d) ideal octahe-
dra in the cubic and trigonal axis; representation of the trigonal axes (Xtrigonal , Ytrigonal ,
Ztrigonal) with respect to the cubic axes (Xcubic, Ycubic, Zcubic). (e) view of the octahedral
arrangement of oxygen ions when the trigonal Ztrigonal axis is vertical; the six oxygen
ions are grouped into two triangles whose planes are perpendicular to the Ztrigonal axis;
(f) displacement of the oxygen triangles through equal distances along the Ztrigonal axis
as shown by the arrows; when the Ztrigonal axis is oriented parallel with the crystal c axis,
the distorted environment from the trigonal axes (red and blue balls) is similar with the
Ni3+ environment in AgNiO2, panel-(c).

.
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Figure 4.4 Schematic representation of different ligands environments and the corre-
sponding splitting of the five fold orbital degeneracy of the 3d orbitals; the crystal field
goes from spherical symmetry to lower symmetries. (a) free ion - spherical symmetry, (b)
ideal octahedra - cubic symmetry. (c) distorted octahedra; the distortion is indicated by
arrows - tetragonal symmetry. (d) degeneracy and occupancy of the d orbital when the
ion is free. (e) when the ion is placed in the environment indicated in panel-(b) and (f)
when the ion is placed in the environment indicated in panel-(c). When a distortion of the
type indicated in panel-(c) occurs for an ideal octahedra the doubly degeneracy of the eg
orbital is lifted.
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Figure 4.5 (a) Schematic representation of the local environment (distorted octahedra)
for the Ni3+ ions in the high temperature phase using the trigonal axis. (b) splitting
of the five fold degenerate d orbital and their occupancy for the Ni3+ ions in the high
temperature phase; from panel-(b) we can see that Ni3+ ions are orbitally degenerate in
the high temperature phase.
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Figure 4.6 (a) local environment for Ni3+ ion in the high temperature phase. (b) local
environment for Ni12+ and Ni2,33.5+ ions in the low temperature phase. (c) Electronic
configuration of the Ni ions in the high temperature phase. (d) Electronic configuration
of the Ni1 and Ni2,3 ions in the low temperature phase.
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orbital degeneracy of the doublet state, see Figure 4.4 e) and f). This is the mechanism which lifts

the orbital degeneracy of Ni3+ ions in the insulator system NaNiO2 (a structural transition occurs

in the system upon lowering the temperature which lifts the orbital degeneracy of the eg orbital).

Further we will discuss the possible mechanism to lift the orbital degeneracy of Ni3+ ions

in AgNiO2. In the high temperature phase, the NiO6 octahedra are already distorted, but the

distortion doesn’t lift the orbital degeneracy of the doublet state, see Figure 4.5. One expects that

upon lowering the temperature the system will suffer a distortion such that the orbital degeneracy

is lifted. Indeed a structural transition occurs in AgNiO2 at TS = 365 K but the new distortions of

the NiO6 octahedra do not lift the orbital degeneracy (the three fold symmetry axis which has to

be broken if the degeneracy of the doublet state is lifted, is found in both high and low temperature

phase, see Figure 4.6). The mechanism proposed to lift the orbital degeneracy in the weakly

metallic AgNiO2 system, based on charge ordering [27], is shown schematically in Figure 4.6

c) and d). Each Ni3+ ion in the high temperature phase will have one electron in the doublet

(eg) state; at the structural transition one of three ions will received an extra electron (Ni1) and

the other two ions (Ni2,3) will share the remaining electron in a ”metallic bond”; the ion which

received an electron has a fully occupied doublet state and due to the surplus of charge the oxygen

environment will expand (Ni1). The other two ions have a deficit of charge, and so the surrounding

oxygen environment will contract (Ni2,3). We see that the well known mechanism, Jahn-Teller

distortion, is not present at all in AgNiO2 and therefore can not be used to explain the origin of

the observed structural distortion. Instead, the observed structural transition has been proposed to

be a response to an electronic instability of the system to charge order, as a mechanism of lifting

orbital degeneracy. In the CO scenario there is an energy gain due to Hund’s rule coupling and

kinetic energy which is larger than the loss in energy due to the on-site coulomb repulsion (which

is largely reduced due to the metallic screening) and lattice distortions [27, 28].
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4.4 Experimental details and data collection

This experiment was performed using the I16 magnetism beam-line at the Diamond Light Source,

United Kingdom operated with a Si (111) double-crystal monochromator to select photons with

energy near the Ni K-edge of 8.35 keV. RXD measurements were done on a small crystal platelet

with a diameter of ∼70 µm using photons with energies in the range 8.3 - 8.4 keV. XAS mea-

surements were recorded in transmission mode on a powder sample using photons with energies

in a wider range 8.25 - 8.42 keV. For a given instrument setting (kin, ksc, η), where kin, ksc are

the wave-vectors of the incident and scattered beam respectively and η is the angle between the

scattering wave vector Q and kin, the scattered intensity was collected in a 2D pixelated area de-

tector normal to ksc, see Figure - 4.7 a). The integrated intensity of the reflection was obtained

by summing up all the counts in a region around the reflection (red dash-box) and subtracting the

background counts which was obtained by summing up all the counts in a region surrounding the

peak (the region between the red and the green dash-boxes). Due to the mosaicity of the sample,

we measured rocking curve scans (RCS) for each reflection, at fixed incident energy, to make sure

that we recorded the total number of scattered counts. When we say RCS scan we mean that the

intensity was collected in the following way: the 2D detector was fixed at the nominal scattering

angle of a reflection, 2θ and then the sample was rotated within a range of 2◦ around an axis per-

pendicular to Q, using a step of 0.02 ◦ and counting 1 s/step; an example of such RCS is shown

in Figure - 4.7 b) for one of the main reflections. The energy scans were obtained by integrating

the RCS-scans at each energy (area under peak in Figure - 4.7 b)). The instrument geometry is

such that in the laboratory reference frame (Xlab, Ylab, Zlab) the linear polarization of the incident

beam is in the XlabYlab plane and the scattering plane is parallel to the YlabZlab for all the mea-

sured reflections; Xlab|| kin, Ylab is in the horizontal plane (Ylab ⊥ Xlab), Zlab is in the vertical plane

(Zlab ⊥ Xlab).
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Figure 4.7 (a) raw counts for the (0 0 6) main reflection near resonance collected in a 2D
pixelated area detector normal to k f . The integrated intensity was obtained by summing
up all the counts in the read dash-box and subtracting the background (the integrated
intensity in the region between the green and red dash-box). (b)RCS scan for the (0 0 6)
main reflection.

4.5 Data Corrections

In this section we explain the steps involved in the data analysis, in order to obtain the experimen-

tal structure factors squared |F(Q,E)|2 in absolute units of electrons squared. From Eq. (3.44),

we observe that using the measured intensity I(Q,E), we can obtain |F(Q,E)|2 if the scale con-

stant C, the absorption factor Abs(E) and the Lorentz factor L(E,2θ ) are known quantities. The

Lorentz factor can easily be calculated for any reflection at any energy but the main problem is the

absorption factor.

To correct the data for absorption: - we have to propose a model for absorption and then use

this model and the experimental data, to obtain the effective dimensions of the sample shape; - we

have to obtain the energy dependence of the linear absorption coefficient over energies close to the

resonance, using the transmission measurements on powder .

Once we obtain the effective dimensions of the sample and the energy dependence of the linear
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absorption coefficient, we can use the absorption model to correct all the data for absorption effects.

In the first step, we will describe how we obtained the linear absorption coefficient from trans-

mission measurements on powder. The experimental "effective absorption spectrum" is plotted in

Fig. -4.8(a) (open circles). There are two necessary steps to extract µ(E) from the data: the first

step is to obtain the empirical values of f, γ and z0 used in Eq. (3.46). We obtain these values using

only quantities measured away from the resonance. In the second step we introduce the obtained

empirical values f, γ and z0, back into Eq. (3.46) together with the measured absorption spectrum

over all energies and extract µ(E) for the whole experimental energy range. We can write Eq.

(3.46) at two different energies Ebelow = 8.3 keV and Eabove=8.419 keV far away from the reso-

nance energy where µ is approximated very well by analytical calculations. The linear absorption

coefficients µ(Ebelow) and µ(Eabove) for AgNiO2 were calculated using Eq. (3.47). Assuming a

very narrow distribution γ ≈ 0 in Eq. (3.46), the calculated values µ(Ebelow) and µ(Eabove), the

measured values of the absorption coefficients Ae f f (Ebelow) and Ae f f (Eabove), we obtain by solv-

ing the system of equations formed from Eq. (3.46) at the two energies Ebelow and Eabove, a unique

solution for the empirical values of (f, z0). Using these values and the experimental absorption

spectrum plotted in Fig. 4.8(a), we obtain a temporary solution for the linear absorption coef-

ficient µ(E)temp. In the case where γ 6= 0, because the parameters in Eq. (3.46) are correlated,

we don’t obtain a unique solution (f, z0,γ), but for all solutions, the extracted µ(E) is the same to

within 1%. At this point in the data analysis an average value was chosen for the linear absorption

coefficient.

In the second step, we will describe how we obtained the effective dimensions of the sample

using the experimental data. The absorption model consist of a numerical Monte Carlo integration

method for a disk-shaped sample (cylinder) of effective dimensions obtained by fits to the data

as described below. The structure factor is related to the atomic positions in the unit cell and de-

pending on the scattering wavevector Q, the structure factor can have contributions from all the
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Figure 4.8 (a) Energy dependence of the absorbtion near Ni K-edge (open circles) mea-
sured in transmission mode on a powder sample and the experimental linear absorption
coefficient (solid line) obtained as described in the text. (b) Experimental (symbols) and
calculated (solid line) ratios of the absorption coefficients at different energies (8.3, 8.4
keV off-resonance and 8.352 keV at-resonance).

atoms in the unit cell or only from a smaller number. Our strategy was to measure a number of

main reflections with no Ni contribution, because according to Eqs. (3.44), (3.43) and (3.42), for

all the main reflections with no Ni contribution, the ratios of the intensities (corrected for Lorentz

factor) at different energies (E1, E2 and E3) give us the experimental ratios of the absorptions. At

this point we define the following absorption ratios: R1exp = IE1/IE2, R2exp = IE1/IE3 and R3exp =

IE2/IE3). In total we measured 9 main reflections at three energies, two off resonance E1 = 8.3 keV,

E3 = 8.4 keV and one close to the resonance E2 = 8.352 keV. From all these, only two reflections,

(2, -1, 7) and (2, -1, 5), were measured for the whole energy range in order to test the absorption

model. Next, we calculated the absorbtion coefficients Ae f f at E1, E2 and E3 and using these

values we calculated further the theoretical ratios of absorptions, R1the, R2the and R3the using the

numerical Monte Carlo integration method, by taking into account the orientation of the sample

with respect to the incident and scattered beams, the calculated value for µ(E1), the experimen-

tally obtained values µ(E2)temp and µ(E3)temp in the first step and the experimentally measured

sample dimensions (Rexp ∼ 35µm, texp ∼ 20µm; the theoretical ratios were compared with the ex-
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perimental ones and the agreement between them was not acceptable. Further we tried to obtained

the effective dimensions of the cylinder (from fits of the theoretical ratios to the experimental ones)

in order to get a better agreement between the the theoretical and experimental ratios. Analyzing

the effective path of the beam through the sample for different orientations corresponding to the

measured reflections, we observed that for some reflections the absorption coefficient is sensitive

just to the thickness of the sample t, others are sensitive only to the radius R, and others to both R

and t. We calculated the theoretical ratios of the absorptions, Rthe and we compared them with the

experimental ratios, Rexp (for all 9 main reflections with no Ni contribution) in a fitting function

where the input parameters are the sample size (R, t). We found a solution (Rtemp, ttemp) which

give a much better agreement than the previous solution (Rexp, texp).

When we extracted the sample dimensions, we were using the temporary linear absorption

coefficients obtained from the transmission measurements on powder. In order to optimize all pa-

rameters obtained experimentally we constructed a fitting function where we include both steps

described in the previous paragraphs in order to obtain improved values for the the energy depen-

dence of the linear absorption coefficient and the sample dimensions. The starting parameters for

this fitting function were µ(E)temp and (Rtemp, ttemp).

From the final fits, we observed that the linear absorbtion coefficient µ shown in Figure 4.8 a)

(solid line) and the effective thickness t = 18 µm and radius R = 34 µm gave the best fit between

the calculated and experimental absorbtion ratios, see Figure 4.8 b). All the measured data was

further corrected for absorption using the Monte Carlo code with fixed: effective radius and thick-

ness of the sample, orientation of the sample with respect to the incident and scattered beam and

experimentally-estimated linear absorption coefficient over the whole energy range. The accuracy

of the absorption correction procedure is shown in Fig. 4.9; the raw intensity of the (2, -1, 7) and

(2, -1, 5) main reflections is shown in panel (a); the intensity after absorption corrections is shown

in panel (b). We observe from panel (b) that the intensity of the main reflections is nearly constant
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Figure 4.9 (a) Energy dependence of the raw intensity of the reference main reflections
(2, -1, 7) and (2, -1, 5); the structure factors have no Ni contribution and the change in the
intensity vs. energy is due only to the absorption effects. (b) Raw intensity corrected for
absorption effects showing a linear energy dependence as expected for reflections with no
Ni contributions.

(to within 10%) as expected for reflections which have no Ni contribution to the structure factor.

To put the structure factors in absolute units of electrons, we extracted the absolute scaling constant

C, by comparison of the experimental structure factors with the calculated structure factors at two

energies, 8.3 keV and 8.352 keV. In Fig. 4.10 we show the agreement between the calculated and

experimental structure factors off resonance, at 8.3 keV. Using the scale constant, the calculated

Lorentz factors and absorbtion coefficient vs. energy, we have extracted the energy dependence

of the experimental structure factors squared in absolute units of electrons squared, see Fig. 4.12

(open circles).

4.6 Data analysis

We measured three different families of supercell reflections in the energy range 8.3-8.4 keV , in

order to probe the electronic states of Ni ions with different phase factors for the different Ni sites.
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Figure 4.10 Observed vs. calculated structure factors for main (a) and supercell (b)
reflections off-resonance (8.3 KeV). Solid line is guide for the eye.

The analytical formulas for the measured |F |2 are given below.

|F109|2 = 3[∆ f T homson
Ni (|Q|)+∆ f

′
Ni(E)+ c109 · f T homson

O (|Q|)]2 +3[∆ f
′′
Ni(E)]

2 (4.1)

|F203|2 = 3[∆ f T homson
Ni (|Q|)+∆ f

′
Ni(E)+ c203 · f T homson

O (|Q|)]2 +3[∆ f
′′
Ni(E)]

2 (4.2)

|F105|2 = 3[∆ f T homson
Ni (|Q|)+∆ f

′
Ni(E)+ c105 · f T homson

O (|Q|)]2 +3[∆ f
′′
Ni(E)]

2 (4.3)

|F205|2 = 3[∆ f T homson
Ni (|Q|)+∆ f

′
Ni(E)− c205 · f T homson

O (|Q|)]2 +3[∆ f
′′
Ni(E)]

2 (4.4)

|F207|2 = 3[∆ f T homson
Ni (|Q|)+∆ f

′
Ni(E)− c207 · f T homson

O (|Q|)]2 +3[∆ f
′′
Ni(E)]

2 (4.5)

|F106|2 =[ f T homson
Ni1 (|Q|)−2 f T homson

Ni2 (|Q|)+ f T homson
Ni3 (|Q|)+ f

′
Ni1(E)−2 f

′
Ni2(E)+ f

′
Ni3(E)+

+ c106 · f T homson
O (|Q|)]2 +[ f

′′
Ni1(E)−2 f

′′
Ni2(E)+ f

′′
Ni3(E)]

2

(4.6)

where ∆ f
′
Ni(E) = f

′
Ni1(E)− f

′
Ni3(E) , ∆ f

′′
Ni(E) = f

′′
Ni1(E)− f

′′
Ni3(E) and chkl are positive struc-

tural constants. We observe from these equations that there are two main contributions which

give rise to scattering intensity for the supercell reflections: one contribution comes from x-ray

scattering by the O displacements (energy independent) and the other comes from x-ray scattering

by the Ni ions (energy dependent). The scattering from O displacements is represented by the
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terms like fT homson
O (|Q|) [see first bracket in Eqs. (4.1)-(4.6)], whereas scattering from the Ni ions

comes through the energy-independent factor fT homson
Niξ (|Q|) and energy-dependent terms f′Niξ (E)

and f′′Niξ (E), where ξ = 1,2,3. In the ideal structure oxygens are in the high-symmetry position

with no displacement and all Ni sites are equivalent, and as a consequence all structure factors of

the supercell reflection cancel out. If there is a small displacement of the O ions and if we assume

hypothetically that the Ni electronic structure doesn’t change (fT homson
Niξ (|Q|), f′Niξ (E) and f′′Niξ (E)

for different sites are identical), all the structure factors become non-zero due to x-ray scattering

from the oxygens, which is energy independent. Looking at measured intensity vs. energy (Figure

4.12), we observe a strong modulation of intensity with energy which is due to the fact that the

anomalous atomic scattering factors for Ni1 (inside the expanded octahedra) and Ni2,3 (inside the

contracted octahedra) have a different behavior vs. energy. Using the system of equations, Eqs.

(4.1)-(4.6) together with f′′total extracted from the linear absorption coefficient, Eq. (3.49) we obtain

f’(E) and f”(E) for the Ni1 and Ni3 sites, by the method described below.

Before explaining the method we have to discuss Q-dependent terms in the equations Eqs.

(4.1)-(4.6). From Fig. 4.10(b), we see that the fit of the experimental |F|2 for the supercell reflec-

tions is good to within 10%. If in our equations, we use the calculated scattering factors at energies

off resonance we introduce discrepancies which can influence in a biased way the extraction from

the data of f’(E) and f”(E). To avoid the propagation of these errors, we replace in the Eqs. (4.1)-

(4.6), the Q-dependent terms by the corresponding experimental values extracted from the |F|2 at

8.3 keV (i.e. Q-dependent term for the (2, 0, 5) reflection is fT homson
Ni1 (|Q|) - fT homson

Ni3 (|Q|) - c205

· f T homson
O (|Q|)).

Using the modified equations, we solve the system of equations, where the unknown param-

eters are f’ and f” for Ni1 and Ni3; we subtract the |F|2 of different families (i.e. |F|2109-|F|2105)

and from these subtractions we obtain experimental values for ∆ f ′Ni = f ′Ni1(E)− f ′Ni3(E); re-

placing the calculated average values for ∆ f ′Ni back in the |F|2 formulas we are able to extract
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∆ f ′′2Ni = [ f ′′Ni1(E)− f ′′Ni3(E)]
2; using f′′total and ∆ f ′′2Ni we solved the system formed by these two

equations and we obtained a few possible solutions for ( f ′′Ni1−temp, f ′′Ni3−temp). For each solution

( f ′′Ni1−temp, f ′′Ni3−temp) we use the Kramers-Kronig relationships Eq. (3.42) to obtain the corre-

sponding ( f ′Ni1−temp, f ′Ni3−temp). The |F |2 were calculated for each solution ( f ′Ni1−temp, f ′Ni3−temp, f ′′Ni1−temp, f ′′Ni3−temp)

using Eqs. (4.1)-(4.6) and compared to the experimental |F |2. We found that there is a unique

solution which gives an acceptable agrement between the experimental and calculated structure

factors squared (we call this temporary solution). By analyzing the first neighborhood of the

Ni2 and Ni3 ions we observe the we can make the following assumption: f ′′Ni2−temp = f ′′Ni3−temp.

To obtain the best solution for the resonant scattering factors we constructed a fitting procedure

Energy (keV)
8.30 8.32 8.34 8.36 8.38 8.40

f 
' 

-8

-6

0

2

4

6
Ni1
Ni2,3

f 
'' 

  (
el

ec
tr

on
) 

Edge shift ~2.5 eV

a)

Energy shift (ev)
0 2 4 6

0

2

4

6

data 
linear fit

O
xi

da
tio

n 
st

at
e 

(h
ol

es
) b)Ni K-edge

Figure 4.11 (a) Energy -dependence of empirically-extracted real and imaginary anoma-
lous atomic scattering factors for Ni1 (solid line) and Ni2,3 (dashed line) obtained from a
best fit to the measured spectra such as in Fig. 4.12. (b) shift of the Ni K-edge energy vs.
oxidation state taken from [33].

where the input parameter was f ′′Ni1−temp. The steps for the fitting procedure are: the curve

f ′′Ni1−temp(E) is changed a little bit, then f ′′Ni3−temp(E) is obtained using f ′′total; in the following

step f ′Ni1−temp(E), f ′Ni3−temp(E) curves are obtained using the Kramers-Kronig relationships. Fi-

nally the structure factors squared |F |2(E) were calculated using Eqs. (4.1)-(4.6) and they were

compared with the experimental ones. This procedure was done until we obtained the best agree-
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ment between the calculate and experimental |F|2; we call best agreement, the fit which minimizes

the following function: ∑[|F |2exp− |F |2the]
2. The solution, ( f ′Ni1, f ′Ni3, f ′′Ni1, f ′′Ni3) which gives the

best agreement with the data is shown in Fig. 4.11 a).

4.7 Discussions
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Figure 4.12 Structure factors of several reflection at 300 K as a function of x-ray energy
near the Ni K-edge. The rich structure arises from interference scattering from the distinct
Ni sites [Fig. 4.1] with energy-shifted anomalous atomic scattering factors shown in [Fig.
4.11]. Pre-edge values of the structure factors in middle and bottom panels is due to the
scattering from oxygen displacements.

In total we measured three different families of supercell reflections: 1) the energy independent

contribution to the |F |2 is almost zero, this is the case for (1, 0, 9) and (2, 0, 3) supercell reflections;

2) the energy independent contribution to the structure factors has a finite positive value, this is the
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case for (1, 0, 5) and (1, 0, 6); 3) the energy independent contribution to the structure factors has a

finite negative value, this is the case for (2, 0, 5) and (2, 0, 7) supercell reflections. In Fig. 4.12 we

show the experimental (open circles) and the calculated (solid line) structure factors squared. From

this figure we observe that using the experimentally extracted curves for ( f ′Ni1, f ′Ni3, f ′′Ni1, f ′′Ni3), we

obtained a good agrement between the experiment and calculations and we can reproduce all the

main features seen in the experimental data around the edge. This give us the confidence that we

can use the the energy dependent ( f ′Ni1, f ′Ni3, f ′′Ni1, f ′′Ni3) curves to extract the edge energy for the

Ni ions at different sites. The edge energy was chosen at the energy where f ′(E) is minimum (see

Figure 4.11) or where we have the first maximum in the first derivative of the f ′′(E) curves (see

Figure 4.16). Based on this criteria, we can see that there is a shift of about ∼ 2.5 eV between the

edges for Ni1 and Ni3 ions, which suggest that there is a change in the edge energy between the two

Ni sites. Using experimental results for the edge shift vs. oxidations states, which shows that there

is linear dependence between the Ni valence and the K-edge energy shift [33], we can estimate a

maximum charge disproportionation of about 1.5 electrons between Ni1 and Ni3 ions. However,

this needs further clarification because the edge shift measured experimentally is a combination of

two effects. As described in the previous sections,(see Fig. 4.2), during the microscopic process in

the resonant scattering, an electron from the core 1s-level is promoted to the empty 4p-states above

the Fermi level, so the K-edge energy is determined by the position of the 1s-core level and the

4p-states with respect to the Fermi energy. In the high temperature phase all the Ni ions are sitting

at equivalent positions (ideal-octahedra), so the energy for the 1s−→4p transition is the same for

all ions. When we lower the temperature, the structure distorts around TS = 365 K and the Ni sites

become inequivalent; one third of the ideal-octahedra expand and two thirds of them contract when

we cross the structural transition temperature. The 4p-states for Ni ions inside the expanded and

contracted octahedra will change their position in energy with respect to the Fermi energy because

of the different hybridization with the neighboring oxygen ions. Examples where the edge shift
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is different due to the distortions of the first neighborhood and not charge disproportionation have

been published in the literature [39]. From this we learn that the edge shift between Ni1 and Ni3

ions could come from the oxygen distortions and not charge disproportionation between these two

sites.

The proposal for charge disproportionation at Ni sites in AgNiO2 comes from neutron diffrac-

tions experiments, which found that at lower temperatures than TS the system order magnetically

with a large magnetic moment at the Ni1 sites and no magnetic moment at the Ni2,3 sites. This sug-

gested that at the structural transition electrons are transferred from the Ni2,3 sites to the Ni1 sites,

so that the Ni1 sites (expanded octahedra) become e− rich compared to Ni2,3 sites (contracted-

octahedra). The proposed model for the charge disproportionation was supported by band structure

calculations [27].

We see from these simple arguments that there are two possible models that could explain

the experimental edge-shift. The first scenario is that the edge-shift is due only to the oxygen

distortions (different shift of the 4p-states with respect to the Fermi energy) and at the structural

transition there is no charge transfer between the Ni1 and Ni2,3 sites. The second scenario is

that the edge-shift is due to the oxygen distortions and charge transfer between the Ni sites at the

structural transition (see Figure 4.2). In order to find the correct model we have calculated the

energy of the 1s-core level and the energy of the 4p-states with respect to the Fermi energy, in

the charge ordered state. The results of the theoretical calculations are discussed in the following

section. From Eq. (4.6) we see that the |F |2 for the (1, 0, 6) supercell reflection depends on the

anomalous scattering factors from the all inequivalent Ni sites (Ni1, Ni2 and Ni3); inspection of

the first neighborhood for Ni1,2,3 suggest that Ni2 and Ni3 are in very similar electronic state;

assuming that Ni2 and Ni3 have the same electronic configuration in the charge ordered state,

we calculated the structure factors for this reflection using the same anomalous scattering factors

for Ni2 and Ni3; the result is given in Fig. 4.12; we can see that the agreement between the
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experimental and calculated |F |2 for the (1, 0, 6) supercell reflection is good and we conclude that

Ni2 and Ni3 are in a very similar charge state. This argument justifies our assumption made during

the fitting procedure used to obtain the resonant scattering factors.

4.8 Tensor analysis and band structure calculations

In section 3.2, we showed that the atomic scattering factor is a second-rank tensor which in the

most general case has nine independent components that reduce upon taking into account the local

site symmetry of the ion site. Using the space group of AgNiO2, the atomic scattering tensor f̂atomic

for Ni ions, expressed in an orthogonal reference system (x, y, z) connected to the crystal, has the

following form:

f̂atomic =


f⊥ 0 0

0 f⊥ 0

0 0 f‖

= f⊥


1 0 0

0 1 0

0 0 1

+


0 0 0

0 0 0

0 0 ∆ fanis

 (4.7)

When we take into account the tensorial form of the atomic scattering factor, the structure factor

becomes a tensor and thus the scattered intensity depends on the orientation of the crystal with

respect to the polarization of the incident and scattered XR beams. The direction of linear po-

larization of the incident XR beam is denoted by unit vectors, which are always expressed in the

orthogonal (x, y, z) reference system. Thus, our reference frame is the crystal, not the laboratory,

and from this point of view, changing the crystal orientation means a change in the direction of

the polarization. Thus, each reflection will have a different polarization. We show in section 3.3

that when the atomic scattering factor is a scalar quantity, the scattered intensity is proportional

|F |2 and the polarization factor P = 1. When the atomic scattering factor is a tensor, the scattered

intensity is proportional to |ε∗in · F̂ · εsc|2, where ε in and εsc are the unit vector polarizations of

the incident and scattered XR beam and F̂ is the structure factor tensor. Instead of using arbitrary
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Figure 4.13 LDA calculation of density of states (DOS) for final electron states. The
difference between the px = py and pz DOS is giving us two independent components of
the atomic scattering tensor.
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Figure 4.14 LDA calculation of density of states (dos) for the initial and final electron
states in the transition 1s→ 4pxy (horizontal dashed arrows) probed by the present res-
onant Ni K-edge scattering experiments. Solid/dashed curves show the dos for electron-
rich/depleted Ni1/Ni2,3 sites. Due to fewer electrons in Ni2,3 the binding energy per
electron is stronger and the 1s core level is deeper in energy (dashed vertical line in left
panel) compared to Ni1. The closer proximity of the oxygens promotes a stronger hy-
bridization with the O 2p levels for Ni2,3 sites and this pushes the 4pxy band higher in
energy compared to the expanded Ni1 site. The combined effect is a predicted transition
energy shift of 2.5(4) eV higher for Ni2,3 compared to Ni1.
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polarizations εin and εsc we use the conventional σ and π polarizations defined in section 3.1. The

linear polarization of the incident beam, which is perpendicular to the scattering plane (see section

4.4), is expressed in the crystal reference frame (x, y, z) and is called σ in-polarization. We also

define the polarizations of the scattered beam as σ sc when the polarization is perpendicular to the

scattering plane and as πsc when the polarization is in the scattering plane perpendicular to ksc.

For an incident XR beam with σ in polarization (Iσ in), the scattered intensity can have σ sc (Iσ inσ sc)

or πsc (Iσ inπsc) polarizations; we can now write the total scattered intensity as:

Isc = Iσ inσ sc + Iσ inπsc (4.8)

where

Iσ inσ sc ∼ |σ∗sc · F̂ ·σ in|2 Iσ inπsc ∼ |π∗sc · F̂ ·σ in|2 (4.9)

To see the distribution of the scattered intensity between σσ and σπ polarizations we have cal-

culated the analytical form of the |σ∗sc · F̂ ·σ in|2 and |π∗sc · F̂ ·σ in|2 terms for the (109) supercell

reflection. Using

σ in =


σ x

in

σ
y
in

σ
z
in

 σ sc =


σ x

in

σ
y
in

σ
z
in

 πsc =


πx

in

π
y
in

π
z
in

 (4.10)

for the polarizations of the incident and scattered beams, we obtain the following formulas for the

structure factors squared:

|σ∗sc · F̂ ·σ in|2(109) =3[(∆ f T homson
Ni + f

′
⊥−Ni1− f

′
⊥−Ni3 +σ

z
in ·σ

z
in · (∆ f

′
anis−Ni1−∆ f

′
anis−Ni3)+

+ c109 f T homson
O )2 +( f

′′
⊥−Ni1− f

′′
⊥−Ni3 +σ

z
in ·σ

z
in · (∆ f

′′
anis−Ni1−∆ f

′′
anis−Ni3))

2]

(4.11)

|π∗sc · F̂ ·σ in|2(109) = 3(σ z
in ·π

z
sc)

2[(∆ f
′
anis−Ni1−∆ f

′
anis−Ni3)

2 +(∆ f
′′
anis−Ni1−∆ f

′′
anis−Ni3)

2] (4.12)

σ
z
in ·σ

z
in and (σ z

in ·πz
sc)

2 coefficients that prefactor the anisotropic part in the above equations, have

been evaluated for all the supercell reflections we measured in our experiment and they have values
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smaller than 10−2. Based on these arguments we can safely conclude that during the experiment

we are only sensitive to the f⊥ components of the atomic scattering tensor. The scalar atomic

scattering factors, f extracted from the experiment (see Figure 4.11), are equivalent to f⊥.
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Figure 4.15 . Convolution of the density of states with a Lorentzian to take into account
the lifetime of the excited state. The value of the Lorentzian width is optimized to obtain
the best agreement between the theoretical and experimental spectra in the vicinity of the
absorption edge, i.e. in the region from -10 to 15 eV around the first inflection point of
the edge. The value obtained for the FWHM is 4.5 eV. The calculations don’t take into
account that the final-state life time is energy-dependent

To show that the atomic scattering factor is a tensor and in order to compare the empirically-

extracted edge shift, Figure 4.11, with theoretical calculations for the CO state, we have computed

using LDA band-structure calculations described in [27], the shift in the energy levels probed by

the resonant experiments, namely the core 1s level and empty 4p band. In Figure 4.13 we show the

total, px + py (px=py by symmetry) and pz density of states for Ni1 and Ni2; from the difference

between the px=py and pz DOS and Eq. (3.25) we can conclude that the atomic scattering factor is

a tensor (having only three non-zero components) with two independent components as expected

from the symmetry analysis.

The results of the theoretical calculations for energy positions of the 1s and 4p states, are shown
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Figure 4.16 First derivative of the imaginary part of the atomic scattering factors f” for
Ni1 ions; the first maximum in the first derivative is identified with the absorption edge;
a) first derivative of the empirically extracted f”, see Figure 4.11; b) first derivative of the
theoretically calculated f”, see Figure 4.15.

in Figure 4.14. Only the 4pxy (degenerate) bands are shown as only transitions from 1s to those

bands are induced by the in-plane component of the scattering factor f⊥, as probed in the present

experiments. For the electron-rich Ni1 site, the 1s core level is higher in energy, as the binding

energy of the core electrons is smaller due to inter-electron Coulomb repulsion with the extra 3d

electron, and the 4pxy bands are lower in energy, as the hybridization with the oxygen 2p band

is weaker as oxygens are displaced further away (compared to Ni2,3). The combined effect is

an edge shift for the transition 1s - 4pxy for Ni1 compared to Ni2,3 of +2.5(4) eV (estimation of

the uncertainty depends on the precise definition of the lower boundary edge for the 4p band, see

Figure 4.16). The experimentally extracted shift of 2.5(3) eV compares well with the theoretical

prediction and shows that both contributions to the edge shift need to be included to explain the

data (the core level shift due to CO and the oxygen hybridization of the excited 4p band). In Figure

4.15 we show the convoluted density of states with a Lorentz function (we work in the constant

matrix elements approximation) to take into account the life time of the excited state. The FWHM
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of the Lorentz function was optimized until the best agreement with the experimental data was

obtained (for comparison see Figures 4.11 and 4.15).

4.9 Temperature dependence

In order to learn more about the temperature dependence of the charge order state and about its

relation with the structural transition, we have measured the temperature dependence of reflections

which are mostly sensitive to the charge order state and reflections which are mostly sensitive to the

oxygen distortions. We also measured the energy profile of reflections (from two different families)

at two different temperatures to learn more about the type of the phase transition. In Figure 4.17 we

show the order parameter extracted from two supercell reflections. The reflections were measured

at fixed energy 8.347 keV, close to the resonance energy, with increasing temperature. From these

results, we learn that there is strong correlation between the two states and that the transition to the

charge order state happens at the same time with the structural transition, as predicted by the band

structure calculations. The transition temperature obtained from the order parameter measured in

this experiment is slightly smaller than the transition temperature extracted from neutron diffrac-

tion measurements of the displacement order parameter due to the sample heating in the beam. In

Figure 4.18 we show the temperature dependence of the profile for the structure factors squared

of two different supercell reflections (black circles and blue squares): (1, 0, 9) which is directly

related to the charge disproportionation (it has no contribution from the oxygen displacements out

of the resonance regime) and (1, 0, 5) which has contribution from both, charge disproportionation

and oxygen displacements.

From a careful inspection of the supercell reflections profile we observe that the only differ-

ences between the profiles at the two different temperatures is a scale constant; the shape of the

profile is almost the same, Figure 4.18. At 300 K the charge order is saturated and the oxygen atoms
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Figure 4.18 Temperature dependence of the experimental structure factors vs. energy for
the (a) charge order (1, 0, 9) and (b) oxygen displacements (1, 0, 5) supercell reflections.
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are in equilibrium at the maximum displacement in the whole sample volume; at 333 K when we

are closer to the transition, a fraction of the volume sample is in the normal state (with the high

temperature crystal structure). This scenario will give us a decrease in intensity and no change in

the profile shape. The case mentioned above is consistent with a first order phase transition, as it

includes a coexistence of two phases.
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Figure 4.19 Calculations of the |F|2 to simulate the temperature dependence of the ex-
perimental structure factors vs. energy for the (a) charge order (1, 0, 9) and (b) oxygen
displacements (1, 0, 5) supercell reflections. Blue color (zero shift) represents the calcu-
lations of the structure factors using f ′′Ni1−0 and f ′′Ni3−0 curves which are equivalent with
the curves f ′′Ni1 and f ′′Ni3 curves from Figure 4.11; red color represents the calculations of
the structure factors using f ′′Ni1−0.9 and f ′′Ni3−0.9 curves which are obtained by shifting the
f ′′Ni1 to right by 0.9 eV and f ′′Ni3 to left by 0.45 eV . Symbols represent experimental data.

A second scenario would be that the transition is of second order. In this case at 300 K the

charge order is saturated and the oxygen atoms are in equilibrium at the maximum displacement

in the whole sample volume; while increasing the temperature, the charge disproportionation and,

the oxygen displacements are decreasing continuously and at the transition temperature TS, the

oxygen displacement would be zero and all the Ni ions are equivalent. Assuming a linear relation

between the amount of charge disproportionation and the shift of the f ′′ curves for the Ni1 and Ni3
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ions, we calculated the profile of the supercell reflections for different shifts of the f ′′; the results

of such calculations for different shifts are shown in Figure 4.19. We see that these calculations

also give a decrease in intensity without a significant change in the profile for energies close to the

edge energy. The assumption made in order to do these calculations was that the profile of the f ′′

for the two Ni ions does not change with the increase of temperature. These arguments show that

the data is consistent with both models; further measurements are needed in order to distinguish

between the two.

4.10 Conclusions

In conclusion, we have reported resonant X-ray scattering measurements on a single-crystal of

the triangular lattice metal 2H-AgNiO2, which undergoes a spontaneous honeycomb charge order

pattern. We have observed a large resonant enhancement of charge order reflections as the x-

ray energy was tuned through the Ni K-edge and the rich structure as a function of energy can

be quantitatively accounted for by interference scattering from the electron-rich and -depleted Ni

sites. We did all the necessary corrections to bring the data in absolute units and we extracted the

energy dependence of the atomic resonant scattering factors for the three distinct Ni ions which

gave the best fit to the data. Taking into account the full tensor component of the anomalous

scattering factors and the hybridization with the oxygen orbitals we obtained a good agreement

between the empirically extracted edge shift between the distinct Ni sites and the microscopic

band-structure calculations of charge ordering. Measurements of the order parameters shows that

there is a strong correlation between the charge order transition and the structural transition, as

predicted by band structure calculations. Measurements and calculations of the energy profile at

different temperatures show that both models, first order and second order phase transition, are

consistent with the data.



Chapter 5

Magnetic ground state and crystal field

energy levels of Co2+ ion in the Ising

ferromagnet CoNb2O6

This chapter reports a study of the magnetic ground state and excited energy levels of Co2+ ions

in the strong easy-axis magnet CoNb2O6. This material has recently attracted interest as Co ions

form nearly-decoupled ferromagnetic Ising chains with a sufficiently small exchange interactions

such that the spontaneous long rage magnetic order can be suppressed in a quantum phase transi-

tion by a strong external transverse applied magnetic field. This is the first experimental realization

of the quantum critical Ising chain. The aim of this chapter is to understand from a microscopic

point of view the origin of the strong Ising-like anisotropy of the Co2+ ions and to determine the

spin and orbital component of the magnetic ground state and of the excited levels, taking into ac-

count spin-orbit interactions and crystal field effects from the distorted O6 octahedron surrounding

the Co2+ ions. The crystal field is parameterized using the Steven’s equivalent operator method

and starting values for all the allowed crystal field parameters given the low local symmetry (mon-

75
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oclinic C2 point group) are obtained using a point charge model calculation. The obtained energy

levels scheme is compared with the previously measured inelastic time-of-flight neutron scattering

data on crystal field energy levels. A good agreement is found between the calculated and experi-

mentally measured values of the excited energy levels, magnitude of the magnetic moment and the

direction of the easy-axis.

5.1 Introduction

Ising magnets have been important in studies of thermally induced phase transitions partly due

to much theoretical progress starting from Onsager (exact solution for the two dimensional Ising

model [40]), and partly due to detailed experimental studies of a range of Ising-like magnets via

neutron scattering, which have enabled detailed studies of critical scattering to be made and to

test theoretical predictions [41]. More recently Ising magnets are attracting interest for the study

of collective quantum effects introduced by an external magnetic field perpendicular to the Ising

axis. The applied magnetic field allows quantum tunneling fluctuations between the up and down

spin orientations and make fluctuations become sufficiently strong such that they "melt" the spon-

taneous long-range magnetic order in a continuous phase transition to a paramagnetic phase [42].

One of the theoretically most studied paradigms for such a quantum phase transition is the 1D

ferromagnetic Ising chain in transverse field whose theoretical solution has inspired the general

theory of quantum criticality. The insulating magnet CoNb2O6 has been proposed to be a good

realization of a quasi-1D Ising ferromagnet, based on neutron scattering measurements observing

sheets of diffuse scattering perpendicular to the chain direction [43]. Magnetic structure [44, 45],

susceptibility measurements [46] and magnetization measurements [47] also show evidence for

a strong Ising-like anisotropy with the easy axis in the crystallographic ac-plane. Recent neutron

scattering measurements in applied magnetic field along b-axis, i.e. perpendicular to the Ising axis,
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have observed that spontaneous magnetic order is suppressed in a continuous phase transition at a

critical field of 5.5 T [48]. Detailed measurements of the spin dynamics show direct evidence for a

transformation of quasiparticles across this critical point, between pairs of solitons (domain walls

excitations interpolating between the two degenerate ground states in the ordered phase) and spin

flip quasiparticles, a key prediction of 1D ising quantum criticality [48]. At the same time measure-

ments of the spin excitation spectrum in zero field confirmed that the main Hamiltonian was that of

Ising spins coupled ferromagnetically along the chain with a small (2%) interchain exchange and

also showed evidence for significant (∼15%) subleading interactions beyond the dominant Ising

term Sz
i S

z
i+1 between the Sx and Sy spin components of the neighbouring spins on the same chain

which affects the dispersion of solitons already in zero field.

The aim of the study reported here is to understand microscopically the origin of the dominant

Ising like anisotropy and the strength and form of the subleading perturbations. The origin of the

magnetic anisotropy is the spin-orbit coupling λ L · S [49] which prefers collinear arrangements

of the total spin S and total orbital angular momentum L, where the orbital angular momentum

of magnetic electrons is strongly affected by the crystal electric field potential created at the posi-

tions of the magnetic electrons by the surrounding negatively charged O2− ligands [50]. Applying

Hund’s rules [51] to the Co2+ free ion (electronic configuration 3d7 in the last shell), to obtain the

ground state that minimizes electron-electron interactions constrained by the Pauli principle leads

to L = 3 and S = 3/2 for the total orbital and spin quantum numbers, giving in total a multiplet of

(2L + 1)(2S + 1) = 28 states [52]. The orbital degeneracy (2 L + 1) = 7 will be lifted when the

magnetic ion is included in a crystal. For example the crystal electric field potential of an ideal

O6 octahedron with Co2+ ion in the center, lifts the orbital degeneracy of the free ion states of

Co2+ ion and splits the orbital energy levels in a triplet, triplet and singlet (in order of increasing

energy) [37], see Figure - 5.8. In CoNb2O6 the crystal electric field of the distorted O6 octahedra

completely lifts the orbital degeneracy and splits the orbital energy levels into 7 orbital singlets.
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The crystal field of the distorted octahedra together with the spin-orbit coupling perturbation splits

(and mixes) the 28 states of the multiplet and lifts the multiplet degeneracy into a set of Kramer

doublets, where the remaining two-fold degeneracy of each level is due to the fact that there are

odd number of electrons. In CoNb2O6, the O6 octahedron is in fact strongly distorted from cubic

symmetry, see Figure 5.2(a); the local symmetry is monoclinic (C2 point group) with as many

as 8 symmetry allowed terms (Bk
q) in the crystal field perturbation energy expansion in the basis

of angular momentum operators as described later. Values for all these crystal field parameters

are calculated in the point charge model (PCM) approximation Bk
q(PCM), where the electronic

cloud of each of the surrounding oxygens is approximated by a point charge of 2e−. Including

hybridization effects we obtain a better estimate for the crystal field parameters Bk
q(SOM). Those

values are then used as starting point in a comprehensive fit of the model (including spin-orbit

coupling and the exchange mean-field due to the long range magnetic order) to the excited energy

levels, magnitude of the ordered magnetic moment and easy axis direction obtained from previous

measurements to obtain a consistent description of all those measurements.

The rest of the chapter is organized as follows: section 5.2 presents the crystal and magnetic

structure at low temperatures; section 5.3 briefly mentions the details of the the experiments per-

formed previously to measure the crystal field levels [53]; the data is then fully analyzed and

experimental quantities extracted are presented in section 5.4; a brief description of the theoretical

model used in the data modeling is given in section 5.5; section 5.6 presents calculations of the

crystal field parameters before and after hybridization effects are included in the model; section 5.7

discusses the steps taken in refining empirical crystal field parameters from fits to data; the best fit

model and the final comparison with the experimental data is presented in section 5.8; section 5.9

shows the calculations of the higher energy crystal field levels and comparison with optical mea-

surements; finally the conclusions are summarized in section 5.10. The Appendices give detailed

information about how to obtain the form of the crystal field Hamiltonian in the operator equivalent
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approach and how to calculate numerically all the relevant crystal field parameters using the point

charge model.

5.2 Crystal and Magnetic Structure of CoNb2O6

CoNb2O6 crystallizes in the orthorhombic system with space group Pbcn (No. 60). The lat-

tice parameters of the chemical unit cell at T = 1.67 K are |a| = 14.1475 Å , |b| = 5.7120 Å and

|c| = 5.0446 Å [54]. The fractional atomic coordinates of the atoms in the unit cell, together with

the ion type and Wyckoff positions are given in Table - 5.1. There are four crystallographically-

Table 5.1 Structural parameters for CoNb2O6 at T = 1.65 K [54].

Atom name Ion type Wyckoff position x/a y/a z/a

Co Co2+ 4c 0.0000 0.1818 0.2500

Nb Nb5+ 8d 0.1616 0.3242 0.7445

O1 O2− 8d 0.0952 0.3966 0.4329

O2 O2− 8d 0.0753 0.1153 0.8884

O3 O2− 8d 0.2523 0.1238 0.5693

equivalent Co2+ ions in the unit cell, see Figures - 5.1 and - 5.2(c), occupying the 4c Wyckoff

positions with fractional coordinates, Co1: (0, y, 1
4 ), Co2: (0, ȳ, 3

4 ), Co3: (1
2 , 1

2 − y, 3
4 ) and Co4:

(1
2 ,1

2 + y, 1
4 ), with y = 0.1818. Each Co2+ ion is placed inside an oxygen distorted octahedral envi-

ronment with the local symmetry point group C2. The twofold symmetry axis is parallel with the

crystallographic b axis, see Figures - 5.2(b). It is important to understand the distortions of the O6

octahedron surrounding the Co2+ ions using as starting point an ideal octahedron because these

distortions combined with the effects of the spin-orbit coupling are ultimately responsible for the



80
Chapter 5 Magnetic ground state and crystal field energy levels of Co2+ ion in the Ising

ferromagnet CoNb2O6

Figure 5.1 Unit cell of CoNb2O6 system; the CoO6 octahedra are colored blue and the
NbO6 octahedra are colored green.

magnetic anisotropy effects. All four Co sites are related by symmetry and if we understand the

first neighborhood of one of them (for example Co1), it is easy to understand the first neighborhood

for all the others.

The first step in understanding the environment of the Co1 ion is to find the "closest" ideal

octahedron from which only minimal displacements are needed to generate the actual distorted

octahedron. The procedure we used to obtain the ideal octahedron is explained in Ref. [55] and

results are given in Table - 5.2 and illustrated in Figure - 5.2(a) (this procedure uses a fitting

algorithm to minimize the relative displacements of O ions from the ideal octahedra to actual

octahedron). The ideal octahedron has the Y axis along b and Z axis in the ac-plane at an angle γ

with respect to the c-axis. The ideal octahedron has |dCo−O| = 2.103 Å and for Co1 γCo1 = -32.07◦,

see Figure - 5.2(a) (positive angles are defined as clockwise rotations). The ideal and distorted

octahedra together with the axes for the local and crystallographic reference frames are shown in

Figure - 5.2(a). The vectors with the origin at the corners of the ideal octahedron show the oxygen

displacements, and their components dx, dy, dz (in Å) are given in Table - 5.2. For example, the

displacement vector for O1 ion is: dO1 = dx i + dy j + dz k, where i, j and k are the unit vectors of the

local XYZ coordinate system. A detailed analysis of the local symmetry of the Co2+ ions suggest

that the calculations of the crystal field parameters Bk
q (which will be defined later in Appendix -
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Figure 5.2 (a) schematic representation of the orientation of the local coordinate system
xyz of the ideal octahedron around Co1 with respect to the crystallographic axes abc.
Solid arrows at each vertex are oxygen displacements from the ideal position. (c) Projec-
tion of the local Z axis for the four Co ions in the XY-plane; (b) Projection of the oxygen
distortions in the XY-plane; the filled central black circle represent the Co1 ion and open
circles are oxygen ions surrounding it.
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Table 5.2 Displacements (in Å) of oxygen around the Co1 relative to an ideal octahedron
as shown in Figure - 5.2(a).

Name dx dy dz

O1 0.1441 -0.2601 0.0667

O2 -0.1441 -0.2601 -0.0667

O3 0.2136 -0.2099 -0.0260

O4 -0.2136 -0.2099 0.0260

O5 0.0657 -0.3798 0.0083

O6 -0.0657 -0.3798 -0.0083

A, Eq. - A.20) would be simplified if we work in the local coordinate system XYZ instead of the

crystallographic coordinate system abc. In Figure - 5.2(c) we show the direction of the local Z

axis for each of the four Co2+ ions in the unit cell; we observe the Z axis is at γ = -32.07◦ for

ions Co1 and Co2 and at -γ for Co3 and Co4. We will show in the next paragraphs that reports of

the magnetic structure found from neutron diffraction measurements [44] find that the directions

of the magnetic moments are very close to directions of the local Z axes for each Co2+ ion.

As a consequences of the 2y twofold symmetry axis parallel with the crystallographic b-axis

the oxygen ions have the following symmetry: 2y O5 → O6, 2y O1 → O2, 2y O3 → O4 which

can be expressed mathematically as the following relations between the spherical angles θ and α

(defined in the XYZ local coordinate system, see Figure - 5.3):

θOx +θOx+1 = π

αOx +αOx+1 = gπ, x = 1,3,5
(5.1)

where g is an odd number. We show in Appendix - B that due to these special relations all the

imaginary terms in the crystal field expansion B’k
q (which will be defined later in Appendix - A, Eq.
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Figure 5.3 Spherical coordinates system used to define the spherical angels θ and ϕ of
the oxygen ions in the XYZ local coordinate system.

- A.20) will be zero. The crystal field parameters B’k
q are called imaginary crystal field parameters

because they are prefactors of purely imaginary operators in the expansion of the crystal field

Hamiltonian. The fact that in our case B’k
q = 0 makes the calculations easier.

Reports of the specific heat and ac-susceptibility measurements in Ref. [46] find that a strong

anisotropy exists in this system; reports of the magnetization measurements on single crystal in

Ref. [47] find that the magnetic moments are in the ac-plane at ∼ ±34◦ to c axis. Reports of the

magnetic structure measured using neutron diffraction find that magnetic moments are in the ac-

plane at angles of ±31◦ to the c axis. Heid [44] reported the magnetic structure with the direction

of the magnetic moment for Co1 at 31◦ and Scarf [45] reported the magnetic structure with the

direction of the magnetic moment for Co1 tilted in the opposite direction at -31◦ from the c axis,

see Figure - 5.4. Once the direction of the magnetic moment is chosen for the Co1 ion, the direction

of the magnetic moments at the other four sites is obtained form group theory considerations [44].

From the reported magnetic structures we learn that there are two possibilities for the directions

of the easy axis at the Co1 site. In terms of the local coordinate system XYZ, the easy axis would

be nearly along the z-axis ξCo1 ∼= 0◦ (model S2) or at ξCo1 = 62◦ (model S1) from the Z axis in

the XZ-plane. Figure - 5.4 shows that in fact the two magnetic structure are related by a shift of

(1/2, 1/2, 0) and so would have the same structure factors and they would be indistinguishable in
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neutron diffraction measurements.

(a) scenario S2: ξCo1 ∼= 0◦

(b) scenario S1: ξCo1 = - 62◦

Figure 5.4 Magnetic unit cell of CoNb2O6 below 1.95 K in the antiferromagnetic phase
according to model S1 (a) Heid [44] and S2 (b) Scharf [45]. The black and open circles
represent the Co ions with the fractional coordinate x/a = 0 and x/a = 0.5 respectively; the
dotted line represents the Z axis of the ideal octahedron in the local coordinate reference
frame. One can see that the two magnetic structures are related by a shift of t14 (Co1→
Co4) = (1/2, 1/2, 0) so would give an identical signature in neutron diffraction.

5.3 Experimental Details

This section gives brief details of the neutron scattering measurements of the excited crystal

field levels performed earlier [53]. Measurements were performed using the time-of-flight direct-

geometry spectrometer, HET, on the pulsed neutron source ISIS at the Rutherford Laboratory. This

technique was used to investigate the transitions from the ground state of Co2+ ions to higher crys-
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tal field levels. A spinning Fermi chopper placed before the sample is phased to the pulsed source

such as to produce pulses of nearly monoenergetic neutrons; in this experiment several incident

neutron energies were used, Ein = 25, 75, 170, 250, 350, 550 and 1200 meV to cover the lowest

band of excitations. This instrument has two banks of detectors: a low-angle bank of position sen-

sitive detectors covering scattering angles between 3◦ and 9◦ at a distance of 4 m from the sample

and a larger-angle bank, covering angles between 10◦ and 30◦ at a distance of 2.5 m. Due to the

different distances between the two detectors banks and the sample position, the energy resolution

will be different for measurements in the two different detector banks. If an instrument is said to

have a resolution ∆E it means that we are not able to resolve experimentally transition energies

separated by an energy interval < ∆E. The neutron scattering technique used here is based on the

measurements of the time of flight from the source through the sample to the detector banks. In

order for the neutrons to arrive at the low-angle bank they have to travel a larger distance, 4 m than

for the high-angle bank which means that they will better separated in time when arriving at the

detector; this is equivalent with saying that at fixed incident energy Ein there is a better resolution

for the low-angle bank than for the high-angle bank, ∆Elow−anglebank < ∆Ehigh−anglebank. A sin-

gle crystal of CoNb2O6 was mounted on the instrument such that the b axis was perpendicular to

horizontal scattering plane. The measurements were made at a base temperature of 5 K with the

incident beam oriented along the crystal a* axis. The intensity was recorded as a function of time

of flight then converted to energy transfer.

The time-of-flight spectra were converted to energy transfer and normalized to the scattering

from a standard vanadium sample to correct for the energy dependence of the incident flux. Only

the data from the small-angle horizontal detector bank was used in the current study (we will justify

this in the next section 5.4). Since the transitions are not dispersive in momentum, see Figure - 5.7,

the intensity for a range of scattering angles is averaged to produce spectra as a function of energy

transfer, see Figure - 5.5. The position in energy of the crystal field excitations were obtained from
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Figure 5.5 (a) Color intensity map of the inelastic neutron intensity observed at 5K for an
incident energy of Ein = 75 meV; the elastic line is at zero energy transfer as expected; a
crystal field excitation is seen near 30 meV. (b) Intensity vs. energy transfer (open circles)
and Gaussian fit (solid line). Data points are obtained by averaging the counts in the first
detector bank covering the range of scattering angles 3◦ and 9◦; The dashed white box in
panel (a) represent the area of the energy cut.

the data measured with the horizontal low-angle bank of detectors which covered scattering angle,

3◦ < 2θ < 9◦. Gaussian functions were fitted to the observed peaks in order to find the centers

of the peak positions, ε
exp
n (Ein) and the integrated areas Iexp

area at various incident energies Ein, see

Figure - 5.5(b). The excitation energy is given by ε
exp
n = En - E0, where En and E0 are the energies

of the nth excited state and the energy of the ground state of Co2+ ions respectively.

5.4 Experimental Results

Because the measurements were done using different incident energies the same crystal field ex-

citation was measured more than once. To obtain the average experimental energies of the crystal

field excitations ε
exp
n (Ein) for each incident energy Ein, the data from the horizontal low-angle bank

of detectors was averaged and the peak positions in energy was extracted by fitting the peaks with
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single Gaussian functions, see Figure - 5.5(b). Then, the values ε
exp
n (Ein) corresponding to the

same crystal field excitation were averaged and the error bars were chosen such that all the values

are included in the confidence interval, see Table - 5.3. Gaussian fits of the peak positions for the

transition energies used in this project at different energies are given in Figure - 5.6. The reason we

have slightly different values for the same transition energy could be the following: in theory each

excitation is represented by a δ (E − ε
exp
n ) function (FWHM=0) centered at the energy ε

exp
n , but

from the experimental point of view, due to the resolution of the instrument, each excitation has

a finite width (FWHM6=0) and in general the peak shape can be modeled by a Gaussian function.

We will show in the theory section that the energy levels of the Co2+ ions are separated in groups

of doublets which are very close in energy (see Figure - 5.8). The energy splitting between the

doublets is much smaller then the instrument resolution (∆E) and because of that the level split-

ting cannot be resolved experimentally. The resolution of the instrument (FWHM) broadens with

increasing the incident energy Ein. This broadening could be responsible for the small differences

in the nominal energy of the same excitation ε
exp
n for different incident energies Ein.

Table 5.3 Experimental energies of the crystal field excitations, extracted as described in
the text, for Co2+ ion.

ε
exp
n=1,...,6 εexp

1
εexp

2
εexp

3
εexp

4
εexp

5
εexp

6

meV 30(2) 50(3) 107(7) 136(4) 170(3) 737(15)

The integrated intensity of the excitations is not affected by the resolution effects but instead

is strongly affected by the absorption effects which are energy dependent. Before the absorption

effects are discussed, it is important to explain the decrease in intensity with increasing the scatter-

ing angle, 2θ see Figure - 5.5(a) or with increasing the wavevector transfer |Q| see Figure - 5.7(b),

for a fixed incident energy and fixed transfer energy where the absorption factor is constant. From
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Figure 5.6 Gaussian fits of the peak positions from which the experimental crystal field
transition energies εexp were extracted, see Table - 5.3.
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Eq. (5.2) (section 5.5) we see that the scattered intensity is proportional with the squared magnetic

form factor, f (|Q|) which is |Q|-dependent, see Figure - 5.7(a). The magnetic form factor f (|Q|)

is obtained from the Fourier transform of the magnetization density distribution of a single mag-

netic atom. When the magnetization arises from electrons in a single 3d open shell the magnetic

form factor can be calculated from the radial distribution of the electrons in that shell. Numerical

calculations have been done for the 3d metals using Hartree-Fock wave-functions and analytical

parameterizations have been fitted to the numerical calculations; the fitted coefficients are listed in

literature [4] for the transition metals and their ions. The approximation used in the Hartree-Fock

calculations (dipole approximation) uses the assumption of a magnetization density distribution of

spherical symmetry (free magnetic ion); when the magnetic ion is placed in a crystal the magne-

tization distribution doesn’t have spherical symmetry anymore and the true form factors deviates

from their calculated values in dipolar approximation. These deviations became important for high

values of the wave vector transfer |Q| [56].
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Figure 5.7 (a) radial integral, j0 (solid line) and j2 (dash line); in dipolar approximation,
the spin magnetic from factor is fS(|Q|) = j0(|Q|) and the orbital from factor is fL(|Q|)
=0.5 * [ j0(|Q|) + j2(|Q|)]; (b) color intensity map of the inelastic neutron intensity for
an incident energy of Ein = 75 meV showing the |Q| dependence of the intensity for the
crystal field excitation at 30 meV. The solid arrow show the direction of intensity decrease.
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Figure - 5.7(a) shows the spin and orbital magnetic form factor for Co2+ ion calculated in

the dipolar approximation; the coefficients of the analytical functions have been taken from [4].

We observe that there is a strong decrease of the magnetic form factor with increasing the wave

vector transfer |Q|. Based on the discussion above, we conclude that the intensity decrease as |Q|

is increasing is mainly due to the magnetic form factor. The reason why we use only the data from

the horizontal low-angle bank of detectors is that the wavevector transfer for measurements using

this detector bank is smaller than the wavevector transfer for measurements using the larger-angle

bank of detectors where the intensity is much more sensitive to the detailed form of the magnetic

form factor.

Due to the complicated sample shape we could not model the absorption effects precisely and

because of that the data was not corrected for the absorption effects. To get an idea about how

strong the absorption effects are, approximate calculations of the absorption coefficients have been

done for a cylindrical sample of an effective radius (chosen by taking into account the size of the

sample) for all the incident neutron energies. We found that there could be a decrease in intensity

up to 40% for Ein = 75 meV and up to 15% for Ein = 1200 meV. Because of the absorption effects

we only compare the ratio of the calculated intensities with the ratio of the experimental intensities

measured at the same incident energy where the absorption factors are approximately the same.

Also due to the dipolar approximation used in our calculations, the calculated intensity can be

compared with the experimental intensity only for small values of the wave vector transfer |Q|.

There are only two crystal field excitations which satisfy all these conditions; the excitations at

energy transfer of ε
exp
Ψ1

= 30 meV and ε
exp
Ψ2

= 50 meV, measured with the same incident energy of

Ein = 170 meV. The intensities for these two crystal field excitations are given in Table - 5.4. The

ratio of these two intensities, Iexp
area(Ein=30) / Iexp

area(Ein=50) = 4.8(1.4) will be compared later with

the calculated value in order to test theoretical predictions.

The orbital magnetic form factor is very small for the values the wave vector transfer |Q| of the
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Table 5.4 Intensities of the crystal field excitations.

Ein ε
exp
Ψn=1,...,2

|Qx| |Qy| |Qz| |Q| Iexp
area

meV meV Å−1 Å−1 Å−1 Å−1 a.u.

170 30 0.8982 0 0.6818 1.1276 240(20)

170 50 1.4767 0 0.6335 1.6068 50(10)

two excitations given in Table - 5.4; for this reason we will only use the spin magnetic form factors

in the calculations of the neutron intensities.

5.5 Theory review of formulas used to interpret inelastic the

neutron scattering data

The magnetic inelastic neutron scattering for unpolarized neutrons is proportional with [2]:

d2σ

dΩdE
= b2

m
k f

ki
| f (|Q|) |2 ∑

α,β

(
δαβ −

Qα Qβ

Q2

)
Sαβ (Q, h̄ω) (5.2)

where h̄ω is the energy transfer, Q is the wavevector transfer, bm is the magnetic scattering length

and f (|Q|) is the magnetic form factor [4]. The prefactor δαβ −
Qα Qβ

Q2 is the polarization factor

and Sαβ (Q, h̄ω) is the response function of the magnetic operator given by:

Sαβ (Q, h̄ω) = ∑
n

p0 〈Ψ0|Mα(Q)|Ψn〉
〈
Ψn|Mβ (-Q)|Ψ0

〉
δ (E0−En− h̄ω) (5.3)

where |Ψ0〉 and |Ψn〉 are the initial (ground) and final states of the system with energies E0 and En

and the initial state has probability p0. Within the dipole approximation the magnetization operator

M(Q) is given by:

M(Q) = ∑
i
(Li +2Si)eiQ·R(i) (5.4)
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where the sum runs over all ions in the unit cell. Combining the Eqs. 5.2 to 5.4 we learn that the

intensity of the inelastic scattering for a transition from the ground state, |Ψ0〉 to an excited state,

|Ψn〉 is proportional to:

|〈Ψn|L⊥+2S⊥|Ψ0〉|2 (5.5)

where L⊥ and S⊥ are the components of orbital and spin operator momentum perpendicular to

the wavevector transfer Q. In order to calculate the neutron scattering intensities for crystal field

transition one needs to know explicitly the wavefunctions of all the energy levels, Ψn. To find

the wavefunctions one needs to write down the total Hamiltonian of the magnetic ion, including

the terms for all the relevant interactions and then solve the Schrödinger’s equation to find the

eigenfunctions and eigenvalues of the Hamiltonian.

5.5.1 Theoretical Model for the Magnetic Hamiltonian

To describe the magnetic ground state one needs to solve the Schrödinger’s equation of the system

HΨ = EΨ in order to get the energies, E and the eigenfunctions, Ψ of the ground state and excited

states. Using the calculated eigenfunctions, one can calculate the expectation values for other

quantities such as magnetic moments, neutron scattering cross-sections and compare them with the

corresponding values measured experimentally. The total Hamiltonian used in the Schrödinger’s

equation for transition metals with the configuration dn can be written as [57]:

H = H0 +Vee +Vso +Vc f +Vm +Vext (5.6)

where the first term H0 describes the interaction of each electron with the nucleus (unper-

turbed Hamiltonian), the second term Vee describes the interaction of the electrons with each other

(Coulomb interaction), the third term Vso describes the interaction between the orbital l and spin s

moments (spin-orbit interaction), the fourth term Vc f describes the effects of the electrostatic crys-

tal field of the ligands surrounding the magnetic ion (crystal-field interaction). The last two terms
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Vm and Vext describe the interaction with an internal effective magnetic field (exchange) created by

the neighboring ions if the system spontaneously orders magnetically (molecular field interaction)

and the interaction with an external magnetic field. In terms of single electron operators, the terms

H0,Vee,Vso in Eq. 5.6 are written as follows [58]:

H0 =−
h̄2

2m
∇

2
i +

1
4πε0

Ze2

ri
(5.7)

Vee =
1

4πε0
∑
i, j

e2

ri j
(5.8)

Vso = ∑
i

ζili · si (5.9)

where the sum runs over all the electrons in the ion, Z is the nuclear charge, ri is the distance

separating the ith electron from the nucleus, ri j is the distance between the ith and jth electrons, ζi

is the spin-orbit coupling for single electron and all the other quantities have their usual meaning.

ζi is a positive quatity which increases with the nuclear charge of the atom and decreases with the

radius r of the electron moving around the nucleus [49].

The first three terms in Eq. 5.6, (H0, Vee, Vso) represent the Hamiltonian of the free ion, the

following two terms (Vc f , Vm) are added to the total Hamiltonian when the free ion is put into a

crystal and the last term is added to the total Hamiltonian if an external magnetic field is applied.

The total Hamiltonian H is very complex and in order to solve the eigenvalues problem of this

Hamiltonian we have to apply perturbation theory. The first term in the total Hamiltonian Eq.

5.6 is considered as the unperturbed Hamiltonian H0 and all the other terms will be treated as

perturbations. The order in which these perturbations are considered is not critical, but the best

results are obtained most easily if the perturbations are treated in order of descending magnitude.

It is well known that for transition metal ions the magnitude of the perturbing Coulomb interaction

is much larger than the magnitude of all the other perturbations [37]. Thus we can solve first the

eigenvalues problem for the free ion Hamiltonian without the spin-orbit interaction

H f ree−ion = H0 +Vee (5.10)
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and then we can use eigenfunctions of the free ion Hamiltonian, H f ree−ion as zero-order func-

tions to find the splitting of the energy levels in the perturbing Hamiltonian

Hpert = Vc f +Vso +Vm +Vext (5.11)

It is well known that the Schrödinger equation with the Hamiltonian given by Eq. 5.10 cannot be

solved exactly because of the presence of the electrostatic repulsion between the electrons, Vee.

To find the eigenstates and eigenvalues of the H f ree−ion one must first solve the the Schrödinger

equation for H0 and then use the first order perturbation theory to find the eigenvalues and eigen-

functions of the H f ree−ion.

In order to solve the problem it is assumed that the potential field generated by the system’s

components (electrons and nuclei) has spherical symmetry (central-field approximation). This

means that the potential field at any point depends only on its distance from the origin. In this

approximation the Schrödinger’s equation with the Hamiltonian H0 can be solved by the method

of separation of variables. The eigenfunctions of the Hamiltonian H0 are Slater determinants and

the correspondent eigenvalues depend only on the electronic configuration (ni, li), where ni is

the principal quantum number and li is the angular momentum quantum number [52]. Since the

eigenvalues of H0 do not depend on mli and msi , there is a high degeneracy of the eigenstates. Con-

sequently, many different sets of energy eigenfunctions can be chosen. Taking into consideration

that H0 commutes with li, L = ∑i li and with si, S = ∑i si (H0 does not involve spin operators) the

eigenfunctions of the operator H0 can be classified by the set of quantum numbers L, S, ML and

MS; the Vee Hamiltonian which introduces a non-central spherical potential does not commute with

li but commutes with L [59]. Since H f ree−ion = H0 + Vee has no spin components, H f ree−ion will

commute with both L and S. Hence H f ree−ion, L2, Lz, S2, Sz form a commuting set of operators so

the eigenfunctions of H f ree−ion are classified by quantum numbers L, S, ML and MS.

The eigenfunctions of the free ion Hamiltonian H f ree−ion are described by the quantum num-

bers L, S, ML and MS and they are designated by |LSMLMS〉 = |LML〉
⊗
|SMS〉 (the product of the
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orbital states |LML〉 and the spin states |SMS〉), where L is the total orbital quantum number, S is the

total spin quantum number, ML and MS are the projections of the L and S along a quantization axis.

The energy levels of the free ion Hamiltonian H f ree−ion can be described using the spectroscopic

notation. For each value of the quantum number L the the electronic state is described by a term

symbol 2S+1L, where 2S+1 is the spin multiplicity (for example electronic states with the orbital

quantum number L = 0, 1, 2, 3, 4, 5 are labeled by the letters S, P, D, F, G, H) [52]. A very nice

example where the eigenvalues and eigenfunctions are calculated for the Hamiltonian of a free ion

with the configuration d3 is given in [60].

For transition metals ions the interaction with the crystal field Vc f (which affects only the

orbital degree of freedom) is much larger than the VSO interactions, so to a good approximation L

and S remain good quantum numbers and one first solves the orbital level splitting of the free ion

in the presence of Vc f , then applies VSO as a perturbation.

Co2+ has the electronic configuration 3d7. The spectroscopic terms for this configuration are:

2P, 2x 2D, 2F , 2G, 2H, 4P and 4F with the last term being the ground state according Hund′s

rules. From a simple calculation of the term energies using the formulas given in [61] we see

that the energy splitting between the ground state term 4F and the first excited term 4P is of the

order 103 meV; this energy splitting is about ten times larger than the energy splitting due to the

perturbation interactions included in the perturbation Hamiltonian Hpert in Eq. 5.11; the order of

magnitude of the energy splitting due to the crystal field, spin-orbit and molecular field interaction

has been reported in [62].

Because we are interested in the low-energy level splitting of the Co2+ ions (energies < 1 eV)

and as a consequence of the large energy splitting between the ground state term 4F and the excited

term 4P we can perform our calculations of finding the splitting of the energy levels due to the

perturbation Hamiltonian Hpert within the |LSMLMS〉 basis with L = 3 and S = 3/2 corresponding

to the ground state term 4F of degeneracy (2L+1) x (2S+1)=7 x 4=28. The low-energy electronic
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structure results from the lifting of the 28-fold degeneracy of the lowest term 4F . The 28 levels,

originating from the 4F term, and their eigenfunctions will be calculated by direct diagonalization

of the Hamiltonian Hpert within the |L = 3 S = 3/2, MLMS〉 basis as follows (shorthand notation

|MLMS〉).

The explicit form of the terms in the perturbation hamiltonian Hpert expressed using the total

orbital L = ∑i li and spin S = ∑i si operators, is given below [49]: Spin-orbit interaction Hamilto-

nian:

Vso = λL ·S (5.12)

Molecular Field Hamiltonian:

Vm = Hm ·S (5.13)

External Zeeman Hamiltonian:

Vext = µB(L+2S) ·B (5.14)

Crystal Field Hamiltonian (derived in Appendix B):

Vc f = B2
0O2

0 +B2
1O2

1 +B2
2O2

2 +B4
0O4

0 +B4
1O4

1 +B4
2O4

2 +B4
3O4

3 +B4
4O4

4 (5.15)

where Bn
m are the crystal field coefficients, On

m are the Stevens operators ( see Appendix - C),

λ = −ζ/2S is the total spin-orbit coupling [49] (S = 3/2 for Co2+), Hm is the molecular field

(due to magnetic order), µB is the Bohr magneton and B is the external magnetic field. For an ion

with the configuration dn, λ is positive when the d-electron shell is less than half-filled (n<5) and

negative if the shell is more than half-filled (n>5); ζ is positive for any occupation of the d-electron

shell.

Using the operators from the equations 5.11, 5.12 to 5.15 one can calculate matrix elements

of the form 〈M′LM′S|Hpert |MLMS〉 and diagonalize the total matrix to obtain the 28 energy levels

En=1,...,28 and eigenfunctions Ψn=1,...,28 = ∑ j c j|MLMS〉 j which are used to describe the 4F multi-

plet.
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5.5.2 Crystal field Parameters

Even though the operator equivalent form of the crystal field Hamiltonian Eq. A.20, in Appendix

A was derived in the point charge model approximation, it is valid in general. It can be derived

using symmetry considerations alone and the Wigner-Eckart theorem which says that the matrix

elements of any operator between states of a multiplet |ML> can be expressed as matrix elements of

a function of components of the angular momentum operator [63]. The local point group symmetry

of the central ion imposes severe constraints as to which crystal field parameters are allowed in

the expansion of the crystal field Hamiltonian Eq. A.20; the higher the symmetry the fewer the

number of terms. For example for an ideal octahedron (in the local XYZ reference frame, see

Figure - 5.2(a) ) the crystal field (cubic point group symmetry) depends essentially on a single

variable parameter, the distance between the central ion and one of the vertices. Indeed the crystal

field Hamiltonian Eq. A.20 contains only one independent parameter.

HCubic
c f = B4

0O4
0 +B4

4O4
4, with B4

4 =−5B4
0, B4

0 < 0 (5.16)

and the 7-fold degenerate orbital level L = 3 of the Co2+ free ion (with the absolute energy E)

is split into a lower triplet at absolute energy E - 360 |B4
0|, a middle triplet at absolute energy

E + 120 |B4
0| and an upper singlet at absolute energy E + 720 |B4

0| (the crystal field parameter B4
0

change sigh with π/4 rotations around the Z axis). Furthermore if the symmetry is lowered to

tetragonal (say by elongation of the ideal octahedron along the z axis) the Hamiltonian becomes:

HTetragonal
c f = B2

0O2
0 +B4

0O4
0 +B4

4O4
4, B2

0 > 0 (5.17)

and the lowest triplet is further split into a doublet and a singlet. Lowering the symmetry further

to the orthorhombic point group more terms are allowed and the Hamiltonian becomes:

HOrthorhombic
c f = B2

0O2
0 +B2

2O2
2 +B4

0O4
0 +B4

2O4
2 +B4

4O4
4, B2

2 < 0, B4
2 > 0 (5.18)

(with 5 independent terms) and this lifts completely the orbital degeneracy into 7 orbital singlets

(6 energy spacing between levels). Lowering the symmetry even further allows for even more
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terms in the Hamiltonian. The effect of these additional terms (in principle variable) is not to split

the levels any longer (as they are singlets already) but to allow for more solutions with different

wavefunction content that give the same energy level splitting, so in an empirical comparison

of the measured transition energies to the calculated transition energies using the crystal field

Hamiltonian one needs additional information sensitive to the wavefunction of the levels not just

the energies relative to the ground state in order to narrow down the possibilities.

The Co2+ ions in CoNb2O6 sit in a crystal environment of a very low point group symmetry,

monoclinic C2. In this case in principle a maximum number of 8 crystal field parameters in the

crystal field Hamiltonian are allowed (both real Bk
q and complex B’k

q parameters). The B’k
q are

prefactors of complex operators in the crystal field expansion of the Hamiltonian and because of

the complex operators the complex calculations have to be done to solve the eigenvalues problem

of the Hamiltonian. The choice of the reference frame can simplify the expansion and Appendix

B shows that by choosing the y axis of the local reference frame along the C2 local 2-fold rotation

axis and the z axis along the axis of the ideal octahedra closest to the actual distorted octahedra, all

complex prefactors B’k
q vanish. An equivalent analysis can be performed by choosing a different

coordinate system such as the crystal orthorhombic axes abc, or putting the Z axis along the C2

direction but in this case some of the B’k
q become finite. This is because not all terms in the full

expansion are independent, and in fact a rotation of the coordinate system along Z axis, say by

angle α leads to a new expansion in the new coordinate frame X’Y’Z’ where the coefficients B are

linearly dependent on the parameters in the XYZ reference frame, and by choosing the right angle

α some coefficients cancel [64].

So the expansion Eq. 5.15 for Co2+ ion in the convenient local XYZ frame can be regarded

as close to the "minimal" parametrization of the crystal field Hamiltonian with a minimal number

of independent terms. The phase space spanned by the eight variable parameters is enormous and

there are in principle many different ways in which they can combine to give a very similar looking
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energy levels scheme. In order to narrow down the number of possible empirical parameters of

the Hamiltonian one needs to use additional constraints and independent information not just the

level scheme. The strategy adopted here was to obtain approximate values for the Bk
q terms using

the PCM to obtain the most relevant terms and the order of magnitude of their relative strength,

then refine this with the SOM to account for the hybridization in a first approximation, then use

those values as starting values for the fits to the energy levels obtained in both optical and neutron

scattering data and also wavefunction specific information such as the magnitude of the ordered

magnetic moment in the ground state and the direction of the easy axis. The phase space spanned

by the 8 parameters Bk
q is enormous and we cannot in principle rule out the possibilities that another

set of parameters exists that we may have missed and which could give similar results.

However the strategy adopted by constructing the fitting procedure and in choosing realistic

starting values for the parameters should very strongly reduce the possibilities of another (physi-

cally meaningful) set of Bk
q parameters that could give and equivalent description.

5.6 Predictions of the Point Charge Model and Hybridization

effects

A model to calculate to a first approximation the Bk
q used in the crystal field Hamiltonian, Eq.

(5.15) is the point-charge model (PCM) described in this section. The parameters calculated in

the PCM are important as they are used as starting values in the fits to the experimental data to

obtain the empirical crystal field parameters that give the best agreement to the experimental data

such as the energy levels, magnitude of the magnetic moment, direction of the magnetic moment

and neutron intensities of the transitions. For all the quantities calculated further in this chapter

we are using only the information regarding the distorted environment of Co1 ion (the XYZ local

coordinate system defined in Figure - 5.2(a)), apart from the case where the neutron intensities are
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calculated and where we have to use information about the environment of all four Co sites. The

number of crystal field parameters necessary to fully describe the crystal field Hamiltonian for the

low symmetry environment of Co2+ ion in CoNb2O6 is equal to eight, see Eq. (5.15). This is

in principle a very large phase space of parameters and one can not independently fit all those 8

parameters to the data and expect to converge to a unique solution. In principle not all 8 parameters

are independent and the strategy adopted here is to use theoretical models such as Point Charge

Model (PCM) and Simple Overlap Model (SOM) (which is a further refinement of the PCM), to

calculate approximate values for Bk
q, and use those as starting values in the direct fits to the data.

The simplest and most common model used to theoretically estimate the crystal field parame-

ters is the PCM. This only takes into account the electrostatic interaction between the electrons of

the magnetic ion and the charged ions in the first neighborhood with the following two main as-

sumptions: the charge density of the ligands is assumed to be -Ze f f |e| (where Ze f f is the effective

oxidation state) and this is considered to be concentrated in a point situated at the nominal position

of the ligand ion [59]. In order to calculate the crystal field parameters, Bk
q in the PCM model all

we have to know are the effective oxidation states of the ligands and the relative position of the

ligands with respect to the transition metal ion. In Section 5.2 we discussed the environment of the

Co2+ ions and showed that the first neighborhood is a distorted octahedron (the local symmetry of

the environment is monoclinic of point group C2); we also showed that for Co1 ion we can model

the distorted octahedron by an ideal octahedron plus small distortions as shown in Figure - 5.2(a).

To understand the crystal field Hamiltonian and how the crystal field lifts the degeneracy of the

free-ion ground state we consider first the case the ideal octahedron with dCo−O=2.103 Å. The or-

bital degeneracy, (2L+1)=7 , is lifted by the crystal field interactions to result in two orbital triplet

states and a singlet state as shown in Figure - 5.8 (the spin degeneracy, (2S+1)=4 , is lifted only

if spin-obit interactions or other internal molecular or external magnetic fields are present). The

crystal field for an environment of cubic symmetry is described by a single parameter so the crystal
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field Hamiltonian is Hcubic
c f = B4

0(O
4
0− 5O4

4); the number of necessary crystal field parameters to

describe the electric effects of the ligands, increases with lowering the symmetry of the environ-

ment [64]. Considering the ideal octahedron defined in the XYZ local coordinate system, Figure

- 5.2(a), we calculated analytically the expressions for the two crystal field parameters and we

obtained B4
0 =−

Dq
60 (with B4

4 =−5B4
0), where Dq = 1

4πε0

Ze f f e2〈r4〉3d
6dCo−O

, Ze f f is the effective oxidation

state of ligands, dCo−O is the distance between the Co2+ and the OZe f f− ions in the ideal octahe-

dron, and 〈r4〉3d is the average r4 for the radial integral of the magnetic ion, as defined in [59], all

the other quantities have their usual meaning. Direct calculations give B4
0 = -0.56 meV and the re-

sulting orbital levels splitting are shown in Figure - 5.8). We see that the cubic crystal field partially

Figure 5.8 From left to right we show a schematic diagram of the energy levels when the
Co2+ (3d7) ion is placed inside an environment of spherical, cubic and monoclinic sym-
metry. We see that the ligands arranged in a cubic symmetry lifts only partially the orbital
degeneracy; when the local symmetry is monoclinic the orbital degeneracy is lofted com-
plectly. The addition of SO interaction lifts the remanning spin degeneracy to result in a
set of Kramers doublets (6 for the lowest manifold).

.

lifts the orbital degeneracy; the seven-fold orbital degenerate ground state for the free ion is split in
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a triplet ground state, followed by another triplet state at energies of 8Dq = 480|B4
0| = 268.8 meV

and a singlet state at very high energies of 18Dq = 1080|B4
0| = 604.8 meV [37]. Further lowering

the symmetry to monoclinic the orbital degeneracy is completely lifted, resulting in seven orbital

singlets, see Figure - 5.8. The 4-fold spin degeneracy of each orbital singlet level is further lifted

by spin-orbit coupling to results in a set of 14 doublets as confirmed by Kramer’s theorem which

states that for an odd number of electrons in the presence of only electric fields the energy levels

remain at least doubly degenerate [37]. The remaining degeneracy is lifted only when internal

molecular or external magnetic fields are present. Using Kramers’ theorem and the results of the

PCM calculations shown in Figure 5.8, we conclude that the 28 degenerate energy levels of the free

Co2+ ion will split be into 14 two-fold degenerate energy levels. Usually in transition metals the

crystal field effects are much stronger than spin-obit effects [62] and due to this difference in the

interaction strength, we expect that the 14 energy levels will be split into three energy groups, the

first group centered around the orbital triplet 4T1 ground state, the second group centered around

the orbital triplet 4T2 state at 8Dq and the the third group centered around the orbital singlet 4A2

state at 18Dq (see Figure - 5.8). From Table 5.3 we see that the experimentally observed transition

energies can be split in two groups, first group centered around 85 meV and second group centered

around 737 meV . The first group of experimental transition energies centered around 85 meV is

associated with transition between the ground state Ψ0 and to the levels inside the 4T1 multiplet

(Ψn=1,...,5), see Figure - 5.8 and - 5.10; due to the fact that in transition metals the effects of the

crystal field are strong we associate the second group of experimental transition energies centered

around 737 meV with transition between the ground state Ψ0 and the states Ψn=6,...,11 coming

from the 4T2 orbital triplet manifold state at 8Dq (typical values of Dq obtained experimentally

for Co2+ ions in ideal and distorted O6 octahedron are in the range 75-90 meV [65, 66]); using an

experimental average values for Dq ≈ 85 meV , we observe that transitions to the states coming

from 4A2 singlet-orbital state would be at much higher energies, 1530 meV. Using the mapping
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discussed above between the experimental and calculated groups of transition energies we obtain

an approximate experimental value for Dqneutrons
exp = 81.5meV for the Co2+ ion in CoNb2O6 which

is slightly smaller than the values obtained from optical measurements of Dqoptic
exp = 90.5meV [67].

The calculated value in the PCM is DqPCM
calc = 33.6meV ; this value was obtained using: the dis-

tance between Co2+ and OZe f f− ions in the regular octahedra dCo−O = 2.1032 Å, the value of

the radial integral calculated in the literature [37] 〈r4〉3d = 0.28661 Å4 and assuming an effective

oxidation state Ze f f = 2 for the oxygen ions in the first neighborhood. We observe that there is a

large difference between the absolute magnitude of Dq predicted by the PCM and the experimental

value (underestimated by a factor of 2-3). This difference is due to the fact that the PCM model

doesn’t take into account hybridization effects. In real materials the charge of the ligands is not

concentrated in a point at the ligand position but is distributed in a region around the ligand posi-

tion due to the hybridization effects between the ligand and transition metal orbital. We can say

that the crystal field parameters predicted by the point charge model are underestimated due to the

fact that this model doesn’t include hybridization effects.

To further improve on the crystal field parameters we used the Simple Overlap Model (SOM)

which takes into account the hybridization effects [68, 69]. The SOM takes into account in a

first approximation the chemical bonding and it may be regarded as a starting point to obtain

more realistic values for the crystal field parameters which will be further used in the crystal field

Hamiltonain, Eq. 5.15 to calculated the transition energies and compare them with the experimen-

tal transition energies. This model has been successfully applied to reproduce phenomenological

(empirical) crystal field parameters for a large number of lanthanides as well as for some transi-

tion metals elements [70–73]. The basic idea is the same as that of the PCM and in both methods

the crystal field parameters are calculated from the atomic positions of the ligands relative to the

magnetic ion. In the PCM the purely electrostatic potential of the perturbation is produced by the

point charges located at the ligands sites situated at a distance R from the transition metal ion (the
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point charges Ze f f are equal with the effective oxidation state of the ligand). In the SOM the purely

electrostatic potential of perturbation is produced by effective charges uniformly distribution over

a small region situated around the mid point of the metal-ligand distance. The total charge in each

region is equal to −Qe f f |e|ρ , where Qe f f is the number of effective charges and ρ is the orbital

overlap between the 3d orbitals of the central magnetic ion and the s and p orbitals of the ligand

ion; the values of ρ varies as a function of the metal-ligand distance, R, according to the power

low ρ = ρ0 (
R0
R )3.5, R0 being the shortest metal-ligand distance [70]. In this model Qe f f and ρ0 are

variable parameters obtained from fits to the data. Within a first-order approximation the relation

between the crystal field parameters calculated in the PCM and SOM, Bk
q(PCM) and Bk

q (SOM) is

a simple scale law [71]:

Bk
q(SOM) = ρ

(
2

1−ρ

)k+1 (Qe f f

Ze f f

)
Bk

q(PCM) (5.19)

For illustrative purposes Eq. 5.19 is given for the case when all the distances ligand-transition-

metal-ion are equivalent (in this case all the coefficients B2
q(PCM) should be multiplied by the

same constant factor, ρ

(
2

1−ρ

)k+1
, in order to obtain B2

q(SOM)). In our case the distances ligand-

transition-metal-ion are different and Eq. 5.19 becomes more complicated. From numerical calcu-

lations of the overlap integrals for transition metals ions it is found that the overlap parameters ρ0

could have values between 0.10 and 0.30 [74, 75]. Using the SOM model to other systems where

Co2+ ions are found in environments such as distorted octahedra, it was observed that the overlap

parameter has values between 0.12 < ρ0 < 0.16 (∆ρ0 = [0.12, 0.16]) and the effective charge takes

values in the range 0.6 < Qe f f < 1 (∆Qe f f = [0.6, 1]) [70–72]. From Eq. (5.19) we observe that we

can improve on the values of Bk
q if we know the values of Qe f f and ρ0 for the Co2+ in the system

under study. We observe that using the crystal field Hamiltonian, Eq. (5.15) with the crystal field

parameters given by Eq. (5.19) where Qe f f and ρ0 are variable parameters in the experimental

range found in the literature ∆Qe f f and ∆Qe f f for Co2+ ions, we can calculate the transition en-

ergies and compare them with the experimental transition energies, to get an idea about how well
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the SOM predicts the overall energy scales.

A fitting function was constructed where the fitting parameters were Qe f f and ρ0 and only the

crystal field Hamiltonian, Eq. 5.15 and the spin-orbit Hamiltonian, Eq. 5.12 were included in the

calculations of the transition energies. The calculations were done for the distorted octahedra of the

Co1 ion including all eight non-zero crystal field parameters calculated using on Eq. 5.19; the spin-

orbit constant used in the calculations was set to the value extracted from optical measurements,

λ = −18.7meV [76]. Only the first five energies, ε
exp
1 to ε

exp
5 from Table - 5.3 (transitions in the

4T1 sixtuplet of doublets, see Figure - 5.10) were used in the fits; the criteria to obtain the best

values for Qe f f and ρ0 was the minimization of the function: f (Qe f f ,ρ0) = ∑i(ε
cal
i /ε

exp
i − 1)2,

where εcal and εexp are the calculated and experimental transition energies. The search space for

the input parameters Qe f f and ρ0 were limited to the experimental limits found in the literature

for Co ion, Qe f f and ρ0. Qe f f = 0.67 and ρ0 = 0.13 gave the crystal parameters (see Table - 5.5)

which gave the best overall agreement between the calculated and experimental transition energies,

see Table - 5.6.

Table 5.5 Crystal field parameters(for the distorted octahedron) calculated in the PCM
and SOM.

Method (Z/Q)e f f ρ0 B2
0 B2

1 B2
2 B4

0 B4
1 B4

2 B4
3 B4

4

PCM 2.00 - 2.791 -7.920 -0.058 -0.496 0.014 0.168 0.302 2.498

SOM 0.67 0.13 2.678 -3.707 -0.900 -1.149 0.138 0.501 0.756 6.346

Reasonably close agreement is obtained for the sequence of levels apart from the last one,

identified with Ψ0→Ψ6 transition from the ground state to the first excited 4T2 orbital triplet state

largely underestimated, however this may mean only one parameter is underestimated B4
0 which

gives the large 4T1 → 4T2 split, see Figure - 5.10. The calculated transition energies given in
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Table 5.6 Energies of transitions between the ground state Ψ0 to the excited Ψn=1,...,5
levels of the 4T1 orbital manifold, and the transition E6 from Ψ0 to the lowest state of the
4T2 orbital manifold (see Figure - 5.8).

Method ε1 ε2 ε3 ε4 ε5 ε6

PCM 23.7 61.2 100.4 108.1 129.3 302.8

SOM 25.7 59.9 102.2 142.4 157.9 625.7

Exp 30.0 50.0 107.0 136.0 170.0 737.0

Table 5.6 are to the excited doublet levels. In the presence of magnetic order (which only occurs

below 3K in CoNb2O6) the degeneracy of the doublets is lifted. Due to the exchange interactions

between the neighboring Co2+ ions there is a molecular field present at each Co2+ site which will

lift the doublet degeneracy (we will show later the splitting is of the order of a few meV only).

From measurements of the magnetic structure we know that there are two possibilities for the

direction of the easy axis, see Figure - 5.4. The easy axis could be in the XZ-plane, either very

close to the local Z axis (scenario S2) or at ∼62 ◦ from the Z-axis (scenarios S1), see Figure -

5.4. In order to determine the direction of the easy axis from the our calculations we apply the

following procedure: first step is to include a very small external magnetic field |B|=10−5 T, such

that the transition energy levels are unaffected. This small magnetic field would split the doubly

degenerate states insignificantly but would help us to choose the ground state wave function (Ψ0↓,

see Figure - 5.10); using the ground state wave function we can further calculate quantities such as

the magnitude of the magnetic moment along the direction of the applied external magnetic field.

Second step is the variation of the orientation of the external magnetic field B ( defined by the

angles θ and α) and finding the magnitude of the magnetic moment along the field direction, in

each case and plotting the results as a 2D map in (θ , α). The direction where the total magnetic

moment has largest value defines the easy axis. Such a two dimensional magnetization map is
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shown in Figure - 5.9 (color is proportional to the magnitude of the total magnetic moment in the

(θ , ϕ) direction, when the field is applied in the (θ , ϕ) direction) for the crystal field parameters

obtained in the SOM, Table - 5.5. We observe that the magnetic moment has largest values when

< M > µΒ

Figure 5.9 Magnetization map calculated using the crystal field parameters obtained in
the SOM, Table 5.5. The color represent the magnitude of the magnetic moment <M>
along the external field direction, B defined by the spherical angles (θ , α) in the local
reference frame xyz.

.

the field is along (θ= 90 ◦, α = 0) and (θ= 90 ◦, α = 180 ◦); this is consistent with an easy axis

along the local X axis which is not in agreement with the two possibilities found experimentally

( θ= 0 ◦ or 62 ◦) for the easy axis, see Figure - 5.4. From the calculations of the magnetization

map we learn that the crystal field parameters calculated in the SOM don’t correctly predict the

orientation of the easy axis which means that they can not entirely account for all the hybridization

effects. In order to account for all the hybridization effects we are trying to obtain the empirical

crystal field parameters from fits to the data. The crystal field parameters calculated in the SOM,

see Table - 5.5, will only be used as starting values for the fitting procedure.
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5.7 Empirical crystal field parameters

In order to refine the obtained crystal field parameters and the spin-orbit constant empirically by

fits to the data we constructed a fitting function where the input parameters are the crystal field

parameters and the spin-orbit coupling. In the previous function we calculated the transition en-

ergies and the direction of the easy axis using the crystal field parameters calculated in the SOM

and we compared the calculated results with the experimental results; we have seen that using the

crystal field parameters calculated in the SOM we obtain an acceptable agreement for the transi-

tion energies but we can not explain the direction of the easy axis seen experimentally. The total

Hamiltonian in our fitting function includes the crystal field Hamiltonian Eq. 5.15, the spin-orbit

Hamiltonian Eq. 5.12 and the Hamiltonian of interaction with an external field Eq. 5.14, Bext

(|Bext | = 10−5 T). First step in our data analysis is to obtain the crystal field parameters by varying

them around the values obtain in the SOM (see Figure - 5.10 for a schematic representation of the

transition energies). Only the first 5 experimental transition energies from Table - 5.3 were used

in the fits. For each set of crystal field parameters the theoretical transition energies are calculated

and compared with the experimental transition energies; the best solution for the empirical crystal

field parameters is found when the following function is minimum,

f (B,λ ) = ∑
i
(

εcal
i

ε
exp
i
−1)2 (5.20)

The second step in our data analysis is to add new constraints to our fitting function such as the

direction of the easy axis measured experimentally by neutron diffraction. As we discussed in

section 5.2, we definitely know that the easy axis is in the ac plane, but there are two possibilities

for the direction of the easy axis in the plane (neutron diffraction measurements can not distinguish

between these two direction). The first scenario (S1) is the one where the easy axis for Co1 is at 31

◦ with respect to the c axis (see Figure - 5.4(a)); the second scenario (S2) is the one where the easy

axis for Co1 is at -31◦ with respect to the c axis (see Figure - 5.4(a)). Because it is easier to work



5.7 Empirical crystal field parameters 109

H
m

Figure 5.10 From left to right we show a schematic diagram of the energy levels when
the Co2+ (3d7) ion is placed inside an environment of spherical, cubic and monoclinic
symmetry. monoclinic local symmetry together with the SO interaction lifts the reman-
ning spin degeneracy to result in a set of Kramers doublets (6 for the lowest manifold.
Only an additional molecular field can further lift the degeneracy of the Karmers doublets
as is shown only for the ground state

.
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in the local coordinate system, we define the easy axis in the local XYZ coordinate system: for

the first scenario (S1) the easy axis is in the XZ plane, at θ = 62◦ clockwise with respect to the Z

axis and for the second scenario (S2) the easy axis is along the Z axis. To obtain the best empirical

crystal field parameters we used the fitting criteria to minimize differences of the calculated and

experimental transition energies to the experimental transition energy, the function f (B′s,λ ), Eq.

5.20 but with additional terms as explain below. For scenario S1 we added to f (B′s,λ ) the term

[
arctan

(
Mx
Mz

)
62 − 1]2 and for the second scenario S2 we added the term [cos

(
arctan

(
Mx
Mz

))
− 1]2 +

(Mx)
2. In the pervious section we have seen that the easy axis is along the local X axis for the

crystal field parameters obtains in the SOM; with the new constraints (by varying the crystal field

parameters) we force the easy axis to be along one of the two directions found from neutron

diffraction measurements.

Table 5.7 Empirical crystal field parameters Bk
q found starting from the SOM values and

belonging to the best fit to reproduce the orientation of the easy axis in models S1 and S2,
Figure 5.4.

Method B2
0 B2

1 B2
2 B4

0 B4
1 B4

2 B4
3 B4

4 λ

SOM 2.678 -3.707 -0.900 -1.149 0.138 0.501 0.756 6.346 -18.7

S1 3.500 -4.400 -0.031 -1.250 0.042 0.220 1.840 8.010 -19.9

S2 0.600 -5.000 -7.000 -1.100 0.000 0.000 0.100 7.200 -21.1

The new constraints for the easy axis are explain below:

Scenario S1: if we apply very small external magnetic field Bext along the experimental easy

axis direction (in this case the experimentally easy axis is found in the XZ plane at 62◦ from the X

axis) then Bext will induce a magnetic moment along the magnetic field direction, |M|(S1) propor-

tional to |B| but there will still be a component of magnetic moment, Mx along the X axis due to the

strong anisotropy created by the crystal field parameters obtained in the SOM model, see Figure -
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Table 5.8 Transition energy levels calculated using the empirically determined crystal
field parameters in Table 5.7, that give closest agreement to the measured transition ener-
gies within models S1 and S2. The empirically obtained spin-orbit coupling constant is
λ = 19.9 meV.

Method ε1 ε2 ε3 ε4 ε5 ε6

SOM 25.7 59.9 102.2 142.4 157.9 625.7

S1 29.8 53.9 98.1 142.9 154.8 642.0

S2 29.8 53.9 98.1 142.9 154.8 642.0

Exp 30.0 50.0 103.0 136.0 170.0 737.0

5.9. With the additional condition imposed in this model we force the crystal field parameters to

converge to values for which when we apply a small magnetic field Bext along the experimentally

determined easy axis, the expectation values of Mx and Mz are such that they correspond to a natu-

rally occurring easy axis, found in the XZ plane at the correct angle from the Z-axis which is this

case is 62◦ to the local Z axis. In this scenario we don’t impose any direct constraint on the values

of the the magnetic moment components.

Scenario S2: if we apply very small external magnetic field Bext along the experimental easy

axis direction (in this case along the Z axis) then Bext will induce a magnetic moment along the

magnetic field direction, |M|(S2) proportional to |B| but there will still be a strong component of

the magnetic moment, Mx along the X-axis due to the strong anisotropy along the easy axis created

by the crystal field parameters obtained in the SOM model, see Figure - 5.9. With the additional

conditions imposed in this model we force the crystal field parameters to converge to values for

which when we apply a small magnetic field B along the experimentally determined easy axis,

the expectation values of Mx and Mz are such that they correspond to a naturally occurring easy

axis( along Z). In this scenario we impose the constrain that the value of the the magnetic moment
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component Mx = 0.

The values of the crystal field parameters found from fits to the data for the two scenarios are

given in Table 5.7. The calculated energies for the corresponding crystal field parameters are given

in Table 5.8.

µΒ < M > µΒ

Figure 5.11 Magnetization maps as a function of direction in spherical coordinates, an-
gles (θ , ϕ) calculated using the empirical crystal field parameters, Table 5.7: (a) scenario
S1 and (b) scenario S2. The color represent the magnitude of the magnetic moment <M>
along the external field direction, Bext .

.

In Figure 5.15 we plot the magnetization map obtained using the two sets of empirically ex-

tracted crystal field parameters: (a) using the constraints for the scenario S1 and (b) using the

constraints for the scenario S2.

At this point it is important to summarize what we have done so far. In the first approximation

the crystal field parameters were calculated in the PCM model, Bk
q(PCM). Using the crystal field

parameters Bk
q(PCM) the transition energies for Co2+ ions have been calculated and compared with

experimental transition energies. This comparison showed that the PCM underestimate the energy

scales involved in the process. To improve the agreement between the calculated and experimen-

tal transition energies we included hybridization effects in our calculations by obtaining rescalled
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crystal field parameters using the SOM model, Bk
q(SOM). Using the Bk

q(SOM) the agreement be-

tween the calculated and experimental transition energies becomes satisfactory. The experimental

energy scale is reproduced by calculations in the SOM model, but calculations of the expected di-

rection for the easy axis using Bk
q(SOM) shows that this model is inconsistent with the possibilities

allowed for the easy axis obtained by the analysis of the neutron diffraction measurements of the

magnetic structure. Further we tried to obtain the crystal field parameters empirically from fits to

data including the constraints for the direction of the easy axis (the starting values for the crystal

field parameters in the fits, were Bk
q(SOM) values). Two solutions were obtained for the crystal

field parameters Bk
q(S1) and Bk

q(S2) each of them corresponding to one of the two experimentally

determined directions for the easy axis. The values of crystal field parameters Bk
q(S1) are similar

to those obtained in the SOM model (except B2
2 and B4

1 which are much smaller) but the values

crystal field parameters Bk
q(S2) differ much more (B2

2 is very large compared with the negligible

value in the calculations). The comparison off all the crystal field parameters calculated in the

PCM, SOM and empirically extracted from fits to the data reveal different magnitudes but all them

have the same sign. This might be expected because in a first approximation hybridization effects

lead to a rescaling of the overlap integrals. Further discussions of the resulting energy levels for

the two sets of the empirical crystal field parameters Bk
q(S2) or Bk

q(S2) is given in the next section.

5.8 Discussions and Results

The previous section described the fitting procedures to extract empirical Bk
q parameters from fits

constrained to reproduce the easy-axis direction. We used a very small external magnetic field

(10−5 T) to lift the two fold degeneracy of the ground state in order to calculate quantities such as

the total magnetic moment along the field direction. The splitting in energy of the two fold degen-

erate states due to the external magnetic field was basically insignificant but using the calculated
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magnetic moment along the field direction was useful in determinations of the easy axis. We know

that this system orders magnetically(below 3K) which means that there is an exchange interaction

between the spin component of the neighboring Co2+. The effect of this exchange interaction can

be taken into account in our calculations by the molecular field Hamiltonian given by Eq. 5.13,

where the approximate magnitude of the molecular field |Hm| is determined experimentally from

the present measurements. We already know that in the absence of an external field (magnetic or

molecular field) the energy levels of Co2+ ions in CoNb2O6 have two fold degeneracy. Due to

exchange interactions between the spin components of the neighboring Co2+ ions this two fold

degeneracy is lifted. The experimental energy splitting of the two fold degenerate ground state to

be of the order of 2.9 meV, see Figure - 5.12. In order to find experimentally the value of the

molecular field constant for the two possible scenarios, S1 and S2, we apply a variable |Hm| in the

direction of the corresponding easy axis (for S1 and S2) until the splitting of the two fold degen-

erate ground state is very close the splitting observed experimentally of 2.9 meV. The obtained

values for the molecular fields in the two scenario are |Hm|(S1)= 1.2meV and |Hm|(S2)= 1.4meV .

Using the two sets of empirical parameters (Bk
q, λ , |Hm|) for scenario S1 and S2, two dimen-

sional maps are calculated (for all angles θ and α) for quantities such the total magnetic moment

along the molecular field, the spin and orbital component of the ground state Ψ0↓, the energy of

the first excited state Ψ0↑ (see Figure - 5.10) and the total energy of the system (with respect to the

energy of the free ion chosen to be zero on the energy scale). Form Figure - 5.13 we see that the

crystal field parameters obtained in scenario S1 are giving a much more stable ground state with

the energy EGS(S1)∼=−594meV , compared to the crystal field parameters obtained in scenario S2

where EGS(S2) ∼= −538meV . The results presented in Figure - 5.14 shows that the values chosen

for the molecular fields are such that when the molecular field occurs along the easy axis direction

(due to the long range magnetic order) the energy splitting of the ground state doublet has approxi-

mately the same values as the one obtained from inelastic neutron scattering. The results presented
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Figure 5.12 Experimental splitting of the lower doublet due to the molecular field Hm.
The solid line is guide to the eye.

.

meV meV

Figure 5.13 Two dimensional maps of the ground state energy for different directions of
the Hm field; (a) for scenarios S1 and (b) for scenario S2. The color represent the values
of the ground state energy with respect to the energy of the free ion (which is chosen to
be at zero on the energy axis).

.
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meV meV

Figure 5.14 Two dimensional maps of the ground state doublet splitting for different
directions of the Hm molecular field; (a) S1 and (b) S2. The color represent the energy
value of the first excitation relative to the ground state (transitions inside the doublet Ψ0 ↑
to Ψ0 ↓).

.

µΒ µΒ

Figure 5.15 Magnetization maps calculated using the empirical crystal field parameters
in Table 5.7 and the molecular field Hm: (a) S1 and (b) S2. The color represent the
magnitude of the magnetic moment 〈M〉 along the molecular field direction, Hm.

.
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Figure 5.16 Expectation value of the spin only part of the magnetic moment in the
ground state 〈S〉 calculated along the molecular field Hm using the empirical crystal field
parameters in (a) S1 and (b) S2. The color represent the magnitude of the 〈S〉 along the
external field direction, Hm.

.

Figure 5.17 Expectation value of the orbital only part of the magnetic moment in the
ground state 〈L〉 calculated along the molecular field Hm using the empirical crystal field
parameters in (a) scenario S1 and (b) scenario S2. The color represent the magnitude of
the 〈L〉 along the external field direction, Hm.

.
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in Figure 5.15 shows that the easy axis direction is as expected for the two sets of crystal field

parameters; it also gives the magnitude of the magnetic moments in the ground state: 〈MGS(S1)〉

= 3.756 µB and 〈MGS(S2)〉 = 3.133 µB which compare reasonably with the value obtained exper-

imentally for the ordered moment of 3.2 µB, from neutron diffraction experiments [44, 45]. The

orbital and spin contributions to the ground state magnetic moment can be seen in Figures 5.17

and 5.16; from these figures we learn that in the ground state the expectation value of the L and S

operators have finite values, showing the the orbital momentum is not quenched and it contributes

to the value of the magnetic moment ( |〈LGS(S1)〉| = 1.280, |〈SGS(S1)〉| = 1.238 ) and ( |〈LGS(S2)〉|

= 0.963, |〈SGS(S2)〉| = 1.085 ). The experimental ratio of the intensities for the first two transitions

at 30 and 50 meV, is (I30/I50)exp 4.8(1.4); the calculated values within S1 and S2 models, are

(I30/I50)calc(S1) ∼ 2.91 and (I30/I50)calc(S1) ∼ 2.54, consistent within a factor of 2 which can be

regarded as reasonably satisfactory given that data has not been corrected for absorption effects

and non-spherical magnetic form factor.

From the discussion above we observe that both sets of parameters obtained for the two scenar-

ios, S1 and S2 can explain to a certain approximation all the quantities extracted experimentally.

The only calculated quantity in both scenarios, S1 and S2, which is not measurable experimentally

is the absolute value of total energy of the ground state for Co2+ ions, see Figure 5.13, which

is lower for scenario S1 than scenario S2. To try and distinguish further between these two sets

of parameters we compare our calculated transitions energies with the ones obtained by optical

measurements in the following section section.

For completeness Tables 5.10 and 5.11, lists explicitly the coefficients of the wavefunction for

the ground state doublet (for both models S1 and S2), in the basis |ML,MS〉, in the local XYZ

reference frame.
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5.9 Comparison with Optical measurements

Optical transitions are conventionally discussed using the so-called Tanabe-Sugano energy level

diagrams calculated for high symmetry environments for all the electronic configurations [61].

The Tanabe-Sugano diagram for the 3d7 electronic configuration for a ideal octahedral environ-

ment (cubic symmetry) is shown in Figure 5.18. The Tanabe-Sugano diagram is a diagram which

plots the (normalized) transition energies of an electronic transition (in units of E/B, B is the Racah

parameter which reflects the electrostatic repulsion between the electrons in the 3d orbitals) on the

vertical axis and the (normalized) crystal field splitting energy (in units of Dq/B) on the horizontal

axis for all possible electronic states of the system. Dq is the crystal field splitting energy defined

earlier. The lowest energy state is usually placed at the origin, and all other states are plotted rela-

tive to it. The number of curves intersected by a vertical line for a given pair of Dq and B, gives the

number of possible transitions and therefore the number of expected spectral absorption features.

For a free ion (Dq = 0) with incomplete shell there are many possibilities of arranging electrons in

orbitals leading to different electronic states, called Russell-Saunders states. We discussed earlier

that these states are labeled by the term symbol, 2S+1L, where where 2S+1 is the spin multiplicity

and for each quantum number L which shows the orbital degeneracy, the term symbol is replaced

by a letter (for example L=0, 1, 2, 3, 4 ,5 corresponds to S, P, D, F, G, H). A few of the free

ion states are labed on the left side of the Tanabe-Sugano diagram, Figure 5.18. Once the ion is

placed in a crystal (Dq 6= 0) the new states describing the electronic configuration are labeled by

the molecular term borrowed from the group theory of levels according to symmetry; the letters

2S+1Ap, 2S+1Ep and 2S+1Tp refer to a single, doubly and triply degenerate state; the left superscript

(2S+1) represents the spin multiplicity of the state and the right subscripts p represents an index

used in the group theory classification. For values of Dq/B < 2.2 (left side of the dashed vertical

line in Figure - 5.18) the system is in the high spin (HS) state (S = 3/2) with a triplet orbital ground

state (4T1) and for values of Dq/B > 2.2 (right side of the dashed vertical line in Figure - 5.18)
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the system is in the low spin (LS) state (S = 1/2) a with a doublet orbital ground state (2E). If

the symmetry of the environment is lower than cubic, the degeneracy of all the molecular states

showed in the Tanabe-Sugano diagram, Figure 5.18 will be lifted but the energy splitting within the

doublets(E) and triplets(T) will be small compared with the energy difference between the molec-

ular states in the cubic symmetry. In general these diagrams are used to identify the individual or

groups of transitions energies seen experimentally between the molecular states.

From optical measurements on this system it is found that Dq/B ∼ 0.96 [67] (the solid line in

Figure - 5.18 represents this system on the Tanabe-Sugano diagram). Assuming that Co2+ ions

are inside an ideal octahedra (Oh symmetry) and using the experimental value Dq/B together with

Tanabe-Sugano diagram ( see Figure 5.18) it is possible to identify all the transitions energies seen

experimentally in optical measurements [67]. In the Oh symmetry, the ground state of the Co2+

ion is 4T1 (this state comes from the atomic term 4F, Figure 5.8, red circles); because the photon

operator does not change the spin components during the transition, only transitions between states

with the same spin component are possible; spin allowed d-d transition from the 4T1 ground state

are towards 4T2, 4A1 (states which come from the atomic term 4F) and towards 4T1 (state which

comes from the atomic term 4P), see the intersection of the solid line at Dq/B∼ 0.96 with the higher

energy levels (with the same spin multiplicity as the ground state) in Figure 5.18. The ground state

term and the first two excited states in the Tanabe-Sugano diagram corresponds to the triplet orbital

ground state and the two excited states separated by 8Dq and 18Dq from Figure 5.19; by taking

into account the distortion of the octahedron we see in Figure 5.19 that the orbital degeneracy is

completely lifted. In Ref. [67] transition energies from the ground state to all the excited states

extracted experimentally from optical measurements (these transitions are shown schematically in

Figure - 5.19); using a different approach than the one used here the transition energies extracted

from the optical data were modeled in [67]; these transitions are shown schematically in Figure

5.19. In Table 5.9, first and second column show the experimental (εobs
optic) and calculated (εcalc

optic)
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HS LS

Figure 5.18 Tanabe-Sugano diagram for the 3d7 configuration for an octahedral environ-
ment. For Dq/B = 0 the states are labeled using the spetroscopic symbol notation (left
side of the diagram Dq =0) and for Dq/B > 0 the states are labeled using the molecular
term notation.

.
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‘

‘

‘

‘

Figure 5.19 From left to right we show a schematic diagram of the energy levels when the
Co2+ ion is placed inside an environment of spherical, cubic and monoclinic symmetry.
The transitions obtained from optical measurements are shown by the vertical arrows.

.



5.9 Comparison with Optical measurements 123

transition energies taken from [67]. We calculated these transition energies using the present crystal

Table 5.9 Transition energies(see Figure - 5.19) from optical measurements and obtained
in various models.

Transition− energy(meV ) εobs
optic εcalc

optic εcalc
S1 εcalc

S2 εobs
neutrons

ε ′6 787 780 644(8) 571(8) 737(15)

ε ′7 818 817 816(5) 702(5) −

ε ′8 843 875 849(10) 803(7) −

ε ′9 1698 1728 1608(3) 1444(3) −

field modeling in scenarios, S1 and S2. Because in our case we included in the calculations the

spin-orbit and exchange effects, the orbital and spin degeneracy is completely lifted (the orbital

singlet states with spin multiplicity equal with four shown in Figure 5.10 for monoclinic symmetry

will be split into four states very close in energy due to the spin-orbit and molecular field effects).

In order to compare the calculated transition energies using our approach with the ones obtained

from optical measurements, we have averaged the four transition energies coming from lifting the

spin degeneracy of the orbital singlet state. The calculated average transition energies are shown

in table 5.9, third column for the empirical crystal field parameters obtained in scenario S1 and

forth column for empirical crystal field parameters in scenario S2. The error bar interval for the

calculated values is chosen such that the energy of all four states coming from lifting the spin

degeneracy of an orbital singlet state are include in the confidence interval. The values in both

models are reasonably consistent with the optical data with S1 favoring slightly better for the ε ′6

and ε ′7.
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5.10 Conclusions

The energies of the crystal field transitions measured using time-of-flight inelastic neutron scat-

tering in the Ising ferromagnetic CoNb2O6 have been analyzed using a microscopic model for all

relevant interactions. The terms included in the total Hamiltonian were the crystal field, the spin-

orbit and the molecular exchange mean- field. Two different approaches, a point charge model

(PCM) and a simple overlap model (SOM), have been used to obtain initial theoretical values for

the crystals field parameters Bk
q. The parameters in the PCM largely underestimated the overall

energy scales for crystal field splitting obtained experimentally; this was attributed to neglect of

hybridizations effects as the electrostatic energy is sensitive to the overlap of the finite-extent or-

bitals at the transition-metal and the ligands site. The SOM model includes these hybridizations

effects in a first approximation and can reproduce to a good approximation the overall energy scales

seen experimentally, but predicts an easy axis orientation at a large angle away from the allowed

directions found by neutron diffraction measurements (in the ac plane at ξCo1 = 31 ◦ (model S1) or

at -ξCo1 (model S2)). Using the crystal field parameters calculated in the SOM model as starting

values in our fits to the data, we obtained empirically (including constraints to the direction of the

easy axis), two sets of crystal field parameters (for models S1 and S2). Both models gave a consis-

tent description of not only the transition energies levels observed in neutron measurements up to

800 meV (including the trends in intensity for transitions to higher levels), but also optical transi-

tions (to higher crystal field levels up to 1.6 eV), furthermore the magnitude of the ordered moment

in the ground state is also reproduced and indicates a large component from the unquenched orbital

moment. This analysis provides a natural explanation and quantitative description of the origin of

the strong Ising anisotropy of Co2+ ions, attributed to the combined effect of crystal field from

a largely-distorted octahedral ligand environment and a comparable spin-orbit coupling λ . The

quantitative microscopic models presented here for the magnetic Hamiltonian of Co2+ ions tak-

ing into account all terms allowed by the low local symmetry with realistic values obtained from
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the PCM/SOM models and constraints to reproduce quantitatively a wide range of very different

experimental measurements such as the transition energies obtained from neutron/optical measure-

ments, the magnitude of the ordered moment and the direction of the easy axis; these results are

considerable improvement to previous proposals of the magnetic Hamiltonian [77], which included

an over-simplified model for the crystal field, fitted only to magnetization data and largely incon-

stant with the crystal field level scheme measured with neutron scattering. The explicit values of

the wavefuctions of the ground state doublets (Table ??) is the starting point in deriving a micro-

scopic effective hamiltonian for the exchange-driven spin dynamics in the lowest doublet. Already

high-resolution neutron scattering have shown that in addition to the dominant Ising interaction

Jσ
z
i σ

z
i+1 there are significant ( ∼ 15 %) other terms in the spin Hamiltonian which are responsible

for the soliton dispersion and bound state formation, not predicted by the pure Ising Jσ
z
i σ

z
i+1 term.

Knowing explicitly the true spin and orbital component of the ground state doublet should allow

an explicit derivation of all such subleading term and provide a macroscopic understanding of why

they occurs and what their magnitude is. It may well be the case that when this is done only one

of the two models presented here (S1 or S2) will be consistent with the observed magnitude of the

soliton band width dispersion and bound state energies and that would uniquely define the micro-

scopic Hamiltonian. This is important because CoNb2O6 is one a the very few systems that can

be driven experimentally through a continuous quantum phase transition by transverse magnetic

fields (in fact illustrates the key paradigm of the 1D Ising criticality) and detailed comparison of

data with theory of quantum criticality requires including the subleading (beyond Ising) terms in

the Hamiltonian.
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Table 5.10 Wave function coefficients c j↓ and c j↑ of the lowest doublet Ψ0↓ and Ψ0↑ for
model S1, where Ψ0↓↑ = ∑ j=1,...,28 c j↓↑ |MLMS〉 j.

Ψ0↓↑ - S1 c j↓−S1 c j↑−S2 Ψ0↓↑ c j↓ c j↑

|+3,+1.5〉1 -0.19656 -0.45541 |−3,−1.5〉28 0.45541 -0.19656

|+3,+0.5〉2 0.18258 -0.29474 |−3,−0.5〉27 -0.29474 -0.18258

|+3,−0.5〉3 -0.01265 -0.10716 |−3,+0.5〉26 0.10716 -0.01265

|+3,−1.5〉4 0.04753 -0.03459 |−3,+1.5〉25 -0.03459 -0.04753

|+2,+1.5〉5 0.00919 -0.03242 |−2,−1.5〉24 -0.03242 -0.00919

|+2,+0.5〉6 0.00705 -0.00981 |−2,−0.5〉23 0.00981 0.00702

|+2,−0.5〉7 -0.00735 -0.00085 |−2,+0.5〉22 -0.00085 0.00735

|+2,−1.5〉8 0.02316 0.01439 |−2,+1.5〉21 -0.01439 0.02316

|+1,+1.5〉9 0.04035 0.06585 |−1,−1.5〉20 -0.06585 0.04035

|+1,+0.5〉10 -0.09408 0.05187 |−1,−0.5〉19 0.05187 0.09408

|+1,−0.5〉11 0.25664 0.2119 |−1,+0.5〉18 -0.2119 0.25664

|+1,−1.5〉12 -0.38449 0.17357 |−1,+1.5〉17 0.17357 0.38449

|0,+1.5〉13 -0.00289 0.16471 |0,−1.5〉16 0.16471 0.00289

|0,+0.5〉14 0.25658 0.46623 |0,−0.5〉15 -0.46623 0.25658



5.10 Conclusions 127

Table 5.11 Wave function coefficients c j↓ and c j↑ of the lowest doublet Ψ0↓ and Ψ0↑ for
model S2, where Ψ0↓↑ = ∑ j=1,...,28 c j↓↑ |MLMS〉 j.

Ψ0↓↑ - S2 c j↓−S1 c j↑−S2 Ψ0↓↑ c j↓ c j↑

|+3,+1.5〉1 -0.00041 0.66465 |−3,−1.5〉28 -0.66465 -0.00041

|+3,+0.5〉2 -0.28519 -0.00054 |−3,−0.5〉27 -0.00054 0.28519

|+3,−0.5〉3 0.00185 -0.03895 |−3,+0.5〉26 0.03895 0.00185

|+3,−1.5〉4 0.06269 -0.00031 |−3,+1.5〉25 -0.00031 -0.06269

|+2,+1.5〉5 -0.02532 0.01107 |−2,−1.5〉24 0.01107 0.02532

|+2,+0.5〉6 -0.00407 -0.00964 |−2,−0.5〉23 0.00964 -0.00407

|+2,−0.5〉7 0.01194 -0.00241 |−2,+0.5〉22 -0.00241 -0.01194

|+2,−1.5〉8 0.00248 -0.02430 |−2,+1.5〉21 0.02430 0.00248

|+1,+1.5〉9 -0.00115 0.04089 |−1,−1.5〉20 -0.04089 -0.00115

|+1,+0.5〉10 -0.02117 -0.00422 |−1,−0.5〉19 -0.00422 0.02117

|+1,−0.5〉11 0.00354 -0.26376 |−1,+0.5〉18 0.26376 0.00354

|+1,−1.5〉12 0.49747 -0.00088 |−1,+1.5〉17 -0.00088 -0.49747

|0,+1.5〉13 -0.01037 0.00841 |0,−1.5〉16 0.00841 0.01037

|0,+0.5〉14 -0.00471 -0.38786 |0,−0.5〉15 0.38786 -0.00471
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Chapter 6

Phase diagram and magnetic excitations in

quantum XY-antiferromagnet Cs2CoCl4 in

transverse field

This chapter describes elastic and inelastic time-of-flight single crystal neutron scattering exper-

iments to explore the magnetic order and spin dynamics in the quasi-one-dimensional spin-1/2

XY antiferromagnet Cs2CoCl4 in a magnetic field applied close to the XY plane which drives a

transition from spontaneous long-range magnetic order to a gapped quantum paramagnet. The

commensurate antiferromagnetic order observed at low field is stable over a wide field range but

is replaced by an incommensurate magnetic order (spin density wave) just below the transition

to paramagnetic. Deep in the paramagnetic phase the excitations are sharp, gapped magnons

with minima at the incommensurate wavevectors of the magnetic order below BC = 2.36(2) T and

the dispersion relations give values for the intra- and inter-chain couplings. In addition to one-

magnon excitations at high energies we also observe weak magnetic continuum scattering, which

becomes stronger upon approaching the critical field from above and is attributed to multi-magnon

129
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scattering processes.

6.1 Introduction

Quantum fluctuations become significant as the system lowers its dimensionality and the value of

the spin quantum number. In the extreme case of 1D quantum magnets with S = 1/2, quantum fluc-

tuations are very strong and may stabilize novel ground states or spin dynamics; because magnetic

fields have a direct influence on the quantum fluctuations especially when the magnetic field is

applied perpendicular to the direction of the magnetic moments (transverse field effects), the field

"can" control the quantum fluctuations to stabilize novel ordered phases or phase transitions [42].

The purpose of the work presented here was to investigate the phase diagram of the quasi-one

dimensional spin-1/2 easy-plane antiferromagnet Cs2CoCl4 in magnetic fields using single crystal

neutron scattering. The particular aim was to see how magnetic order and spin excitations evolve

as the system undergoes a phase transition at high field where the spontaneous magnetic order

is suppressed. Spins in Cs2CoCl4 have a dominant nearest-neighbor antiferromagnetic exchange

interaction along the crystallographic b axis and also the local crystal field environment is such

the spins have strong easy-plane anisotropy. Although Co2+ ions have a free spin of S̃ = 3/2 in-

side the lattice, crystal field effects + spin-orbit interaction split the 28 fold degenerate free ion

manifold for spin (S̃ = 3/2) and orbital (L = 3) states in a set of Kramers doublets (as in previous

chapter), and here the lowest doublet can be described by an "effective" S = 1/2 spin with strong

easy-plane anisotropy (as opposite to easy-axis in CoNb2O6) and at low temperature the dynamics

inside the lowest doublet can be modeled by an effective spin S = 1/2 and XXZ antiferromagnetic

interactions. The scenario we investigate experimentally is that of the 1D spin-1/2 XXZ model in

a magnetic field applied at an angle with respect to the XY-plane, with the following Hamiltonian:

H = HXXZ +HXZ (6.1)



6.1 Introduction 131

where HXXZ is the Hamiltonian describing the XXZ antiferromagnetic interactions

HXXZ = J ∑
n

(
Sx

nSx
n+1 +Sy

nSy
n+1 +∆Sz

nSz
n+1
)

(6.2)

and HXZ is the Hamiltonian describing the interaction of the system with the external magnetic

field

HXZ = gxµBBx ∑
n

Sx
n +gzµBBz ∑

n
Sz

n (6.3)

J > 0 is the antiferromagnetic (AF) exchange constant and ∆ = 0.25 is the anisotropy parameter in

the limit where the exchange J is much smaller than the energy separation between the first two

Kramer doublets. The operators Sα
n , where α = x, y, z, are the usual spin operators for the spin-1/2

and HXZ doesn’t commute with the exchange Hamiltonian, [HXXZ , HXZ] 6= 0 for Bx 6= 0, so Sx is

not a conserved quantity. It was proposed [78] that low-energy properties of Cs2CoCl4 is described

by Eq. 6.2 with J = 0.23 meV and ∆ = 0.25, therefore the physics should be well approximated by

the famous XY model (∆ = 0) [79].

The physics of the non-interacting 1D chains described by the HXXZ(∆) with ∆ = 0 is well

known in the scenario where there are no magnetic fields Bx = Bz = 0 and in the scenario where

we only have a commutating magnetic field Bz 6= 0 [80]. In contrast, the physics of HXXZ(∆ = 0)

with field along x, Bx 6= 0 and Bz = 0, is neither trivial nor widely known. The action of a non-

commuting field Bx have been considered theoretically in [81, 82]. From these theoretical studies

is was found that the in-plane field Bx has two effects: 1) to lower the symmetry of the XY model

to Ising-like and 2) to introduce quantum fluctuations into the system. At high fields, quantum

fluctuations destroy the long range order. This disordering field is below that where the system

reaches its saturation point. This phase transition is therefore a nontrivial quantum phase transition

through a quantum critical point with noncommuting field as control parameter. More complicated

theoretical calculations have been recently done [83], for the 1D chains described by the HXXZ(∆)

with ∆ = 0.25 in noncommuting field, including small interchain exchange interactions. The results

are summarized in Figure - 6.1. From these calculations it was found that: 1) the main effect of
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Figure 6.1 (a) The dependence of the long range magnetic order pramater Mst (staggered
magnetization) on magnetic field Bx (Bz = 0) for the 1D chain (dashed line) and quasi-1D
system (colid line) for ∆ = 0.25. (b) Expected phase diagram for the model descibed by
Eq. 6.1 with ∆ = 0.25 and Bz = 0. These two plots are taken from [83].

interchain coupling on the system of coupled XXZ chains consists in extending of the AF ordered

phase to finite temperatures, see Figure - 6.1 a); 2) in the presence of transverse magnetic field the

3D effects become less pronounced. They lead to a small shift of the critical field, see Figure -

6.1 b). The consideration of small interchain interactions implies that the properties of the model

given by Eq. 6.1 with ∆ = 0.25 and Bz = 0, in transverse magnetic field Bx are similar to that of 1D

quantum ising model in a magnetic field. One of the aims of this chapter is to present a detailed

study of the experimental phase diagram of Cs2CoCl4. We will show that the presence of frustrated

interchain interactions stabilize a new incommensurate magnetic phase close to the critical field

which is not predicted by the theoretical phase diagram shown in Figure - 6.1 b).

6.2 Crystal Structure and zero field magnetic structure

The crystal structure of Cs2CoCl4 in shown in Figure - 6.2 a); it has orthorhombic space group

Pnma (No. 62) with the lattice parameters at T = 0.3 K, a = 9.71 Å, b = 7.27 Å, and c = 12.73



6.2 Crystal Structure and zero field magnetic structure 133

Å [84]; the relative atomic coordinates used for the calculation of the nuclear structure factors

are given in Table - 6.1. The chemical unit cell contains four equivalent Co2+ ions at sites 4c,

surrounded by a tetrahedron of the chlorine ions, see Figure - 6.2. Small distortions from a perfect

    

a) b) 

Figure 6.2 (a) 3D view of the crystal structure of Cs2CoCl4; there are four Co2+ ions
in the unit cell (4c sites) labeled from 1-4. (b) Projections onto the ac-plane showing the
orientation of the local XY planes for each Co2+ ion in the unit cell; magnetic chains run
along b axis perpendicular to plane of the paper; the local Z axis is normal to the XY
planes and bisect the largest angle of the distorted tetrahedrons.

tetrahedron lead to a splitting of the orbital singlet with true spin S̃ = 3/2 into two Kramers doublets

with a separation 2D = 1.3(1) meV. The magnetic exchange energy is much lower than the inter-

doublet separation and therefore only the lowest-lying doublet states S̃z = ±1/2 participate in the

low-energy dynamics at low temperatures (kBT « 2D, D is the parameters which characterize the

plane anisotropy). Projecting the Heisenberg exchange ( Eq. 6.4), between the true spins, onto the

lowest-lying doublet of S̃z = | ± 1/2〉 states, gives an effective spin S = -1/2 Hamiltonian HXXZ
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Table 6.1 Atomic positions in the unit cell for Cs2CoCl4.

Atom name Ion type Wyckoff position x/a y/a z/a

Cs1 Cs11+ 4c 0.14013 0.25000 0.10074

Cs2 Cs21+ 4c 0.47776 0.25000 0.82360

Co1 Co2+ 4c 0.73514 0.25000 0.07772

Cl1 Cl11− 4c 0.50372 0.25000 0.09993

Cl2 Cl21− 4c 0.81234 0.25000 0.91120

Cl3 Cl31− 8d 0.17400 0.00180 0.84720

with XY-like exchange which is described by the Eq. 6.1 with ∆ = 0.25 in the limit I « 2D.

H = IS̃1S̃2 +D(S̃z
1)

2 +D(S̃z
2)

2 (6.4)

Rotations of the CoCl4 tetrahedra in the unit cell lead to different orientations of the XY easy plane

between sites (1, 3) and (2, 4) and give the b axis as the only common in-plane direction for all sites.

The geometrical distortions from a perfect tetrahedron environment are mostly angular; there is no

significant difference in any of the respective Co - Cl bond lengths. The main distortion from a ideal

tetrahedron is due to one of the four Cl− ions being rotated by several degrees around the b-axis

with respect to the central Co2+ ion and previous studies [85] proposed that the normal to the XY

easy plane (local Z-axis) bisects this angle; see Figure - 6.2 (b). Neighboring Co2+ ions interact via

superexchange interaction involving a bridge of two Cl− ions with the path Co2+-Cl−-Cl−-Co2+.

The shortest Cl−-Cl− distance is between neighbours along the b-axis separated by dCl3−Cl3− =

3.61 Å, see Figure - 6.3 a), giving a planar path Co2+-Cl−-Cl−-Co2+. As this is close to twice

the ionic radius of Cl− a sizeable overlap of electron wave functions contributing to the exchange

integral is expected. Thus the important interaction is assumed to be the intrachain exchange J,

between the two nearest - neighbors (NN) ions along the b-axis. Among other possible exchange
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b) a) 

Figure 6.3 (a) the superexchange path Co2+-Cl−-Cl−-Co2+ along the b axis; Co2+ ions
are separated by two chlorine ions with the shortest distance between them suggesting
that the Co2+ ions interact mainly via an AF superexchange interaction J along the b axis,
forming AF spin chains which interact weakly via superexchange. (b) Crystal structure
of Cs2CoCl4 projected onto the bc-plane showing the possible exchange paths (only the
Co2+ ions are shown).
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paths we have Jbc between Co1 - Co4 (dCl3−−Cl2− = 3.99 Å), Jac between Co1 - Co2 (dCl3−−Cl1−

= 4.03 Å) and Jab between sites Co1 - Co3 (dCl2−−Cl3− = 4.04 Å); in terms of these exchange

integrals a Co1 ion is interacting with two Co1 ions through J, with four Co4 ions through Jbc, with

four Co3 ions through Jab and with two Co2 though Jac. Using the measured dispersion relation at

4 T we obtained a quantitative Hamiltonian parametrization in terms of these exchange integrals.

Since these exchange paths are non-collinear, the orbital overlap is expected to be small than for

the J path, and subsequently the interaction to be smaller Jab, Jbc, Jac « J [86,87]. Previous neutron

scattering measurements in zero field [78] already showed that interchain couplings stabilize long-

range order (LRO) below TN = 217 mK with the spins ordered antiferromagnetically along the

chain direction and the moments confined in the bc-plane very close to the b axis.

6.3 Experimental details and Data Analysis

In the resent study we performed elastic and inelastic neutron scattering measurements using the

time-of-flight neutron scattering spectrometer OSIRIS at the pulsed neutron source ISIS. The sam-

ple was a 9 g flat plate crystal of approximate 5 mm along the b axis thickness optimized to

minimize neutron absorption. The sample was aligned with the bc scattering plane horizontal and

nuclear and magnetic peaks in the bc plane were measured using the two horizontal diffraction

backscattering banks of detectors, which are placed in a ring around the incident beam, covering

the range of scattering angles 2θ from 150o to 171o. When the instrument was used in diffraction

mode the wavelength defining choppers were running at a frequency of 25 Hz, producing a se-

lectable, 4 Å wide wavelength band at the sample position. By changing the phase of the choppers

we were able to select different wavelength bands. The total d-spacing range covered during the

experiment was from 1.7 to 11 Å. The raw diffraction intensities are registered as a function of ar-

rival time at the detector and the position of the detector element. These intensities as a function of
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time of flight and position of the detector element were converted to intensity as a function of neu-

tron wavelength and scattering angle 2θ , thus allowing two dimensional maps, of the Bragg peak

intensity in the horizontal plane to be collected, see Figure - 6.4. The two dimensional integrated
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Figure 6.4 (a) 2D map of the (0, 1, 3) Bragg peak intensity as a function of the wavelength
λ and the scattering angle 2θ ; (b) 2D map of the same peak converted in the bc reciprocal
plane axis; scans along 2θ and λ are shown in panel (c) and (d).

intensities of the Bragg peaks in the (λ , 2θ ) plane,

I(λ0) = ∑
2θ

∫
λ

I(λ ,2θ)dλ = ∑
λ

∫
2θ

I(λ ,2θ)d2θ (6.5)

are related to the Bragg peak structure factors by [88]:

I(λ0) =CΦ(λ0)ε(λ0)ε(θB)A(λ0,θB)y(λ0)|F |2
λ 4

0

sin2
θB

+b (6.6)
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Where C is a overall scale factor, 2θB is the nominal total Bragg scattering angle, λ0 = 4π sinθB/|Q|0

is the nominal scattering wavelength and F is the nuclear/magnetic structure factor; F is the most

important quantity we want to extract from the data because it is directly related to the crys-

tal/magnetic structure. The peak center (λ0, 2θB) was determined from fitting Gaussians to scans

along λ and 2θ , see Figure - 6.4 (c) and (d). The wavelength dependent factors are: the incident

flux Φ(λ0); the detector efficiencies ε(λ0); the transmission factor A(λ0,θB) which characterize the

absorption effects in the sample; the extinction corrections y(λ0) and the Lorentz factor which for

the time-of-flight neutron diffraction technique is λ 4
0

sin2
θB

[89]. The last term b, is the non-magnetic

background which has contributions from both the empty sample holder as well as the sample itself

(incoherent scattering). Due to the size of the crystal we expect significant extinction effects which

will reduce the intensity of the strongest nuclear Bragg reflections. To extract F in absolute units

of barns, we have to determine the scale constant C and to correct the data for all the wavelength

dependent factors. Further we will describe the corrections done to the data:

1) To determine the wavelength dependence of the detector efficiency ε(λ ) (see Eq. 6.5) we

measured the incoherent scattering from a standard vanadium sample (a solid cylinder of radius R

= 0.25 cm). Because the incoherent scattering is isotopic the measured intensity will be wavelength

dependent, due to the term like ε(λ ) and absorption effects in the vanadium sample. The vanadium

intensity measured in each detector elements is given by:

IV
i (λ ) =CV Φ(λ )εi(λ )εi(θB)AV (λ ,θB)+B (6.7)

The raw intensities of the incoherent vanadium scattering as a function of time of flight were

converted to intensity as a function of neutron wavelength for each detector, thus obtaining two

dimensional maps in the (λ , detector) plane, see Figure - 6.5 a). After the background (measured

for the empty instrument) was extracted from all the 2D maps of vanadium intensity vs. wave-

length and detector number, the detector efficiencies εi(θB) (see Eq. 6.7) were obtained from the

vanadium data in the following way: we selected a narrow wavelength range (which didn’t contain
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Figure 6.5 2D maps of the incoherent intensity scattered from vanadium as function of
the wavelength and detector number; (a) raw intensity (b) intensity corrected for relative
efficiencies between detectors ε(θ ); (c) intensity corrected for ε(θ ) and absorption AV ;
(d) scan along λ averaged between detectors; the intensity is proportional with ε(λ ).
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any Bragg reflections from the vanadium sample or from the sample holder) and we averaged the

intensity along the wavelength direction thus obtaining a one dimensional vector with the length

equal with the number of the detector elements. Each number from the vector is proportional with

the corresponding ε(θB). Finally to correct the intensity for ε(θB), we divided the vanadium inten-

sity vs. wavelength by the corresponding number from the vector; by doing this type of correction

we also corrected for any solid angle dependence. After this correction was done, the intensity was

scaled with a constant such that the order of magnitude of the intensity didn’t change, see Figure

see Figure - 6.5 b). The data was also corrected for absorption effects; transmission factors for

a cylindrical crystal were calculated in the literature [90] as a function of scattering angle θ and

the dimensionless parameter µR, where µ is the linear absorption coefficient and R is the cylinder

radius. The linear absorption coefficient [91] for vanadium is given by:

µvanadium[cm−1] = 0.20518λ +0.36892 (6.8)

where λ is in Å. µ was calculated using the absorption and incoherent cross section given in the

literature [4]. By inspecting the transmission factors for fixed scattering angle (AV (λ , θB=fixed)),

in the wavelength range where we want to extract the detector efficiencies we observe that the

absorption effects are very important (there is a 40% decrease in the transmission factor between

the extreme wavelength, 3 and 15 Å). The changes in transmission factors for fixed wavelength,

in the range of the accessible scattering angles where we did measurements during the experiment

are less than 5%. After all these corrections have done, the vanadium intensity vs. wavelength in

each detector element is proportional with ε(λ ), see Figure 6.5 c); by inspecting the intensity in

all the elements of a detector banks we see that they are approximately the same, as expected. We

averaged the intensity over all the detector elements in a detector bank, see Figure - 6.5 d). The

detectors efficiency ε(λ ) extracted from the vanadium data in consistent between the two detector

banks as is shown in Figure - 6.6.

2) The intensity measured for Cs2CoCl4 was corrected for the wavelength dependence of the
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Figure 6.6 Vanadium intensity vs. lambda for the two detector banks after normalization
by ε(θ ) and absorption AV (µ , θ ); the resulting values are proportional to the detector
efficiencies as a function of wavelength.

detector efficiencies using ε(λ ) determined from the vanadium measurements (ε(λ ) are shown in

Figure 6.6). The relative efficiencies of the various detectors ε(θ), was determined in the same

way as for vanadium data but the one dimensional vector was obtained by averaging 14 different

measurements with the same wavelength range on different orientations of the sample.

3) All integrated intensities for the nuclear and magnetic reflections calculated in the (λ , 2θ )

plane as in Figure - 6.4 were corrected for neutron absorption effects using a Monte Carlo code for

a rectangular sample of the same size as the actual crystal, taking into account the orientation of

the sample with respect to the incident beam. The linear absorption coefficient used in modelling

the neutron absorption in the sample was calculated using:

µCs2CoCl4[cm−1] = 0.1176λ +0.56729 (6.9)

the formula was calculated using the absorption and incoherent absorption cross section given in

the literature for Co, Cs and Cl atoms [4].
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4) After all these corrections were done, the final integrated intensities were proportional with

the structure factors squared |F|2; in order to find the scale constant, C which transform the final

integrated intensities into structure factors squared in absolute units of barns squared, we had

to calculate the nuclear structure factors squared |Fcalc|2; for the calculations of the |Fcalc|2 we

used the atomic positions from [92] and the nuclear scattering lengths for Cs, Co and Cl found

in the literature [91]. A comparison between the theoretical and experimental structure factors is

shown in Figure - 6.7 a). The same scaling constant was used to obtain the structure factors for

the commensurate and incommensurate magnetic structures on an absolute scale. As a consistency
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Figure 6.7 Experimental vs. calculated structure factors squared for (a) the nuclear and
(b) zero field magnetic peaks. The solid line has unit slope.

check of the scaling constant and various corrections we calculated the expected magnetic structure

factors for the zero field AF structure as determined previously [78] and compared them with the

experimental structure factors extracted from the data on absolute scale, using the spherical form

factors for Co2+ ions [4] and we obtained a very good agreement as shown in Figure - 6.7 b),

which give us confidence about the scaling constant and all the corrections performed on the data

in order to bring the structure factors squared in absolute units of barn.

In order to study the evolution of the zero field magnetic structure vs. field, we measured
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the order parameter (integrated intensity vs. field) below TN for different temperatures, with the

magnetic field applied along the a axis. At each field (for fixed temperature) we determined the

integrated intensity (by fitting Gaussians to the data) of the antiferromagnetic Bragg peak, from the

2D intensity maps in the (Q, 2θ ) plane; for example in Figure - 6.8 we show the order parameter

for the most intense magnetic diffraction peak of the AF structure, (0, 0.5, 1.5). This figure shows

that the zero field magnetic order is suppressed by the quantum fluctuations in a first order phase

transition.
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Figure 6.8 Intensity of the (0, 0.5, 1.5) AF Bragg reflection. The solid lines are guide for
the eye. The insets show scans along Q = |Q| and 2θ for magnetic field below 2.1 T (solid
symbols) and above (open symbols). The value of 2.1 T is the value of the magnetic field
where the zero field AF order is suppressed.
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6.4 Phase Diagram in applied magnetic field along the a - axis

In zero field the magnetic moments order antiferromagnetically and due to the competition between

the antiferromagnetic exchange interactions and local anisotropy they are confined in the bc-plane,

making a small angle with the b - axis [78]. The main interest of this project was to learn about

the evolution of the AF magnetic order when we apply a magnetic field transverse to the plane of

the magnetic moments and to see what happens at the transition field Bc where the magnetic order

disappears. To achieve our aim, we measured order parameters at different fields and different

temperatures. The results are summarized in Figure - 6.9. The commensurate (CM) magnetic

order, a spin-flop like magnetic phase, disappears in a first order phase transition at the critical

field 2.1 T and it coexists over a very narrow field range with an incommensurate (INC) magnetic

order which is stable from 2.04(3) T up to 2.36(3) T. Typical order parameter plots for the CM and

INC magnetic orders are given in Figure - 6.10 a) and b). We observe that in the region where the

two phases coexists the CM ordering wave vector (0, 0.5, 0.5) jumps to the INC ordering wave

vector (0, 0.5 - ε0, 0), where ε0 = 0.055 rlu; Wavevector scan through representative AF and INC

phases are given in Figure - 6.11 a). The INC ordering wave vector is constant within errors over

the whole field region where the INC phase is stable. as shown in Figure - 6.11 b). Above the

critical field BC the spontaneous magnetic order in the bc-plane disappears in a continuous phase

transition.

6.5 Magnetic structure in the incommensurate high - field phase

The incommensurate magnetic phase is stable in field range 2.04 T < B < 2.36 T, applied along

the a axis and is manifested experimentally in magnetic Bragg peaks at satellite positions (H,

K, L)± = (H, K, L ) ± q, where the incommensurate magnetic wave vector is q = (0, 0.5 - ε0,

0), with ε0 = 0.055 rlu being the incommensuration. In total thirteen magnetic Bragg peaks in
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Figure 6.9 Temperature - Field phase diagram for Cs2CoCl4 with magnetic field applied
along the a axis. The data points were found by measuring the intensities of Bragg peaks
with varying temperature or applied field. Open triangles denote boundaries of the AF
phase. Black circles denote boundaries of the incommensurate magnetic phase. Solid
lines are guides to the eye.
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critical field BC = 2.36 T.
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the bc-plane were observed and the results are summarized in Figure - 6.12. Only nuclear peak

centers satisfying the selection rule K + L = odd have satellite magnetic Bragg peaks; no magnetic

Bragg peaks occur for L = 0. The strongest magnetic Bragg peaks are found for vectors with

a large component along c* axis compared with the component along b* axis. Since neutrons

only measure the magnetic moment component transverse to the wavevector transfer Q (due to

the polarization factor of the cross section Eg. 2.18 in Chapter 2) the above observation indicates

that the magnetic structure has a strong component of the magnetic moment along the b*-axis.

Group theory can be used to identify the basis vectors for possible magnetic structures allowed

by the symmetry of the space group [93]. For an incommensurate ordering wave vector q = (0,

qy, 0) in the crystal space group Pnma of Cs2CoCl4 (four Co2+ ions atoms per unit cell) the basis

vectors, determined from symmetry analysis [94], describing the allowed magnetic structures are

listed in Table - 6.2 and Table - 6.3. Each basis vector, such as Cy corresponds to a sinusoidal

Table 6.2 (a) Irreducible representations of the little group Gq of the ordering wavevector
q = (0, qy, 0); x, y and z are along the crystallographic a, b and c axes.

Irreducible Representation Basis vectors

Γ1 Ax Gy Cz

Γ2 Gx Ay Fz

Γ3 Cx Fy Az

Γ4 Fx Cy Gz

wave modulation of the magnetic moment along a particular direction (here y axis) with a certain

set of phase factors between the 4 sites in the unit cell. For Cy mode the ordered magnetic moments
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Figure 6.12 Schematic diagram of the (0kl) scattering plane showing the measured nu-
clear Bragg peaks (black filled circles) and incommensurate magnetic Bragg peaks (open
circles), where the size of the circles indicates the intensity. The labels F, C, G and A show
the extinction rules associated with the four different types of spin structures allowed by
symmetry, as described in the text.
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Table 6.3 The four possible basis vectors for the magnetic moments in the four sublattices,
(1) to (4), where β = e−iπqy .

Basis vectors (1) (2) (3) (4)

F 1 1 β β

C 1 1 -β -β

G 1 -1 β -β

A 1 -1 -β β

along the y axis are given by:

my
l,1 = (+1) My sin(q · rl,1 +ϕy)

my
l,2 = (+1) My sin(q · rl,2 +ϕy)

my
l,3 = (−1) My sin(q · rl,3 +ϕy)

my
l,4 = (−1) My sin(q · rl,4 +ϕy)

(6.10)

and for a Gz mode

mz
l,1 = (+1) Mz sin(q · rl,1 +ϕz)

mz
l,2 = (−1) Mz sin(q · rl,2 +ϕz)

mz
l,3 = (+1) Mz sin(q · rl,3 +ϕz)

mz
l,4 = (−1) Mz sin(q · rl,4 +ϕz)

(6.11)

My, Mz are the amplitudes of the ordered moments along the y and z axis, rl,1 is the position in

the cell l of the atoms Co1 and ϕy and ϕz are arbitrary phases. The combination of two basis

vectors such as CyGz, leads to an elliptical order with spins at each site rotating in the bc-plane,

with possibly different amplitudes My 6=Mz and with a definite sense of rotations (chirality); for

example CyGz with ϕz - ϕy = π/2 has a clockwise rotations for the Co1,4 chain and opposite
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rotation for the Co2,3 chains. By comparing the experimental magnetic structure factors squared

extracted from the measured magnetic Bragg peaks and the calculated structure factors squared

for the different basis vectors we find good agreement with a magnetic structure with basis vector

Cy in the Γ4 irreducible representation with spins along y (b) axis. To distinguish between the

different possibilities we looked carefully at the differences in the magnetic structure factors. For

reflections in the (0kl) plane (H = 0) the magnetic structure factor squared in the Γ4 irreducible

representation for a reflection at (0, K, L)± is obtained as:

|F±⊥ |
2 = 4

(
aF

x M2
x +aC

y M2
y +aG

z M2
z +a±CG

yz MyMz

)
(6.12)

where the prefactors are:

aF
x = cos2

(
π

K +L
2

)[
sin2 (2πLz)sin2

(
π

L
2

)
+ cos2 (2πLz)cos2

(
π

L
2

)]
(6.13)

aC
y = sin2

(
π

K +L
2

)[
sin2 (2πLz)sin2

(
π

L
2

)
+ cos2 (2πLz)cos2

(
π

L
2

)]
sin2

α (6.14)

aG
z = sin2

(
π

K +L
2

)[
sin2 (2πLz)cos2

(
π

L
2

)
+ cos2 (2πLz)sin2

(
π

L
2

)]
cos2

α (6.15)

a±CG
yz =−

(
±1

2

)
sin2

(
π

K +L
2

)
sin(4πLz)

[
cos2

(
π

L
2

)
− sin2

(
π

L
2

)]
sin(ϕz−ϕy)sin2α

(6.16)

where α is the angle between the scattering wave vector Q=(0, k±qy, l) and the [010] axis (such

calculations are explicitly presented in [94]). We observe that the interference term a±CG
yz changes

sign between the two (±qy )satellites of the same reciprocal lattice point (0, k, l) and its ab-

solute value is defined by the chirality of the elliptical ordering in the bc-plane, the parameter

ϕz−ϕx(=±π/2) . Fits to a longitudinal spin density wave (SDW) model (spin components along

y, Mx=Mz=0) are shown in Figure - 6.14. Overall good agreement is obtained; the agreement

with the data for the medium-intensity peaks is not improved by allowing a small transverse spin

component along the z direction (Gz, Mz 6=0), so we conclude that the magnetic structure is an
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incommensurate longitudinally-modulated spin density wave (SDW) propagating along the mag-

netic chain direction b, as illustrated in Figure - 6.14. Figure - 6.14 shows that in chains (1) - (4)

0 10 20
0

10

20

30

My = 2.7(3) µB   Mz =  0.0(1) µB

              Cs2CoCl4
 INCOMMENSURATE MAGNETIC
      STRUCTURE at 2.1 T || a-axis

 exp
 calc

|F
|2  (

µ B

2 )

Peak number  
Figure 6.13 . Experimentally observed magnetic structure factors squared (open circles)
fitted to the model (solid line) for the magnetic structure of a longitudinal spin-density-
wave plotted in Figure - 6.14. Peak numbers are from Table - 6.4.

the large ordered spins are always arranged antiparallel along the chain direction where the antifer-

romagnetic exchange interaction J, is expected to be the strongest. The phase offset between chains

is such that there is an energy gain of energy due to the Jbc exchange interaction (which introduce

frustration in the system); in each triangle the basal spins arrange themselves antiparallel due to J

and the third spins will align itself antiparallel with the largest of the basal spin. There is also a

uniform net magnetic moment induced along the magnetic field direction a (x axis). In Table - 6.4
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1

4

4
b

c

J

J
bc

Figure 6.14 Schematic diagram of the parallel chains (1) - (4) showing the SDW ordering
propagating along the chains. The external magnetic field is along a axis out of the plane
of the paper. J is the strongest exchange interaction along the chains direction and Jbc is
the weakly exchange interactions between the chains.

we show the experimental magnetic structure factors squared and the calculated magnetic structure

factors squared for a magnetic structure corresponding to a spin density wave propagating along b

axis.

6.6 Quantitative parametrization of the exchange Hamiltonian

The spin arrangement corresponding to the interacting chains shown in Figure - 6.3 can be de-

scribed by a spin exchange model where for simplicity we neglect the easy-plane anisotropy and

assume isotropic Heisenberg exchange interactions.

H = ∑
〈i, j〉

Ji jSiS j−gµBB∑
i

Sz
i (6.17)

where Ji j is the exchange interaction between the spin at site i and j, Ŝ is the spin operator, g is the

gyromagnetic factor, µB is the Bohr magneton and B is the external magnetic field. Ji j is J for the

Co1 - Co1 atom on the same chain (2 pairs), Jbc for the Co1 - Co4 atom (4 pairs), Jac for the Co1

- Co2 atoms (4 pairs) and Jab for the Co1 - Co3 atoms (4 pairs). At very high fields deep in the
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Table 6.4 Comparison of the experimentally and calculated structure factors squared for
magnetic Bragg peaks in the incommensurate phase at |B| = 2.1 T, B || a axis (visual
comparison is in Figure - 6.13); the notation (003)+⇔ (0 0 3) + (0 0.5-ε0 0) and (014)−

⇔ (0 1 4) - (0 0.5-ε0 0), where ε0 = 0.055 rlu; Mz = 2.7(3) µB and My = 0.0(1) µB.

No. (hkl)(rlu) |F |2calc (µ
2
B) |F |2exp (µ

2
B)

1 (003)+ 27.04 29.3(0.4)

2 (016)+ 23.76 17.2(1.8)

3 (023)− 15.82 18.9(1.9)

4 (025)− 9.14 11.0(1.2)

5 (012)− 7.31 10.6(1.3)

6 (025)+ 6.83 6.7(0.7)

7 (014)− 3.97 4.7(0.6)

8 (012)+ 3.48 6.6(0.7)

9 (014)+ 3.00 3.0(0.3)

10 (02−1)− 0.77 1.9(0.3)

11 (021)− 0.77 1.5(0.2)

12 (021)+ 0.33 0.4(0.1)

paramagnetic phase all the spins are expected to be ferromagnetically align along the field axis. In

this case the excitations for Heisenberg interactions only, are exactly given by spin-wave theory as

quantum fluctuations are entirely quenched by the large field [95]. A considerable simplification of

the problem of 4 sublattices occurs if we approximate the slightly distorted triangular arrangement

of chain 1,4 (and 2,3) with perfectly planar structures ( Figure - 6.3); chains 1 and 4 are at height

1/4 ± ξ along the a axis (ξ = 1/4 -0.235 = 0.015). For ξ = 0 the problem can be reduced to two

triangular lattices in the bc plane offset along the c axis. In this case to diagonalize this Hamiltonian
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and obtain the dispersion we are using the Holstein and Primakoff formalism and we introduce

boson operators a+i , b+i to flip spins on the two triangular Co sublattices (where a+i =S−i /
√

2S and

Sz
i =S-a+i ai with S = 1/2); by writing the Hamiltonian in terms of these operators and then by using

the Fourier transform of these operators the Hamiltonian (1) becomes:

H = E0 +∑
Q
(a+Q aQ +b+QbQ)(A0 +AQ)+(b+Q aQ eiφQ +a+Q bQ e−iφQ)BQ (6.18)

A0 = gµBB− J−2Jab−2Jbc− Jac (6.19)

AQ = J cos(2πk)+2Jbc cos(πk)cos(πl) (6.20)

BQ = 2Jab cos(πh)cos(πk)+ Jaccos(πh)cos(πl) (6.21)

φQ = 2δ2πl (6.22)

where Q=(h, k, l) and δ = 0.078 is the offset between successive (b, c) layers. Diagonalization of

this Hamiltonian gives the two normal magnon modes with two sinusoidal dispersion relations:

ω+(Q) = A0 +AQ +BQ (6.23)

ω−(Q) = A0 +AQ−BQ (6.24)

corresponding to magnons hopping between the two sublattices. The two dispersion relations

are plotted along representative direction in the bc-plane in Figure 6.15. The dispersions have

incommensurate minima at (0, 1.5 - ε , 0) with ε increasing with increasing Jab/J. The overall

shape is modified from a simple sinusoidal from expected in the case of pure 1D chain ( g µB B -

J + J cos(2πk) ) to have incommensurate minima and non-equivalent minima for k = 1 and 2.

Inelastic scattering data was collected in a field of 4T which is deep in the paramagnetic phase,

where the spins are expected to be nearly ferromagnetically aligned along the field direction; at this

field there is a significant energy gap of 0.313(5) meV to the first excited states and the thermally

induced populations of spin flip at 0.15 K is very small. In order to obtain a good quantitative
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Figure 6.15 Effects of the interchain interaction on the 1D dispersion modes.

parametrization of the Hamiltonian we measured the experimental magnon dispersion for twelve

distinct sample orientations which means twelve different cuts through the bc-plane. Each data

file from OSIRIS comes in the form of a large file containing the intensities as a function of the

time-of-arrival in each detector which can be converted to energy transfer. This data can then be

projected onto the reciprocal space giving maps of intensities as a function of two of the 3 variables

k, l and h̄ω . For example, plots of the energy transfer as a function of k or l for an orientation of

the sample where b* is making an angle of Ψ = 48.5 deg with ki are given in Figure - 6.16 a) and

b). Maps of the neutron scattering intensity as a function of wave vector and energy show a sharp

sinusoidally-dispersive gapped mode associated with a magnon spin-flip excitation of the nearly

ferromagnetically - aligned ground state ( see Figure - 6.16); the presence of the two modes seen

experimentally means that there are two types of magnons. The higher modes (∼ 1.21 meV) are

attributed to transition to the higher crystal field level (originating from S̃z = ± 3/2). With the

data in the form of intensities versus any two coordinates out of the quartet (h, k, l, h̄ω) one can

create cuts through the data as a function of either h, k, l or h̄ω (these cuts mimic the constant

energy of momentum scans obtained on triple-axis spectrometer). Typical cuts where we probed

the experimental dispersion are presented in Figure 6.17. To find the positions and intensities of
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Figure 6.16 Colour maps of the inelastic neutron scattering intensity at 4T as a function
of k (a) and l (b) (from magnetization data 2.9 T is the field at which the spins are nearly
fully aligned along the field direction). The data is normalized by the integrated elastic
line to correct for absorption effects and detector efficiencies. (c) and (d) typical energy
cuts (for fixed momentum) used to extract the experimental dispersion. Solid lines are fits
to Gaussians.
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the single- magnon peaks, in constant-momentum cuts, the data was in a first approximation fitted

with Gaussians. Fitting the dispersion relations in Eqs. 6.23 and 6.24 to the measured positions of

-0.5 0 0.5 1 1.5 2 2.5
-2

-1

0

1

2

3
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k (rlu)

l 
(r

lu
)

(c)

(a)

(b)

a) 

b) 

c)

Figure 6.17 Typical cuts through the Brillouin zone; green squares represent the nuclear
Bragg peaks and the red circles represent the incommensurate magnetic Bragg peaks. The
blue circles show experimentally probed dispersion points.

the magnon peaks we obtain the best fit to the data for J = 0.163(2) meV, Jab = 0.034(2) meV, Jbc =

0.018(2) meV, Jac = 0 meV and g =3.32(3). All the interactions are antiferromagnetic. The results

confirm that Cs2CoCl4 can generally be regarded as a quasi-1D system, with a dominant exchange

interaction along the b - axis chains as expected, however interchain coupling are also sizeable Jbc

/ J = 11% and Jab / J = 21%, but are frustrated. The agreement between model and data along the 3

directions shown (and several others measured) is very good indicating that this approximate model
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Figure 6.18 Dispersion relations of the magnon excitations at an applied magnetic field
of 4 T and temperature 0.15 K, along the solid dotted lines shown in Figure - 6.17 labeled
a→ c, fitted to a spin wave model, Eq. (3). The data points (errors bars smaller than size
of the symbol) are extracted from Gaussians fits to the lineshape of constant-momentum
cuts (as in Figure - 6.16 (c) and (d)). Blue circles represent the ω+ mode and magenta
circles represent the ω− mode. Red solid line represents the best fits to the data using the
model describe in the text. The dash lines represent the energies where the two dispersions
would have been measured if the intensities would have been different from zero.
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captures the essential physics of magnon mapping in the high field phase. The fitted dispersion has

minimum gap at incommensurate positions very close to the locations of incommensurate Bragg

peaks which appear blow BC, consistent with a continuous (gap closing) transition paramagnetic

→ incommensurate.

6.7 Excitations Energy gap vs. field

At the field of 4 T we measured the gap as close as possible to the incommensurate Bragg peak

positions (0, 1.5 - ε0, 0) on the b* axis, near the elastic line (E ≈ 0). At this field we observed a

large gap of 0.313(2) meV in the magnon dispersion, see Figure - 6.16 c). In order to learn more

about how the excitation gap evolves with the field, we measured inelastic data in the range 2.36 T

to 6 T (where the lower field gives the transition between incommensurate order and paramagnetic

phase at 0.1 K). After analysis of the data, we extracted the gap energy as a function of field, see

Figure - 6.19. Above 2.5 T, the gap can be well described by a linear dependence (dot line), where

Egap=g µB (B - B̃c) where B̃c = 2.26(2) T and g =3.12(8). A linear dependence is expected in the

ferromagnetic phase where changing the field, increases the magnon Zeeman energy via, the term

g µB B , where g is the gyromagnetic factors and B is the external field. Note that this extrapolates

to zero to a lower field B̃c = (2.26 ± 0.02) T than the measured critical field where magnetic

order disappears at Bc=2.36(2) T. Two scenarios are more likely: either the gap does close at

the experimental critical field BC and the dependence becomes non-linear (subunitary power law)

in the close proximity of Bc (solid line in Figure - 6.19) or that the gap persist to be linear and

it does not close at the transition which would be consistent with a 1st order phase transition.

Experimentally we can put an upper bound on the magnon gap at critical field, as is smaller than

0.02 meV (which is less than 6.4 % of the gap at 4 T), see raw data scans in Figure - 6.20. If the

transition is continuous then the gap is expected to close at the dispersion minima Q ± q, q = (0,
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Figure 6.19 (a) Energy gap as a function of field at the (0, 1.5 - ε0, 0) incommensurate
position. The solid line is the best-fit to a power law Egap = a (B - Bc) with the critical
field value BC = 2.36 T where transition to incommensurate order occurs. The dotted line
is the best fit to a linear behaviour to data above 2.5 T. (b) typical energy cuts (for fixed
momentum) used to extract the energy gap. Solid lines are fits to Gaussians.

0.5 - ε0), 0) and ε0 = 0.055(5) where Bragg peaks appear below the critical field 2.36(2) T.

Departures from a perfectly linear dependence very close to BC might in fact be expected. The

purely linear dependence is expected for the case of isotropic Heisenberg system, or systems with

rotational symmetry around the field axis and also in the special case of pure 1D systems (for

example transverse field-Ising). However for a 3D system with extreme anisotropy (Ising) spin-

wave theory predicts a mean-field square root behavior GAP ∼ (B - BC)
1
2 . So it is possible that

very close to BC the scaling form are affected by the strong anisotropy and finite 3D interchain

couplings present in the system.

6.8 Continuum Scattering

At higher energies above the one-magnon dispersion, evidence for broad continuum scattering

was also observed in the paramagnetic phase for a finite field range above the critical field. Such

scattering was seen at 2.5 T and increased upon lowering the field very close to the transition to
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Figure 6.20 Example of energy scans near 0, 1.5 - ε0, 0) used to extract the energy gap
of the magnon dispersion. Lines are guides to the eye. The data was corrected for neutron
absorption effects.
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magnetic order 2.36 T (see Figure - 6.21) and this continuum scattering could be due to multi -

magnon scattering processes which are not expected in pure Heisenberg systems but are expected

in the presence of anisotropy, when the spin component along the field direction is not a conserved

quantity as in the present case.

The two-magnon scattering continuum can be written as

S|k,ω〉2M = ∑
k1,k2

F(k1,k2)δ (k− k1− k2)δ (ω−ω(k1)−ω(k2)) (6.25)

where the two delta functions represent the conservation of momentum and energy, F(k1, k2) are

matrix elements and ω(k) is the dispersion relation. Two magnon scattering is expected to occur in

the polarization along the magnetic field direction. Three magnon scattering continuum is expected

in the polarization transverse to the field direction and can be written like

S|k,ω〉3M = ∑
k1,k2,k3

F(k1,k2,k3)δ (k− k1− k2− k3)δ (ω−ω(k1)−ω(k2)−ω(k3)) (6.26)

A calculation of the accessible phase space for two and three magnons scattering processes is given

in Figure - 6.22; we observe that three magnon scattering processes come at lower energies near gap

minimas (k∼ 0.5) so is possible that the dominant continuum seen experimentally to be associated

to three magnon processes. In order to test this scenario we need quantitative calculations of the

expected scattering intensity (not available yet) that include anisotropy effects.

6.9 Conclusions

We observe that the commensurate antiferromagnetic order observed at low fields is stable over a

wide field range but is replaced by an incommensurate phase just below the transition to param-

agnetic. Using group theory we determined that the magnetic structure inside the incommensurate

phase at 2.1 T is a spin density wave propagating along the magnetic chain direction. This new

phase is stabilized by the weak frustrated interchain couplings, which become relevant close to
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Figure 6.21 (a) and (b) Colour maps of the inelastic neutron scattering intensity at dif-
ferent magnetic fields: 4 T is the field at which the spins are aligned along the field direc-
tion and 2.5 T is the field where the transition to the incommensurate magnetic structure
occurs. Note the broad continuum scattering filling in the region above the dispersion
relations at low energies. (c) Energy scans corresponding to panel (a) and (b); the data
points were obtained from averaging the region between the red curve.
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Figure 6.22 Schematic representation of the accessible phase space for multi - magnon
scattering processes as a function of wavevector and energy. The solid colored line (at
low energies) represents the single magnon branch ω+; The with comes from a finite
integration in the transverse directions. The continuum (green points) above the single
magnon branch represent the allowed zone for a) two - magnon and b) three-magnon
scattering processes.
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Figure 6.23 Schematic representation of the accessible phase space for multi - magnon
scattering processes projected on the experimental axis. These calculations are done using
the exchange parameters extracted from the dispersion relations at 2.43 T.
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the critical field where the physics is dominated by soft critical fluctuations. Deep in the para-

magnetic phase the excitations are sharp, gapped magnons with minima at the incommensurate

wavevectors of the magnetic order below BC = 2.36(2) T and the dispersion relations give values

for the intra and inter-chain couplings. In addition to one-magnon excitations at high energies we

also observe weak magnetic continuum scattering, which becomes stronger upon approaching the

critical field from above and is attributed to three-magnon scattering processes. The data is dis-

cussed in terms of an XY magnet with in-plane field where three-magnon processes are allowed

because of the non-commutation of the applied field and the exchange Hamiltonian. To confirm

this scenario quantitative calculations of the expected scattered intensity that include anisotropy

effects are needed.



Bibliography

[1] M. F. Collins, Magnetic Critical Scattering (1989).

[2] W. Marshall and S. W. Lovesey, Theory of Thermal Neutron Scattering (Oxford University

Press, 1971).

[3] G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering (1989).

[4] J. Brown, Neutron Data Booklet - Magnetic Form Factors (2003).

[5] J. R. D. Copley and T. J. Udovic, “Neutron Time-of-Flight Spectroscopy,” Journal of Re-

search of the National Institute of Standards and Technology 98, 71–87 (1993).

[6] V. L. Aksenov and A. M. Balagurov, “Neutron time-of-flight diffractometry,” Physics-

Uspekhi 39, 897–924 (1996).

[7] A. J. Schultz, “Single-crystal time-of-flight neutron diffraction,” Trans. Am. Cryst. Assoc.

29, 29–41 (1993).

[8] M. T. F. Telling and K. H. Andersen, “Spectroscopic characteristics of the OSIRIS near-

backscattering crystal analyser spectrometer on the ISIS pulsed neutron source,” Phys. Chem.

Chem. Phys. 7, 1255–1261 (2005).

[9] R. W. James, The Optical Principles Of The Diffraction Of X-Rays (1954), Vol. 2.

167



168 BIBLIOGRAPHY

[10] F. de Bergevin, X-ray and Neutron Reflectivity: Principles and Applications; chapter: The

Interaction of X-rays (and Neutrons) with Matter (2009).

[11] J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (2001).

[12] P. Coppens, X-ray charge densities and chemical bonding (1997).

[13] Handbook on synchrotron radiation, G. S. Brown and D. Moncton, eds., (1991), Vol. 3.

[14] Resonant anomalous x-ray scattering: theory and applications, G. Materlik, C. Sparks, and

K. Fischer, eds., (1994).

[15] International Tables for Crystallography. Chapter: Interpretation of diffracted intensities,

A. J. C. Wilson, ed., (1992).

[16] C. T. Chantler, “Theoretical Form Factor, Attenuation, and Scattering Tabulation for Z = 1-92
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Appendix A

Crystal Field Hamiltonian in the Point

Charge Model

The crystal field Hamiltonian Vc f is explicitly derived below in the approximation of the point

charge model (PCM), which assumes that the ligands (arranged in a geometric configuration

around the magnetic ion) are point-charges. Let’s consider a Cartesian coordinate system which

has a magnetic ion (with n unpaired electrons) at the origin and N ligands at positions R j ; these

N ligands are the nonmagnetic ions (O2−) from the first neighborhood of the magnetic ion (Co2+)

in the crystal. Under the assumptions of the PCM the electrostatic potential due to the surrounding

ligands at the position of the ith electron of the magnetic ion is given by

V(ri) =−
|e|

4πε0

N

∑
j=1

|Z j|
|R j− ri|

(A.1)

where |e| is the absolute value of the electron charge, |Z j| is the number of electrons on the ligands

situated at positions R j and ri is the position of the ith unpaired electron. The summation is

carried out over all N ligands. The perturbing crystalline potential energy is obtained from (A.1)
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by summing over all n unpaired electrons

VCF =−|e|
n

∑
i=1

V (ri) (A.2)

In this appendix one can find minimum information necessary to understand the derivation of the

Crystal Field Hamiltonian; detailed descriptions of scuh calculations can be found in Ref. [64,96].

The crystalline potential, equation (A.2) may be expressed in Cartesian Coordinates (CC method)

or in terms of Spherical Harmonics (SH method). In the case of high symmetry arrangements of

the ligands, the CC method can be used, although a tedious amount of work has to be done. In

many calculations and especially in the case of low symmetry arrangements of the ligands, the SH

method is used because the calculations are easier and a general form for the crystalline potential

can be obtained. The first step in the calculation of the crystalline potential in terms of spherical

harmonics is to make the assumption that | ri | < | R j | such that |R j− ri|−1 can be expand in

terms of the Legendre polynomials Pk; these Legendre polynomials Pk can be expanded further

using the spherical harmonics addition theorem; this theorem expresses the angle ω between the

two vectors R j and ri in terms of the individual polar angles (θ j,ϕ j) and (θi,ϕi), where (θ j,ϕ j)

characterizes the angular position of the ligand change and (θi,ϕi) represents the angular position

of the ith electron. For the rest of this Appendix we use the following notations ri=|ri| and R j=|R j |.

1
|R j− ri|

=
∞

∑
k=0

rk
i

Rk+1
j

Pk(cosω), R j > ri (A.3)

Pk(cosω) =
4π

2k+1
{Y 0

k (θ j,ϕ j)Y 0
k (θi,ϕi)+

+
k

∑
q=1

(−1)q[Y−q
k (θ j,ϕ j)Y

q
k (θi,ϕi)+Y q

k (θ j,ϕ j)Y
−q
k (θi,ϕi)]}

(A.4)

The expansion coefficients Y 0
k are real, but Y q

k and Y−q
k are complex quantities. In order to avoid

the use of imaginary quantities we replace the spherical harmonics Y 0
k , Y q

k and Y−q
k by the tesseral

harmonics Zc
k0, Zc

kq and Zs
kq, which are real quantities. The relations between the spherical and
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tesseral harmonics are given below

Y 0
k = Zc

k0, Zc
k0 = Y 0

k (A.5)

Y q
k =

(−1)q
√

2
[Zc

kq + iZs
kq], Zc

kq =
1√
2
[Y−q

k +(−1)qY q
k ] (A.6)

Y−q
k =

1√
2
[Zc

kq− iZs
kq], Zs

kq =
i√
2
[Y−q

k − (−1)qY q
k ], q > 0 (A.7)

The superscripts c and s stand for the presence of the factors cos(qϕ) and sin(qϕ) in the tesseral

harmonics. After the replacement of the spherical harmonics by tesseral harmonics and rearrange-

ment of terms, equation (A.4) can is written as [64]:

Pk(cosω) =
4π

2k+1
{Zc

k0(θ j,ϕ j)Zc
k0(θi,ϕi)+

+
k

∑
q=1

[Zc
kq(θ j,ϕ j)Zc

kq(θi,ϕi)+Zs
kq(θ j,ϕ j)Zs

kq(θi,ϕi)]}
(A.8)

Now, combination of equations (A.2), (A.3) and (A.8) we obtain for the crystalline potential VCF

the following expression

VCF =
|e|2

4πε0

n

∑
i=1

N

∑
j=1

∞

∑
k=0

Z jrk
i

Rk+1
j

4π

2k+1
{Zc

k0(θ j,ϕ j)Zc
k0(θi,ϕi)+

+
k

∑
q=1

[Zc
kq(θ j,ϕ j)Zc

kq(θi,ϕi)+Zs
kq(θ j,ϕ j)Zs

kq(θi,ϕi)]}
(A.9)

After rearranging terms, an equivalent way to write equation (A.9) is

VCF =
∞

∑
k=0
{[ |e|

2

4πε0

4π

2k+1

N

∑
j=1

Z j

Rk+1
j

Zc
k0(θ j,ϕ j)] [

n

∑
i=1

rk
i Zc

k0(θi,ϕi)]+

k

∑
q=1

([
|e|2

4πε0

4π

2k+1

N

∑
j=1

Z j

Rk+1
j

Zc
kq(θ j,ϕ j)] [

n

∑
i=1

rk
i Zc

kq(θi,ϕi)]+

[
|e|2

4πε0

4π

2k+1

N

∑
j=1

Z j

Rk+1
j

Zs
kq(θ j,ϕ j)] [

n

∑
i=1

rk
i Zs

kq(θi,ϕi)])}

(A.10)

To simply further this expression we introduce new coefficients Ac
k0, Ac

kq and As
kq, that only depend

on the position of the ligands (R j,θ j,ϕ j) with respect to the magnetic ion and their charges Z j.

Ac
k0 =

|e|2

4πε0

4π

2k+1

N

∑
j=1

Z j

Rk+1
j

Zc
k0(θ j,ϕ j) (A.11)
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Ac
kq =

|e|2

4πε0

4π

2k+1

N

∑
j=1

Z j

Rk+1
j

Zc
kq(θ j,ϕ j) (A.12)

As
kq =

|e|2

4πε0

4π

2k+1

N

∑
j=1

Z j

Rk+1
j

Zs
kq(θ j,ϕ j) (A.13)

With knowledge of the crystallographic structure we can obtain numerical values of the (R j,θ j,ϕ j)

for each ligand and we can compute the coefficients Ac
k0, Ac

kq and As
kq. Further, the crystalline

potential VCF is written in a more compact way by introducing the new coefficientsAc
k0, Ac

kq and

As
kq.

Vc f =
∞

∑
k=0
{Ac

k0

n

∑
i=1

rk
i Zc

k0(θi,ϕi)+
k

∑
q=1

[Ac
kq

n

∑
i=1

rk
i Zc

kq(θi,ϕi)+As
kq

n

∑
i=1

rk
i Zs

kq(θi,ϕi)]} (A.14)

We would like to mention at this point that in practice k runs only over a limited number of terms,

for example for d systems k ≤ 4. Next we consider the evaluation of the matrix elements of the

crystalline potential VCF between free ion states. The matrix thus formed can be diagonalized to

find the energy levels and eigenfunctions of the ion in the crystal. Tesseral harmonics can also

be written as a function of the cartesian coordinates of the ith electron, for example Zc
kq(θi, ϕi) =

Zc
kq(xi, yi, zi). The crystal field perturbing Hamiltonian operator V̂c f is formed by using the classical

perturbing crystalline potential energy, equation (A.14), where (θi, ϕi) is converted to (xi, yi, zi)

and the usual rules quantum mechanics xi→ x̂i, yi→ ŷi and zi→ ẑi.

Because for transition metals the spin-orbit coupling is much smaller then the electron-electron

interaction, in a first approximation we can characterize the eigenfunctions of the free ion by

|L,S,ML,MS〉. The matrix elements we have to calculate are of the following form

〈L,S,Mn
L,M

n
S |V̂c f |L,S,Mm

L ,M
m
S 〉n,m=1,...,28 (A.15)

By an inspection of the equation (A.14) we see that in order to calculate the matrix elements from

equation (A.15) we actually have to calculate matrix elements of the following forms

〈L,S,Mn
L,M

n
S |

n

∑
i=1

rk
i Zc

k0(x̂i, ŷi, ẑi)|L,S,Mm
L ,M

m
S 〉n,m=1,...,28 (A.16)
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〈L,S,Mn
L,M

n
S |

n

∑
i=1

rk
i Zc

kq(x̂i, ŷi, ẑi)|L,S,Mm
L ,M

m
S 〉n,m=1,...,28 (A.17)

〈L,S,Mn
L,M

n
S |

n

∑
i=1

rk
i Zs

kq(x̂i, ŷi, ẑi)|L,S,Mm
L ,M

m
S 〉n,m=1,...,28 (A.18)

The easiest way to calculate the matrix elements from equations (A.16) to (A.18) is by using

Steven’s ”Operator equivalents” method [96]. This method makes use of the fact that the x̂, ŷ,

ẑ operators have matrix elements within the same L manifold which are proportional to those

of the L̂x, L̂y and L̂x operators. Thus apart from a multiplication constant, matrix elements of

∑
n
i=1 rk

i Zc/s
kq (θi,ϕi) = ∑

n
i=1 rk

i Zc/s
kq (x̂i, ŷi, ẑi) in equations (A.16) to (A.18) are proportional to those

of a polynomial of angular momentum operators, L̂x, L̂y and L̂x. Within each manifold of L

〈L,S,Mn
L,M

n
S |

n

∑
i=1

rk
i Zc/s

kq (x̂i, ŷi, ẑi)|L,S,Mm
L ,M

m
S 〉=

ak〈rk〉〈L,S,Mn
L,M

n
S |Ôk

q(L̂x, L̂y, L̂z)c/s|L,S,Mm
L ,M

m
S 〉

(A.19)

where Ôk
q(L̂x, L̂y, L̂z)c/s are called Steven′s operators and are polynomials of angular momentum

operators (their form is given in the Appendix C for relevant k and q values for Co2+), 〈rk〉 is

a constant equal with the expectation value of the k-th power of the radius of the 3d orbitals for

the transition metal ion and finally ak is a numerical constant depending on l (the orbital quantum

number of the electrons in the unfilled shell), n (the number of unpaired electrons) and the total

angular momentum L; conventionally they are represented by αL and βL for k = 2 and k = 4

respectively. These constants are obtained by direct calculations of the matrix elements between

single electron eigenfunctions (Slater determinants) for each configuration, dn. Their values are

given in Table A.1 for a few configurations. Finally putting everything together we can write the

crystal field Hamiltonian in the "Operator Equivalent" form:

V̂c f = ∑
k=2, 4

{Bk
0Ôk

0 +
k

∑
q=1

[Bkc
q Ôkc

q +Bks
q Ôks

q ]} (A.20)

where Bk
0, Bkc

q and Bks
q are called ”Crystal Field Parameters” and are defined as

Bk
0 = ak〈rk〉Ac

k0 (A.21)



182 Chapter A Crystal Field Hamiltonian in the Point Charge Model

Table A.1 Multiplications constant ak necessary in the calculations of the Crystal Field
Parameters used for the Operator Equivalent form of the crystal field Hamiltonian in Eqs.
A.21, A.22 and A.23. The values relevant for Co2+ (3d7) with the Hund’s ground state
term 4F are highlighted in bold.

k ak 3d1 3d2 3d3 3d4 3d6 3d7 3d8 3d9

2S+1L 2D 3F 4F 5D 5D 4F 3F 2D

2 αL − 2
21 − 2

105
2

105
2

21 − 2
21 - 2

107
2

108
2

21

4 βL
2
63 − 2

315
2

315 − 2
63

2
63 - 2

315
2

315 − 2
63

Bkc
q = ak〈rk〉Ac

kq (A.22)

Bks
q = ak〈rk〉As

kq (A.23)

An example of numerical calculations of Crystal Field Parameters is given in Appendix B.



Appendix B

Crystal Field Parameters: Point Charge

Model

The crystal field parameters Bk
q can be directly calculated in the point charge model using equations

A.11, A.12 and A.13 from Appendix A and information about the ligand positions given in Table

B.1. As an example here we will calculate the crystal field parameters B2
1 and B

′2
1 (it is important

to mention that: B
′k
q = Bsk

q )

Bk
q = ak〈rk〉 4π

2k+1

N

∑
j=1

(−Z j)|e|2

Rk+1
j

Zc
kq(θ j,ϕ j)

⇒ B2
1 = αL〈r2〉4π

5

6

∑
j=1

(−Z j)|e|2

R3
j

Zc
21(θ j,ϕ j)

(B.1)

Bsk
q = ak〈rk〉 4π

2k+1

N

∑
j=1

(−Z j)|e|2

Rk+1
j

Zs
kq(θ j,ϕ j)

⇒ Bs2
1 = αL〈r2〉4π

5

6

∑
j=1

(−Z j)|e|2

R3
j

Zs
21(θ j,ϕ j)

(B.2)
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where

Zc
21(θ j,ϕ j) =

1√
2
[Y−1

2 (θ j,ϕ j)−Y 1
2 (θ j,ϕ j)]

Zs
21(θ j,ϕ j) =

i√
2
[Y−1

2 (θ j,ϕ j)+Y 1
2 (θ j,ϕ j)]

(B.3)

The form of the spherical harmonics has been tabulated for example in [64]. Relevant here are Y−1
2

and Y 1
2 given by

Y±1
2 (θ j,ϕ j) =∓

1
2

√
15
2π

cosθ j sinθ j e±iϕ j (B.4)

By replacing the spherical harmonics from equation B.4 into equations B.3 we obtain the explicit

form of the tesseral harmonics as a function of angles (θ j,ϕ j)

Zc
21(θ j,ϕ j) =

1√
2

√
15
2π

cosθ j sinθ j cosϕ j

Zs
21(θ j,ϕ j) =

1√
2

√
15
2π

cosθ j sinθ j sinϕ j

(B.5)

Now in order to calculate the crystal field parameters we have to calculate the sums ∑
N
j=1

Z j

Rk+1
j

Zc
kq(θ j,ϕ j)

and ∑
N
j=1

Z j

Rk+1
j

Zs
kq(θ j,ϕ j), where Z j has the same value (2) for all the 6 oxygen O2− ions, see Table

B.1;

N

∑
j=1

Z j

Rk+1
j

Zc
kq(θ j,ϕ j) =

1√
2

√
15
2π

[
cosθ1 sinθ1 cosϕ1 + cosθ2 sinθ2 cosϕ2

R1

+
cosθ3 sinθ3 cosϕ3 + cosθ4 sinθ4 cosϕ4

R3

+
cosθ5 sinθ5 cosϕ5 + cosθ6 sinθ6 cosϕ6

R5
]

(B.6)

and

N

∑
j=1

Z j

Rk+1
j

Zs
kq(θ j,ϕ j) =

1√
2

√
15
2π

[
cosθ1 sinθ1 sinϕ1 + cosθ2 sinθ2 sinϕ2

R1

+
cosθ3 sinθ3 sinϕ3 + cosθ4 sinθ4 sinϕ4

R3

+
cosθ5 sinθ5 sinϕ5 + cosθ6 sinθ6 sinϕ6

R5
]

(B.7)
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From the last two columns of the Table B.1, we observe that (θx = π−θx+1, ϕx = π−ϕx+1), where

x = 1, 2, 3; using these relations between the angles we simply further the sums in equations B.6

and B.7 as

N

∑
j=1

Z j

Rk+1
j

Zc
kq(θ j,ϕ j) =

1√
2

√
15
2π

[
2 cosθ2 sinθ2 cosϕ2

R1
+

2 cosθ4 sinθ4 cosϕ4

R3
+

2 cosθ6 sinθ6 cosϕ6

R5
]

(B.8)

and

N

∑
j=1

Z j

Rk+1
j

Zs
kq(θ j,ϕ j) =

1√
2

√
15
2π

[
cosθ2 sinθ2 (sinϕ2− sinϕ2)

R1

+
cosθ4 sinθ4 (sinϕ4− sinϕ4)

R3

+
cosθ6 sinθ6 (sinϕ6− sinϕ6)

R5
]

(B.9)

from equations B.8 and B.9 we can see that the sum entering in B2
1 has a finite real value but the sum

entering Bs2
1 cancels out, so there are no complex terms in the crystal field Hamiltonian expressed

in the XYZ local reference frame. Similarly all the Bsk
q terms in Eq. A.20 cancel out.

Table B.1 crystal parameters used to calculate CFP

Name Z j x(Å) y(Å) z(Å) R j(Å) θ(deg) ϕ(deg)

Co1 0.0000 0.0000 0.0000 0.0000 0.000 0.000

O1 2 1.3469 1.2270 0.9227 2.0423 63.141 42.333

O2 2 -1.3468 1.2270 -0.9226 2.0423 116.86 137.66

O3 2 1.0653 -1.6970 0.6982 2.1218 70.789 -57.881

O4 2 -1.0653 -1.6970 -0.6981 2.1218 109.21 -122.12

O5 2 -1.0653 -0.3798 1.8242 2.1463 31.798 -160.38

O6 2 1.0653 -0.3798 -1.8241 2.1463 148.20 -19.622



186 Chapter B Crystal Field Parameters: Point Charge Model



Appendix C

Stevens operators Ôkc
q and their matrix

elements in terms of the |LSMLMS〉 base

This Appendix lists the expression of the Sevens operators Ok
q in terms of angular momentum

operators from [96].

Ô0c
0 = 1 (C.1)

Ô2c
0 = 3L̂2

z −L(L+1) (C.2)

Ô2c
1 =

1
4
[(L̂zL̂++ L̂+L̂z)+(L̂zL̂−+ L̂−L̂z)] (C.3)

Ô2c
2 =

1
2
(L̂2

++ L̂2
−) (C.4)

Ô4c
0 = 35L̂4

z − [30L(L+1)−25]L̂2
z +3L2(L+1)2−6L(L+1) (C.5)

Ô4c
2 = [7L̂4

z −L(L+1)−5](L̂2
++ L̂2

−)+(L̂2
++ L̂2

−)[7L̂4
z −L(L+1)−5] (C.6)

Ô4c
3 =

1
4
[L̂z(L̂3

++ L̂3
−) = (L̂3

++ L̂3
−)L̂z] (C.7)

Ô4c
1 =

1
2
(L̂4

++ L̂4
−) (C.8)

187



188 Chapter C Stevens operators Ôkc
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where L̂± = L̂x± iL̂y are the raising and lowering operators. In terms of orbital angular momentum

operators, the orbital states |LML〉 satisfy the following relations

L̂z |LML〉= ML |LML〉 (C.9)

L̂± |LML〉=
√

L(L+1)−ML(ML±1) |LML±1〉 (C.10)

Taking into account that the free ion eigenfunctions |LSMLMS〉 are constructed from products of

orbital |LML〉 and spin |SMS〉 states, the matrix elements of Steven′s operators can be expressed as

〈L,S,Mn
L,M

n
S |Ôk

q|L,S,Mm
L ,M

m
S 〉n,m=1÷28 =

〈L,Mn
L|Ôk

q|L,Mm
L 〉n,m=1÷28δMn

S Mm
S

(C.11)

The matrix elements of the Steven′s operators in the |LML〉 base, where ML = −3,−2,−1,0,1,2,3

are given below in Tables - C.1 to C.8:

Table C.1 Matrix representation of the Q̂2
0 operator in the |ML> basis for L = 3

|ML =−3〉 |ML =−2〉 |ML =−1〉 |ML = 0〉 |ML = 1〉 |ML = 2〉 |ML = 3〉

〈ML =−3| 15 0 0 0 0 0 0

〈ML =−2| 0 0 0 0 0 0 0

〈ML =−1| 0 0 -9 0 0 0 0

〈ML = 0| 0 0 0 -12 0 0 0

〈ML = 1| 0 0 0 0 -9 0 0

〈ML = 2| 0 0 0 0 0 0 0

〈ML = 3| 0 0 0 0 0 0 15
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Table C.2 Matrix elements of the Q̂2
1 operator

|ML =−3〉 |ML =−2〉 |ML =−1〉 |ML = 0〉 |ML = 1〉 |ML = 2〉 |ML = 3〉

〈ML =−3| 0 −5
4

√
6 0 0 0 0 0

〈ML =−2| −5
4

√
6 0 −3

4

√
10 0 0 0 0

〈ML =−1| 0 −3
4

√
10 0 −

√
3

2 0 0 0

〈ML = 0| 0 0 −
√

3
2 0

√
3

2 0 0

〈ML = 1| 0 0 0
√

3
2 0 3

4

√
10 0

〈ML = 2| 0 0 0 0 3
4

√
10 0 5

4

√
6

〈ML = 3| 0 0 0 0 0 5
4

√
6 0

Table C.3 Matrix elements of the Q̂2
2 operator

|ML =−3〉 |ML =−2〉 |ML =−1〉 |ML = 0〉 |ML = 1〉 |ML = 2〉 |ML = 3〉

〈ML =−3| 0 0
√

15 0 0 0 0

〈ML =−2| 0 0 0
√

30 0 0 0

〈ML =−1|
√

15 0 0 0 6 0 0

〈ML = 0| 0
√

30 0 0 0
√

30 0

〈ML = 1| 0 0 6 0 0 0
√

15

〈ML = 2| 0 0 0 0
√

30 0 0

〈ML = 3| 0 0 0 0
√

15 0 0
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Table C.4 Matrix elements of the Q̂4
0 operator

|ML =−3〉 |ML =−2〉 |ML =−1〉 |ML = 0〉 |ML = 1〉 |ML = 2〉 |ML = 3〉

〈ML =−3| 180 0 0 0 0 0 0

〈ML =−2| 0 −420 0 0 0 0 0

〈ML =−1| 0 0 60 0 0 0 0

〈ML = 0| 0 0 0 360 0 0 0

〈ML = 1| 0 0 0 0 60 0 0

〈ML = 2| 0 0 0 0 0 −420 0

〈ML = 3| 0 0 0 0 0 0 180

Table C.5 Matrix elements of the Q̂4
1 operator

|ML =−3〉 |ML =−2〉 |ML =−1〉 |ML = 0〉 |ML = 1〉 |ML = 2〉 |ML = 3〉

〈ML =−3| 0 −15
√

6 0 0 0 0 0

〈ML =−2| −15
√

6 0 12
√

10 0 0 0 0

〈ML =−1| 0 12
√

10 0 −15
√

3 0 0 0

〈ML = 0| 0 0 15
√

3 0 15
√

3 0 0

〈ML = 1| 0 0 0 −15
√

3 0 −12
√

10 0

〈ML = 2| 0 0 0 0 −12
√

10 0 15
√

6

〈ML = 3| 0 0 0 0 0 15
√

6 0
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Table C.6 Matrix elements of the Q̂4
2 operator

|ML =−3〉 |ML =−2〉 |ML =−1〉 |ML = 0〉 |ML = 1〉 |ML = 2〉 |ML = 3〉

〈ML =−3| 0 0 18
√

15 0 0 0 0

〈ML =−2| 0 0 0 −3
√

30 0 0 0

〈ML =−1| 18
√

15 0 0 0 −60 0 0

〈ML = 0| 0 −3
√

30 0 0 0 −3
√

30 0

〈ML = 1| 0 0 −60 0 0 0 18
√

15

〈ML = 2| 0 0 0 −3
√

30 0 0 0

〈ML = 3| 0 0 0 0 18
√

15 0 0

Table C.7 Matrix elements of the Q̂4
3 operator

|ML =−3〉 |ML =−2〉 |ML =−1〉 |ML = 0〉 |ML = 1〉 |ML = 2〉 |ML = 3〉

〈ML =−3| 0 0 0 −9
√

5 0 0 0

〈ML =−2| 0 0 0 0 −3
√

10 0 0

〈ML =−1| 0 0 0 0 0 3
√

10 0

〈ML = 0| −9
√

5 0 0 0 0 0 9
√

5

〈ML = 1| 0 −3
√

10 0 0 0 0 0

〈ML = 2| 0 0 3
√

10 0 0 0 0

〈ML = 3| 0 0 0 9
√

5 0 0 0
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Table C.8 Matrix elements of the Q̂4
4 operator

|ML =−3〉 |ML =−2〉 |ML =−1〉 |ML = 0〉 |ML = 1〉 |ML = 2〉 |ML = 3〉

〈ML =−3| 0 0 0 0 12
√

15 0 0

〈ML =−2| 0 0 0 0 0 60 0

〈ML =−1| 0 0 0 0 0 0 12
√

15

〈ML = 0| 0 0 0 0 0 0 0

〈ML = 1| 12
√

15 0 0 0 0 0 0

〈ML = 2| 0 60 0 0 0 0 0

〈ML = 3| 0 0 12
√

15 0 0 0 0



Appendix D

Tesseral harmonics

This Appendix lists the explicit expressions of the (real) tesseral harmonics Zc/s
kq up to order k=4

from [64]:

Zc
kq =

1√
2
[Y−q

k +(−1)qY q
k ] Zs

kq =
i√
2
[Y−q

k − (−1)qY q
k ], q > 0 (D.1)

Zc
21 =

1√
2

√
15
2π

sinθ cosθ cosϕ

Zs
21 =

1√
2

√
15
2π

sinθ cosθ sinϕ

(D.2)

Zc
22 =

1
2
√

2

√
15
2π

sinθ
2 cos2ϕ

Zs
22 =

1
2
√

2

√
15
2π

sinθ
2 sin2ϕ

(D.3)

Zc
41 =

3
4
√

2

√
5
π

sinθ (7cosθ
3−3cosθ) cosϕ

Zs
41 =

3
4
√

2

√
5
π

sinθ (7cosθ
3−3cosθ) sinϕ

(D.4)
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Zc
42 =

3
4
√

2

√
5

2π
sinθ

2 (7cosθ
2−1) cos2ϕ

Zs
42 =

3
4
√

2

√
5

2π
sinθ

2 (7cosθ
2−1) sin2ϕ

(D.5)

Zc
43 =

3
4
√

2

√
35
π

sinθ
3 cosθ cos3ϕ

Zs
43 =

3
4
√

2

√
35
π

sinθ
3 cosθ sin3ϕ

(D.6)
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